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Abstract:

This paper focuses on the study of a mixture of two components Weibull and Lomax distributions based on a complete sample.
Maximum likelihood estimation and Bayes estimation under informative and non-informative priors have been obtained using the
symmetric squared error loss function (SELF) and the asymmetric linear exponential (LINEX) and general entropy (GELF) loss
functions. Bayesian prediction has been considered for future observation based on the observed sample. Finally, a simulation
study as well as a numerical example are carried out to compare the performance of the estimators obtained.
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1. Introduction

The survival analysis of lifetime (failure time) data is an important topic in statistics and has applications in different fields of life and
also is a collection of statistical procedures for data analysis for which the outcome variable of interest is the time until an event
occurs.

In recent years, mixtures of distributions have gained great interest for the analysis. These models include finite and infinite number of
components that can analyze different data sets. The families of mixture models have been widely used in many areas, including
medicine, botany, life testing, reliability and etc. Also, there have been studies on mixtures of two identical distributions and mixtures
of two different distributions .Abu-Zinadah (2010) considered a mixture of exponentiated Pareto and exponential distributions and
obtained the maximum likelihood and Bayes estimators under complete and type- II censored samples. Erisoglu.et.al. (2011) proposed
a mixture of two different distribution binaries of Gamma, Weibull and Exponential to model heterogeneous survival data. Turkan and
Cahs (2014) used a mixture of two same kind of distributions in addition a mixture of two distributions from pairs of Exponential,
Gamma, Lognormal and Weibull combinations of these distributions. Maximum Likelihood estimators of the parameters of the
mixture models are obtained by using the EMalgorithm. Daniyal and Rajab (2015) discussed the classical properties of a mixture of
Burr-XII and Lomax distributions.

The Weibull distribution has been widely used in modeling of lifetime event data; this is due to the variety of shapes of the probability
density function (pdf) based on its parameters and its convenient repetition of the survival function. Many researchers studied Bayes
estimation for the Weibull distribution, among them are Berger and San (1993), Kaminskiy and Krivtsov (2005), Zhang and Meeker
(2005), Kundu (2008), Ahmed et al. (2010), Zhu et al. (2016) and many others.

The Lomax distribution, sometimes called Pareto of the second kind, has a considerable importance in the field of life testing because
of its uses to fit business failure data [Lomax (1945)]. Some authors considered Bayesian estimation of Lomax distribution
e.g.Howladerand Hossain (2002), Nasiri and Hosseini (2012), Afaqgetal. (2015), AL-Noor and Alwan (2015) and Ferreira et al. (2016).
Many authors have studied Bayesian estimation of two components mixture distribution. Ahmed et. al. (1997) studied approximate
method of estimation under type-II censoring for the shape parameters of a mixture of two Weibull distributions. Al-Hussaini et. al.
(2001) obtained Bayesian prediction bounds for future observations based on a type -I censored sample from a finite mixture of two
Lomax components. Jaheen (2003) studied prediction bounds for st" future observation based type-I censored samples for parameters
of a mixture of two component Gompertz distribution. Shawky and Bakoban (2009) considered the problem of estimating reliability,
and failure rate functions of a finite mixture of two components from the exponentiated gamma distribution using maximum
likelihood and Bayes methods of estimation. Ahmed et al. (2011) considered Bayesian estimation for the parameters of the finite
mixture of the Burr type XII distribution with its reciprocal based on the type-I censored data. Mahmoud et al. (2014) developed
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prediction bounds for future order statistics under a mixture of two generalized exponential distribution using type-II censored and
complete data. Aslam and Feroze (2014) proposed Bayesian estimation for analyzing lifetime data based doubly censored sampling
using two component mixture of Weibull distribution. Feroze (2015) discussed the Bayesian estimation for mixture of two component
Inverse Weibull distribution under doubly censoring.

The objective of this work is to consider maximum likelihood and Bayesian estimation methods of the two components mixture of
Weibull and Lomax distributions as a lifetime model, based on complete data. We derive the maximum likelihood estimators (MLE)
and Bayes estimators using Jeffrey’s prior and Gamma prior under symmetric and asymmetric loss functions. Also, we discussed the
Bayesian two sample prediction bounds for the future observations for the considered model.

The rest of this paper is organized as follows: The two-component mixture of Weibull and Lomax distributions is defined in Section 2.
In Section 3, we obtain maximum likelihood estimators and Bayes estimators of the parameters. Bayesian prediction is provided in
Section 4. In Section 5, a Monte Carlo simulation study is conducted to compare the performance of different estimation methods of
the parameters. In Section 6, a numerical example is provided. Finally, in Section7 we present a summary and a conclusion.

2. The Mixture Model
The probability density function (pdf)f (x)of a mixture of two components with mixing
weights (p, 1 — p)is:
Oy, 61, a5,0;) = pfi(x; ay,01) + (1 — p)fax; az, 6;)
where f;(x; a,,0,) is the Weibull distribution with two shape parameters a; and 6, and is given by
£06ag,60,) = a,0,x07 e~ %% x > 0.q, > 0,6, > 0.
f2(x; @y, 0,) is the Lomax distribution with two shape parameters a, and 6, and is given by
fz(x; a,, 62) = azgz(l + sz)_(a2+1),x > 0,“2 > 0,62 > 0.
It follows that
[ ay,0p,az,0;) = P(f‘-’l6’19591_19_0{1’661 + (1= p)az6,(1 + 6,x) (@D 1)
x>0,a, >0,0, >0,a, >0,0, >0,p €[0,1].
The corresponding cumulative distribution function (cdf) is given by:
o F(x; ay, 04, a3,0,) = pFi(x; a4,01) + (1 — p)F>(x; @y, 65)
whereF; (x; @1,0,) = 1—e ™% and F,(x;a,,0,) =1— (1 + 6,x)"%.
It follows that
F(x; a0, 02, 0,) = p (1= ™% ) + (1 = p)[1 = (1 + 6,2) 7] @
The reliability function of the mixture is then given by:
. R(x; a,0,,a3,0;) = pR1(x; a1, 6,) + (1 — p)R2(x; a, 67)
where R;(x;ay,0;) = e~“*"" andR,(x; ay,0,) = (1 + 6,x)~%2
and R(x; @y, 01,5, 0,) = p (7% ) + (1 = p) (1 + B,x) ™ 3

3. Estimation of the Parameters
In this section, the maximum likelihood and Bayes methods are applied to estimate the parametersa,, a, given thatf;and 6,are
known, for different loss functions.

3.1. Maximum Likelihood Estimation

Suppose a sample of n units is put on operation in life testing experiment and that the test is terminated if all n items taken from the
population with pdf (1) have failed. After then units have failed each item can be attributed to the appropriate subpopulation. Thus, if
the n units have failed during the interval (0, x(n)): r; from the first subpopulation and 7, from the second subpopulation. Let x;;
denote the failure of the jth unit that belongs to the jth subpopulation and Xij S Xnys J = 1,2, .....,1;3i=12; n=r +r,.where
X(n) denotes the failure time of the n®™ unit. For a two component mixture model, the likelihood function,
givenx = (xll, ey X1rys X21, ...,xZTZ)can be written as:

T-

1 T2
L(p, 0-’1'0-’2'91'92|£) S pr1(x1ji 0-’1'91) 1_[(1 - p)fz(xzji 0-’2'92) %)
j=1 j=1

Assuming that the parameters 8, and 8, are known, the likelihood function (4) reduces to
2
_ r1 01 -
L(p, @y, a3, 04, 0,]x) < p™(1 — p)2a;'a,’e @12 jo1 %] 1_[(1 + 6,x3) (@ 5)
j=1
Thus, the log-likelihood function of the parameters a; , @, and p are given by
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L&t

In L(p, a,, azlg) xrylnp+r,In(l-p)+nlna, +r,lna, —a, Z xfjl
j=1
T2
j=1

Partially differentiating equation (6)with respect to @, , @, and p maximum likelihood estimates (MLEs) can obtained by solving the

following equations after equating it to zero
1

dInL(p,ay, a,|x) _nh_ Z 01

1
day aq J

=1

dln L(p, Qy, ay |£) N

z ln(l + Hzxzj)
j=1
Jdln L(p, aq, azlg) 7 T
ap p 1-p
The second partial derivatives with respect toa; , @, and p are obtained as
0%InL(p, ay, a,|x) 7

b
Jda, a L

da? a?
0%InL(p, ay, a,|x) —o 0%2inL(p, ay, ayx) _n
da,0a, daj ag
0%InL(p, ay, as|x) “o 0% InL(p, ay, az|x) “o 0%inL(p, ay, as|x) _n_ 7
Opda, dpda, dap? pr* (1-p)?

3.2. Bayes Estimation

In this section, we determine Bayes estimator of the parametersa, , @, and pfor informative and non-informative prior based on the
symmetric (square error) loss function and asymmetric

(LINEX and general Entropy) loss functions.

3.2.1. The Posterior Distribution under the Assumption of Informative Prior
Gamma (or conjugate) prior is the most widely used prior distribution. Let a; ~Gamma(a,, b;),a,~Gamma(a,, b,) and
p~Beta(c,d) for the mixing parameterp. Assume the independence of the parameters, the joint prior distribution of @, , @, and p is
91(ay, a,p) & a;? " ag? e (abitazb)peni(] — pyd- ™
a,a, >0, 0<p<1,a,,a,,by,by,c,d > 0.
By combining the likelihood function given in (5) and the joint prior (7)the joint posterior distribution given data is:
P1(a, @y, pl2) = Ky TpnteTH(L = p)e T a T T gt T e kgm0 ®
whereK; is the normalizing constant given by

Kl :ﬁ(‘rl +C,T‘2 +d)

r'(n+a)r(,+ay)
()1t (@y)r2taz
1 2

¢, =by + Z xf]? and@, = b, + Z ln(l + Hzxzj)

j=1 j=1

with

3.2.1.1. Bayes Estimator under Squared Error Loss Function (SELF)
The estimators of a;,a, and p using the squared error loss function is the mean of the corresponding marginal posterior density
functions and are given by:

r'p+a,+1)Ir(ry+ay)
((pl)r1+a1+1 (¢2)rz+a2
r'rp+a)r(y+a,+1)
((pl)T1+a1 ((pz)r2+a2+1
r'(r+a)r(,+a,)

(p)rten (@p)r2te

@y spr = KT B(ry +¢,1 + d)

@y sp1r = K ' B +¢,my +d)

Pserr = Ki'B(ry + ¢+ 1,1, + d)
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3.2.1.2. Bayes Estimator under Linear-Exponential Loss Function (LINEX)
Considering the LINEX loss function, the Bayes estimator of any parameter A is obtained from:

~

1
Apvex = — Eln[E(e_qA |£)]

provided that the expected value with respect to the posterior function of 4,E (e‘qA |£),exists and is finite.

The Bayes estimator of a;,a, and p can be obtained as

r(n+a) I'(;+a,)
(g1 + @)t ()29
r(ry+a) I'(p+a,)
()71 (@, + q)72t%
1 r'(ry+a,) Il (r,+ay) ()"
b (gt (gp)rete k!

k=0

1
A1 LivEx = _aln [Kflﬁ(’”l +cr+d)

1
A2 LINEX = _5111 [Kflﬁ(ﬁ +cr+d)

B(ry+c+kr,+d)

p =—=In
LINEX q

3.2.1.3. Bayes Estimator Under General Entropy Loss Function (GELF):
The Bayes estimator of any parameter Acan be obtained as:

1
Agerr = [E(A_h|£)] "
provided that the expected value with respect to the posterior function of 4,E (A‘h | g),exists and is finite.
The Bayes estimator of a4,@, and pare obtained as:

1
F(T'l +a1 _h)r(rz +a2) _ﬁ
(p)rra=h (y)retez
1
F(T'l-l-al)r(rz +a2_h) _ﬁ
(p)rrer (@p)retaeh
1
rn+a)r(r+a)|*
(p)rirar (@)r2te

®16ELF = [Kl_lﬁ(rl +cr,+d)

@ ELF = [Kl_lﬁ(rl +cr,+d)

DeeLr = [Kflﬁ(ﬁ +c—hmnr+d)

3.2.2. The Posterior Distribution under the Assumption of non-Informative prior

Jeffery (1946) proposed a formal rule for obtaining a non-informative prior. The uninformative priors are recommended when no
formal prior information about the parameters exist. This is defined as the density of the parameters proportional to the square root of
the determinant of the Fisher information matrix. The prior distribution for the mixing parameterp is uniform, i.e., p~Uniform(0,1).
Assume independence, the joint prior is given by:

g2(ay, ay,p) « ﬁal,az >0, 0<p<1 9
By combining the likelihood function given in (5) and the joint prior(9), the posterior distribution given data is:
p2(a@y, @z, plx) = K, 7'p (1 — p)™ ayt ey T el ez (10)
whereK, is the normalizing constant given by
Ir(ry+a)l(r,+a,)

(p1)itar (@y)retaz

Kz = ,[))(T'l + 1,7'2 + 1)
1 2

withei = Z xf]? and@; = Z ln(l + 92x2]-)

j=1 j=1

3.2.2.1. Bayes Estimator under Squared Error Loss Function (SELF)
Under the squared error loss function the estimator of any parameter is the mean of the marginal posterior density function of that
parameter. It follows that:

r'(r+1) I'(ry)

(</()1‘))““( (wé)T;
. _ ') I'(my+1
Qyser = Ky B+ 1,1, + 1) (oD (@)t

o _ r(r) ()
Psgrr = K3 1B+ 2,13+ 1) ((p*)lrl ((p*)zrz
1 2

@y sprr = Ko ' By + 1, + 1)
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3.2.2.2. Bayes Estimator under Linear Exponential Loss Function (LINEX)
Bayes estimators of a;,a, and p based on LINEX loss function are given by

~ — _11 [K‘lﬁ( +1,1r,+1) rew) 1)
Ay LINEX = q 0K Pl T LT (o1 + @)™ (p3)2
() I(r) ]

1
P =——In|K;'B(ry + 1,15 + 1) — ;
2,LINEX q [ 2 1 2 (o)) (@3 + @)

() I'(ry) o (- Q)k
()™ (@) pr

1

DrLinex = _aln Kz

Bri+k+1,nr+1)

3.2.2.3. Bayes Estimator under General Entropy Loss Function (GELF)
Bayes estimators of a;,a, and p based on general entropy loss function are given by
1

r(r—nh F(T‘z)]_ﬁ
(" (@) )
r(ry) I, — h)]_ﬁ

@16ELF = [K{lﬁ(rl +1,r,+1)

ﬁZ,GELF = [Kz_lﬁ(rl +1, T+ 1)( *)r1 ((p*)rz_
P1 2

rry) r (7'2)
pGELF - [KZ ﬁ(rl - h + 1 ) + 1) ((pl)rl ((pz)rz
4. Bayesian Prediction
In this section, the Bayesian two sample prediction of a future order statistics is considered. Based on a random sample of size n
drawn from the population with pdf (1), a future unobservable independent random sample of size m from the same population is
under consideration. Lety, represents the s ordered statistic in the future sample, 1 < s < m. The s*"order statistic in a sample of

size m represents the life length of a (im — s + 1) out of m system. The distribution function of ysthe ordered future sample is given
[see Arnold et al. (1992) and Jaheen (2003)] by

m
m
Fys(ySm' a, ay) = Z ( I ) [Fx(s|p, @1, a)]'[1 = Fx (yslp, aq, @)™

Z Z ( ) (=D [R(y)]™ (11)

=s j1=
where Fx(ys|p, aq, @) is the distrlbutlon functlon of the mixture model and R(y,) is the reliability function of the mixture model

after replacing x by y;
Using the binomial expansion for [R(y,)]™ '*/1 it follows that

. 01 m—I+j,
[RGI™ it = [pemas™ + (1 - p)(1 + 6,9,) ™|
m—l+jy I . s
m—1L+ . ] .
= Z ( ) h) p®1(1—p) (e‘“lySl) "1+ 0,y
— J2
J2=0
Therefore,
m—I+j, .y s
+j . 81\°1
F Ol @1, @) = Z Z > () cvmna-pn ()
— — J2
l=s j1=0 j=0
X (1 + 0,y,) %22 (12)
The Bayes predictive pdf of y;given x, is defined by:
1 © o
f*(J’s|£) = ff ff(yS“?' al,az)P(p, al,a2|£)da1da2dp (13)

000
where P(p, aq, a2|£)is the joint posterior density for parametersa, ,a,and pand f (y;|p, a;, @;) is the pdf ofst" component in a future

sample.
Therefore, using the Bayesian predictive density of y, , for a given value v, we obtain
0

Prlys = vix] = ff*(yslﬁ)dys
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| Buip. @ @) P(p. ay s ) des daydp (149
th component in a future sample as given by (12)
Substitution of (8) and (12) in (14), we get

r(ri+a,) I'(r,+a,)

Prive 2 vl = 1 K71 ) BB+ 6080 ¢ g o
1 2

If the prior distribution is non-informative, Bayes predictive distribution bounds with value v for yg, can be obtained by substituting
(10)and (12) in ( 14),and obtain

Prly; = vi|x] =1- K;lzBﬁ(Sf +1,65 + 1)

r(r) ()

where
m—Il+j, I _1

m +

D ZZ ). =) (", e
L7 \j; J2

=s j1=0 jz=

61 _l+]1 ]2, 52=T1+C, 53=T2+d+j2

61 =06, +m, 0 =Jj, + 13,

Pt = V9151 + @1, 0 =] ln(l + gzxzj) + @,

i = v + @3 = ln(l + gzxzj) + @3
A 100 y%predictioninterval for ys is given by
PlL(x) <y <U(x)] =¥
where L(g) and U (g) are obtained respectively by solving the following two equations:

P> 1@l =L and P> U] = as)

5. Simulation Study
In this section, we present simulation study to compare the performance of the various estimates based on samples from a mixture of
Weibull and Lomax distribution. The following steps were followed:

e In this study the following parameters values were used (@4, a5, p) = (2,3,0.45) and
(1,2,0.45) along with(8,, 6,) = (1.2,1.6). The values chosen for the constantsq and h are
(0.5,—-0.5,0.9,—0.9,1, —1) for the LINEX and GELF loss functions. The following values are
used for the hyper parameters(a; = 0.2,a, = 0.12,b; = 0.35,b, = 0.15,c = 1.5 and d = 3.5) for informative prior. In case of
non-informative prior, we take {(a; = a, = by = b, = 0),(c =d = 1)}.In all these cases samples of sizesn=25,50,75,100 and 200
are generated.

e  Generate a uniform (0,1) random number u.

e Ifu < p the observation is randomly generated from first subpopulation. If u > p then the

observation is generated from the second subpopulation.

e (Calculate the maximum likelihood estimates and Bayes estimates of the parameters a4,a, and
p when 6, and 8, are known according to sect3.

e Bayesian prediction bounds for the s future observationY;are obtained by solving
(15)numerically, withy = 0.95.

e The above steps are repeated 1000 times, and the calculated average of the estimates are presented in the Tables (1-13). The

average of the lower and the average of the upper bounds of the interval of Y;when s = % is even or ’"T“ is odd for different

sample size nand different future sample size m. The simulated coverage probability and average interval lengths are
presented in Tables (14) and (15).
The computations are done using Mathematica 10.
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n Loss Function
MLEs Squared LINEX General Entropy
Error q=05 | g=-05 q=1 q=-1 h=05 | h=-05 h=1 h=-1
25 2.20319 2.07547 1.97417 2.19594 1.88665 2.34701 1.93302 2.02837 1.88469 2.07547
(0.66989) | (0.44259) | (0.34620) | (0.62460) | (0.29639) | (1.01339) | (0.38105) | (0.41694) | (0.37107) | (0.44259)
50 2.10357 2.04773 1.99975 2.09921 1.95484 2.15468 1.97833 2.02469 1.9550 2.04773
(0.22871) | (0.18682) | (0.16680) | (0.21554) | (0.15379) | (0.25521) | (0.17231) | (0.18085) | (0.16977) | (0.18682)
75 2.06443 2.03086 1.99939 2.06376 1.95821 2.09822 1.97312 2.01559 1.95809 2.03086
(0.15206) | (0.13702) | (0.12747) | (0.14972) | (0.10818) | (0.16607) | (0.11618) | (0.13423) | (0.11536) | (0.13702)
100 2.05664 2.03210 2.00871 2.05625 1.98606 2.08122 1.99785 2.02070 1.98639 2.03210
(0.10113) | (0.09321) | (0.08794) | (0.10001) | (0.08406) | (0.10850) | (0.08897) | (0.09153) | (0.08809) | (0.09321)
200 2.03262 2.02095 2.00957 2.03251 1.99836 2.04425 2.00413 2.01535 1.99851 2.02095
(0.04894) | (0.04695) | (0.04554) | (0.04866) | (0.04443) | (0.05070) | (0.04574) | (0.04648) | (0.04547) | (0.04695)
Table 1: Average values of the different estimators and corresponding MSE based informative prior whena,; = 2
n Loss Function
MLEs Squared LINEX General Entropy
Error q=05 | gq=-05 q=1 q=-1 h=05 | h=-05 h=1 h=-1
25 3.24560 3.14827 2.9640 3.37307 2.80818 3.66333 2.97220 3.08996 2.91270 3.14827
(1.03010) | (0.84715) | (0.63592) | (1.28135) | (0.54497) | (2.23496) | (0.73166) | (0.80110) | (0.70858) | (0.84715)
50 3.11830 3.07557 2.98887 3.16977 2.90866 3.27272 2.99072 3.04737 2.96225 3.07557
(0.39990) | (0.34682) | (0.30354) | (0.41606) | (0.28049) | (0.51912) | (0.32284) | (0.33717) | (0.31820) | (0.34682)
75 3.09708 3.05065 2.97841 3.11102 2.92474 3.17484 2.97908 3.03191 2.96040 3.05065
(0.25626) | (0.22968) | (0.20641) | (0.25853) | (0.19659) | (0.29856) | (0.21481) | (0.22534) | (0.21312) | (0.22968)
100 3.04604 3.02697 2.98523 3.07035 2.94502 3.11549 2.98558 3.01320 297175 3.02697
(0.17243) | (0.16578) | (0.15617) | (0.17998) | (0.15066) | (0.19935) | (0.16078) | (0.16372) | (0.15989) | (0.16578)
200 3.02530 3.01597 2.99517 3.03717 2.97475 3.05877 2.99528 3.00908 2.98837 3.01597
(0.08270) | (0.08101) | (0.07851) | (0.08450) | (0.07696) | (0.08905) | (0.07964) | (0.08046) | (0.07938) | (0.08101)
Table 2: Average values of the different estimators and corresponding MSE based informative prior whena, = 3
n Loss Function
MLEs Squared LINEX General Entropy
Error q=05 | g=-05 qg=1 q=-1 h=05 | h=-05 h=1 h=-1
25 0.45882 0.42523 0.42332 0.42715 0.42141 0.42908 0.41057 0.42048 0.40541 0.42523
(0.03410) | (0.00716) | (0.00724) | (0.00708) | (0.00733) | (0.00701) | (0.00844) | (0.00752) | (0.00899) | (0.00716)
50 0.45259 0.44040 0.43932 0.44148 0.43824 0.44257 0.43268 0.43787 0.43004 0.44040
(0.01484) | (0.00403) | (0.00405) | (0.00402) | (0.00407) | (0.00400) | (0.00435) | (0.00412) | (0.00449) | (0.00403)
75 0.45333 0.43745 0.43670 0.43820 0.43595 0.43985 0.43958 0.43817 0.43033 0.43745
(0.01121) | (0.00303) | (0.00305) | (0.00301) | (0.00307) | (0.00291) | (0.00303) | (0.00302) | (0.00323) | (0.00303)
100 | 0.45714 0.44151 0.44094 0.44209 0.44036 0.44267 0.43750 0.44019 0.43847 0.44151
(0.00952) | (0.00231) | (0.00232) | (0.00230) | (0.00234) | (0.00229) | (0.00242) | (0.00234) | (0.00242) | (0.00231)
200 | 0.45256 0.44821 0.44792 0.44851 0.44762 0.44881 0.44619 0.44754 0.44551 0.44821
(0.00320) | (0.00111) | (0.00111) | (0.00111) | (0.00111) | (0.00111) | (0.00113) | (0.00112) | (0.00114) | (0.00111)"
Table 3:Average values of the different estimators and corresponding MSE based informative prior whenp = 0.45
n Loss Function
MLEs Squared LINEX General Entropy
Error q=05 |q=-05| ¢g=09 | q=-09| h=05 |h=-05| h=09 | h=-09
25 2.2053 2.2053 2.0870 2.35065 2.00548 2.51086 2.04955 2.15382 2.00729 2.19504
(0.57503) | (0.57503) | (0.41692) | (0.89028) | (0.34370) | (1.73905) | (0.45368) | (0.52839) | (0.43096) | (0.56522)
50 2.07676 2.07676 2.02677 2.1305 1.98918 2.17657 2.02099 2.05325 1.98696 2.07206
(0.22783) | (0.22783) | (0.20050) | (0.26552) | (0.18468) | (0.30499) | (0.20634) | (0.21949) | (0.20242) | (0.22607)
75 2.07087 2.07087 2.02437 2.10523 2.01282 2.1339 2.02385 2.04127 2.01124 2.06775
(0.13991) | (0.13991) | (0.12751) | (0.15585) | (0.11967) | (0.17152) | (0.12907) | (0.13451) | (0.12713) | (0.13905)
100 2.02598 2.02598 2.01707 2.04999 1.98466 2.06977 2.01602 2.0392 1.98273 2.02371
(0.09751) | (0.09751) | (0.09374) | (0.10423) | (0.08916) | (0.11082) | (0.09639) | (0.09998) | (0.09296) | (0.09717)
200 2.02426 2.02426 2.01278 2.03591 2.00373 2.04536 2.00731 2.02109 2.00279 2.02313
(0.04720) | (0.04720) | (0.04572) | (0.04899) | (0.04476) | (0.05066) | (0.04591) | (0.04336) | (0.04566) | (0.04709)

Table 4:Average values of the different estimators and corresponding MSE based non-informative prior when a; = 2
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n Loss Function
MLEs Squared LINEX General Entropy
Error q=05 | g=-05] ¢g=09 | qg=-09]| h=05 |h=-05] h=09 h=-09
25 3.16876 3.16876 2.97964 3.40181 2.85042 3.64276 2.99029 3.10966 2.94207 3.15697
(0.59348) | (0.59348) | (0.70181) | (1.47191) | (0.60323) | (2.40414) | (0.81767) | (0.90037) | (0.79359) | (0.942239)
50 3.09716 3.09716 3.00824 3.19409 2.94204 3.27834 3.01120 3.0686 2.98814 3.09146
(0.39426) | (0.39426) | (0.33717) | (0.48261) | (0.30891) | (0.58287) | (0.36243) | (0.38194) | (0.35657) | (0.39167)
75 3.07964 3.07964 3.02189 3.14055 2.97778 3.19177 3.02333 3.06091 3.00826 3.0759
(0.23161) | (0.23161) | (0.20875) | (0.26435) | (0.19660) | (0.29882) | (0.21744) | (0.22617) | (0.21476) | (0.23046)
100 | 3.04498 3.04498 3.03797 3.12699 3.00426 3.16466 3.03912 3.04099 3.02776 3.05212
(0.17650) | (0.17650) | (0.16831) | (0.20412) | (0.15949) | (0.22478) | (0.17358) | (0.18709) | (0.17154) | (0.18844)
200 | 3.02941 3.02941 3.00845 3.05077 2.99196 3.06815 3.00866 3.0225 3.00312 3.02803
(0.08839) | (0.08839) | (0.08516) | (0.09265) | (0.08328) | (0.09684) | (0.08640) | (0.08763) | (0.08601) | (0.08823)
Table 5: Average values of the different estimators and corresponding MSE based non-informative prior whena, = 3
n Loss Function
MLEs Squared LINEX General Entropy
Error q=0.5 qg=—0.5 q=09 qg=-09 h =0.5 h=-0.5 h =09 h=-09
25 045647 | 045248 | 0.45035 0.45462 044864 | 045634 | 043693 | 0.44745 | 043254 | 045149
(0.03565) | (0.00819) | (0.00817) (0.00822) (0.00816) | (0.00824) | (0.00882) | (0.00834) | (0.00910) | (0.00822)
50 | 045929 | 045262 | 045147 0.45376 045055 | 045468 | 0.44463 | 0.44999 | 0442434 | 0.45209
(0.01557) | (0.00433) | (0.00432) (0.00434) (0.00432) | (0.00435) | (0.00448) | (0.00436) | (0.00454) | (0.00433)
75 | 0449524 | 0.44879 0.44801 | 0.44958(0.00307) | 0.44738 | 045020 | 0.44338 | 0.44701 | 0.44191 | 0.44844
(0.01148) | (0.00306) | (0.00307) (0.00307) | (0.00307) | (0.00317) | (0.00309) | (0.00321) | (0.00307)
100 | 043375 | 045230 | 045171 0.45290 045123 | 045338 | 0.44825 | 0.45096 | 044716 | 0.45204
(0.00816) | (0.00260) | (0.002599) (0.00261) (0.00260) | (0.00261) | (0.00264) | (0.00261) | (0.00266) | (0.00260)
200 | 0.44063 | 045091 | 0.45060 045121 045036 | 045145 | 0.44886 | 0.45023 | 0.44831 | 0.45077
(0.003997) | (0.00118) | (0.00118) (0.00118) (0.00118) | (0.00118) | (0.00119) | (0.00118) | (0.00119) | (0.00118)
Table 6: Average values of the different estimators and corresponding MSE based non-informative prior whenp = 0.45
n Gamma prior Jeffery’s prior
a; a p ag a; p
25 1.08729 2.11151 0.42183 1.11204 2.14728 0.45019
(0.14141) (0.34245) (0.00804) (0.17286) (0.38441) (0.00895)
50 1.03217 2.0446 0.43726 1.04072 2.05972 0.45287
(0.05475) (0.15051) (0.00432) (0.05844) (0.15834) (0.00466)
75 1.02934 2.05363 0.44141 1.03474 2.0636 0.45212
(0.03654) (0.11750) (0.00297) (0.03817) (0.12175) (0.00313)
100 1.01512 2.03873 0.44264 1.0189 2.04592 0.45076
(0.02570) (0.07973) (0.00213) (0.02676) (0.08187) (0.00220)
200 1.00967 2.01545 0.44520 1.01146 2.01886 0.44933
(0.01174) (0.03989) (0.00113) (0.01191) (0.04037) (0.00114)
Table 7: Bayes estimates and MSE under Squared Error Loss Function when (a4, a,,p) = (1,2,0.45)
n Gamma prior Jeffery’s prior
q=0.5 q=-05 q=09 q=-09 q=20.5 q=-05 q=09 q=-09
25 1.06350 1.12739 1.04119 1.15739 1.08637 1.15670 1.06224 1.19092
(0.11633) (0.16986) (0.10293) (0.20567) (0.13988) (0.21588) (0.12184) (0.27440)
50 1.02764 1.05323 1.01790 1.0640 1.03598 1.06231 1.02597 1.07341
(0.04907) (0.05658) (0.04670) (0.06032) (0.05235) (0.06088) (0.04965) (0.06501)
75 1.01460 1.03082 1.00831 1.03752 1.01972 1.03623 1.01332 1.04305
(0.03014) (0.03294) (0.02923) (0.03429) (0.03135) (0.03444) (0.03033) (0.03592)
100 1.01230 1.02425 1.00762 1.02915 1.01604 1.02815 1.01131 1.03311
(0.02371) (0.02536) (0.02316) (0.02614) (0.02443) (0.02622) (0.02382) (0.02706)
200 1.00596 1.01170 1.00369 1.01402 1.00772 1.01349 1.00544 1.01583
(0.01170) (0.01207) (0.01157) (0.01225) (0.01186) (0.01226) (0.01172) (0.01245)

Table 8: Bayes estimates and MSE under LINEX Loss Function whena; = 1
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n Gamma prior Jeffery’s prior
q=0.5 q=-05 q=209 q=-09 q=20.5 q=-0.5 q=209 q=-09
25 2.04716 2.23836 1.98388 2.33523 2.08133 2.28421 2.01497 2.3909
(0.35761) (0.61922) (0.30791) (0.85429) (0.40156) (0.73221) (0.33945) (1.08921)
50 2.01926 2.10052 1.98915 2.13572 2.03390 2.11687 2.00319 2.15285
(0.15874) (0.19609) (0.14927) (0.21774) (0.16575) (0.20750) (0.15488) (0.23136)
75 2.03009 2.08292 2.00997 2.10514 2.03966 2.09319 2.01929 2.11571
(0.10464) (0.12217) (0.09972) (0.13157) (0.10799) (0.12710) (0.10253) (0.13722)
100 2.02377 2.06249 2.00882 2.07856 2.03077 2.06987 2.01569 2.08610
(0.07111) (0.08018) (0.06851) (0.08495) (0.07283) (0.08265) (0.06997) (0.08775)
200 2.01547 2.03434 2.00806 2.04203 2.01888 2.03784 2.01143 2.04556
(0.03808) (0.04047) (0.03735) (0.04166) (0.03854) (0.04108) (0.03775) (0.04233)
Table 9: Bayes estimates and MSEunder LINEX Loss Function whena, = 2
n Gamma prior Jeffery’s prior
q=0.5 q=-05 q=09 q=-09 q=05 q=-05 q=09 q=-09
25 0.42316 0.40698 0.42163 0.42852 0.45165 0.44592 0.44994 0.45763
(0.00776) (0.00760) (0.00783) (0.00755) (0.00870) (0.00874) (0.00868) (0.00880)
50 0.43619 0.43835 0.43533 0.43922 0.45174 0.45403 0.45082 0.45495
(0.00429) (0.00424) (0.00431) (0.00422) (0.00459) (0.00461) (0.00458) (0.00462)
75 0.43846 0.43996 0.43786 0.44057 0.44905 0.45062 0.44842 0.45124
(0.00308) (0.00305) (0.00309) (0.00304) (0.00318) (0.00318) (0.00318) (0.00318)
100 0.44025 0.44141 0.43979 0.44187 0.44830 0.44949 0.44782 0.44996
(0.00234) (0.00233) (0.00235) (0.00232) (0.00239) (0.00239) (0.00239) (0.00239)
200 0.44621 0.44681 0.44597 0.44705 0.45036 0.45097 0.45012 0.45121
(0.00113) (0.00113) (0.00114) (0.00113) (0.00115) (0.00116) (0.00115) (0.00116)
Table 10: Bayes estimates and MSEunder LINEX Loss Function whenp = 0.45
n Gamma prior Jeffery’s prior
h=0.5 h=-0.5 h=10.9 h=-0.9 h=10.5 h=-0.5 h=10.9 h=-0.9
25 1.00406 1.05306 0.98421 1.07244 1.02271 1.07374 1.00204 1.09391
(0.09291) (0.10441) (0.08983) (0.11048) (0.10586) (0.12109) (0.10143) (0.12878)
50 1.00381 1.02729 0.99436 1.03664 1.01192 1.03584 1.00230 1.04535
(0.04773) (0.05093) (0.04678) (0.05253) (0.05057) (0.05436) (0.04940) (0.05622)
75 0.99829 1.01367 0.99212 1.01980 1.00331 1.01886 0.99706 1.02506
(0.03192) (0.03314) (0.03157) (0.03376) (0.03304) (0.03447) (0.03261) (0.03518)
100 1.00138 1.01272 0.99683 1.01725 1.00501 1.01645 1.00043 1.02101
(0.02292) (0.02362) (0.02272) (0.02397) (0.02351) (0.02431) (0.02326) (0.02471)
200 0.99928 1.00488 0.99703 1.00712 1.00101 1.00663 0.99876 1.00888
(0.01139) (0.01154) (0.01135) (0.01162) (0.01152) (0.01170) (0.01147) (0.01178)
Table 11: Bayes estimates and MSE under General Entropy Loss Function (GELF) whena, = 1
n Gamma prior Jeffery’s prior
h=0.5 h=-0.5 h=10.9 h=-0.9 h=10.5 h=-0.5 h=10.9 h=-0.9
25 1.99894 2.07905 1.96658 2.1108 2.03348 2.11590 2.00018 2.14856
(0.33597) (0.37363) (0.32496) (0.39266) (0.37566) (0.42403) (0.36062) (0.44758)
50 2.00725 2.04533 1.99195 2.06049 2.02221 2.06075 2.00672 2.07610
(0.16291) (0.17144) (0.16035) (0.17570) (0.17049) (0.18057) (0.16733) (0.18547)
75 2.01394 2.03897 2.0039 2.04895 2.02356 2.04879 2.01344 2.05885
(0.11338) (0.11757) (0.11207) (0.11961) (0.11672) (0.12150) (0.11518) (0.12378)
100 1.98363 2.00211 1.97622 2.00949 1.99044 2.00903 1.98299 2.01645
(0.07290) (0.07404) (0.07264) (0.07469) (0.07412) (0.07554) (0.07375) (0.07631)
200 1.99787 2.00707 1.99419 2.01075 2.00124 2.01046 1.99754 2.01415
(0.03592) (0.03630) (0.03582) (0.03650) (0.03625) (0.03669) (0.03612) (0.03691)

Table 12: Bayes estimates and MSE underGeneral Entropy Loss Function (GELF) whena, = 2
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n Gamma prior Jeffery’s prior
h=10.5 h=-05 h=109 h=-09 h=0.5 h=-05 h=109 h=-09
25 0.41324 0.42310 0.40914 0.42690 0.44124 0.45186 0.43707 0.45586
(0.00866) (0.00779) (0.00908) (0.00751) (0.00915) (0.00874) (0.00938) (0.00865)
50 0.42904 0.43425 0.42691 0.43629 0.44439 0.44976 0.44220 0.45186
(0.00450) (0.00423) (0.00462) (0.00414) (0.00458) (0.00446) (0.00464) (0.00443)
75 0.43385 0.43740 0.43699 0.43880 0.44437 0.44798 0.44290 0.44941
(0.00340) (0.00326) (0.00302) (0.00321) (0.00343) (0.00336) (0.00346) (0.00333)
100 0.44126 0.44393 0.44018 0.44499 0.44940 0.45210 0.44830 0.45317
(0.00224) (0.00218) (0.00227) (0.00216) (0.00229) (0.00227) (0.00230) (0.00227)
200 0.44589 0.44724 0.44534 0.44778 0.45005 0.45141 0.44950 0.45195
(0.00121) (0.00120) (0.00122) (0.00119) (0.00123) (0.00123) (0.00124) (0.00123)
Table 13: Bayes estimates and MSE under General Entropy (GELF) Loss Function whenp = 0.45
Y1 Y4 Ym
(n,m) (Lower,Upper) Length (Lower,Upper) Length
(Lower,Upper )  Length Percentage Percentage Percentage
(15.8) (0.00108729,0.190035) 0.188948 (0.0521015,0.746352) 0.694252 (0.34242,17.0692) 16.72678
’ 0.953331 0.948892 0.946772
(20.8) (0.00109544,0.184743)  0.183648 (0.0528216,0.687803) 0.634981 (0.357239,7.82906)  7.471821
’ 0.954954 0.948147 0.947195
(0.00109592,0.177005)  0.175909 (0.0544805,0.638352) 0.583872
(30,8) 0.954126 0.954268 (0.359171,5.2473) 4.88813  0.951337
(50.8) (0.00109486,0.17124)  0.170145 (0.0556378,0.60799) 0.552352 (0.37012,4.06379) 3.69367
’ 0.95249 0.951025 0.952461
Y1 Y5 Ym
(n,m) ((Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
Percentage Percentage Percentage
(0.000881428,0.152434)  0.151553 (0.0642052,0.722859) 0.658654
(15,10) 0949328 0954903 (0.423461,15.9465) 15.52304 0.951385
(0.000860132,0.142407)  0.141547 (0.0647025,0.659665) 0.594963
(20,10) 0.955442 0.94906 (0.431549,9.4171) 8.985551 0.948965
(0.000884815,0.140163)  0.139278 (0.0661634,0.615282) 0.549119
(30,10) 0955368 0949874 (0.437402,5.86762) 5.430218  0.948227
(0.000885094,0.135675)  0.13479 (0.0684718,0.581582) 0.51311
(50,10) 0.952345 0952233 (0.449708,4.58384) 4.134132 0.946996
Y1 Y6 Y12
(n,m) (Lower,Upper) Length (Lower,Upper) Length
Percentage Percentage (Lower,Upper) Length Percentage
(0.000739296,0.125536)  0.124797 (0.488111,16.5502)  16.06209
(15,12) 0954718 (0.0706617,0.684937) 0.614275 0.948462 0.958596
(0.000744844,0.121148)  0.120403 (0.49713,10.7606) 10.26347
(20,12) 0953794 (0.0727871,0.630119) 0.557332 0.950816 0.947293
(0.000731892,0.114504)  0.113772 (0.507417,6.85854)  6.351123
(30,12) 095358 (0.0756898,0.590544) 0.514854 0.946848 0.951971
(0.000738306,0.111423)  0.110685 (0.517379,5.04349)  4.526111
(50,12) 0951637 (0.0776771,0.556162) 0.478485 0.953326 0.949503
Y1 Y7 Y13
(n,m) (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
Percentage Percentage Percentage
(15.13) (0.000683231,0.114696) 0.114013 (0.0856304,0.753906) 0.668276 (0.513333,19.9526) 19.43927
’ 0.954547 0.946405 0.948494
(0.0892999,0.696884) 0.607584 (0.525632,10.5694) 10.04377
(20,13) | (0.000681007,0.109581) 0.1089 0.950883 0945801 0.952159
(30.13) (0.000676344,0.105546)  0.10487 (0.0924745,0.646672) 0.554198 (0.538543,7.03097) 6.492427
’ 0.953432 0.954685 0.951165
(50.13) (0.000677175,0.102004)  0.101327 (0.0954073,0.602945) 0.507538 (0.542197,5.24309) 4.700893
’ 0.950038 0.95063 0.954779

Table 14: The 95% Bayesian prediction bounds, Length of the Bayesian prediction and their Simulated coverage probability for

Yibased informative prior.
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Y1 Y4 Ym
(n,m) (Lower,Upper ) Length (Lower,Upper) Length (Lower,Upper) Length
Percentage Percentage Percentage
(15.8) (0.0010967,0.188683) 0.187586 (0.0519855,0.724707) 0.672722 (0.334753,11.0804) 10.74565
’ 0.953815 0.948349 0.950549
(20.8) (0.00110853,0.182939) 0.18183 (0.0538305,0.685868) 0.632038 (0.334373,6.95623)  6.621857
’ 0.94918 0.947108 0.951533
(30.8) (0.0011171,0.177669) 0.176552 (0.054781,0.635552) 0.580771 (0.356289,5.02081)  4.664521
’ 0.951699 0.949476 0.954635
(50.8) (0.00112416,0.174117) 0.172993 (0.0561957,0.60466) 0.548464 (0.367795,4.03468)  3.666885
’ 0.949533 0.950108 0.952456
Y1 Y5 Ym
(n,m) ((Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
Percentage Percentage Percentage
(15.10) (0.000907201,0.151248)  0.150341 (0.0608838,0.683099) 0.622215 (0.40563,18.6495) 18.24387
’ 0.952517 0.947483 0.954163
(20.10) (0.000897151,0.145099)  0.144202 (0.0634519,0.648762) 0.58531 (0.420043,7.82851)  7.408467
’ 0.9475 0.952284 0.952168
(30.10) (0.000902159,0.140951)  0.140049 (0.0658663,0.603145) 0.537279 (0.436862,5.47448)  5.037618
’ 0.950183 0.950539 0.953528
(50.10) (0.000894121,0.135985)  0.135091 (0.0677303,0.573281) 0.505551 (0.445836,4.49299)  4.047154
’ 0.95356 0.952822 0.949054
Yl Y6 Y12
(n,m) (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
Percentage Percentage Percentage
(15.12) (0.000746166,0.123143) 0.122397 (0.0708375,0.674947) 0.60411 (0.470303,14.5989) 14.1286
’ 0.951609 0.954184 0.953276
(20.12) (0.000746669,0.119045) 0.118298 (0.0736406,0.630087) 0.556446 (0.490571,9.04549)  8.554919
’ 0.946863 0.949319 0.950593
(30.12) (0.000755212,0.116721) 0.115966 (0.0756077,0.584356) 0.508748 (0.494973,6.18009)  5.685117
’ 0.954117 0.949748 0.953947
(50.12) (0.000747158,0.112245) 0.111498 (0.0777144,0.552466) 0.474752 (0.511614,4.80754)  4.295926
’ 0.951032 0.947711 0.946234
Y1 Y7 Y13
(n,m) (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
Percentage Percentage Percentage
(15.13) (0.000692466,0.11266)  0.111968 (0.0878052,0.729843) 0.642038 (0.505741,15.6126) 15.10686
’ 0.950835 0.947061 0.954486
(20.13) (0.000693234,0.110576)  0.109883 (0.0887678,0.678769) 0.590001 (0.51357,10.0332) 9.51963
’ 0.951589 0.946076 0.946406
(30.13) (0.000695584,0.106844)  0.106148 (0.0924446,0.635788) 0.543343 (0.523904,6.53862) 6.014716
’ 0.951825 0.95364 0.94749
(50.13) (0.00068577,0.102565)  0.101879 (0.0959684,0.603029) 0.507061 (0.541291,4.83614) 4.294849
’ 0.94953 0.946177 0.950052

Table 15: The 95% Bayesian prediction bounds, Length of the Bayesian prediction and their Simulated coverage probability for

Y;based non-informative prior

6.Numerical Example
This section presents a numerical example to illustrate the methodology for the proposed estimates based on real data. The data are the
strengths of 1.5 cm glass fibers, measured at the National Physical Laboratory England. This data set has been discussed by Adepoju
et.al. (2014). The data has been classified into two sets using probabilistic mixing weights for p = 0.45, which produced r; = 29,
1, = 34 are as follows:

Population-I
0.55,1.25,1.49,1.52,1.58,1.61,0.74,1.04,1.27,1.53,
1.76,1.28,1.42,1.62,1.84,2.24,1.13,1.55,1.62,1.66,
1.77,1.84,1.48,1.61,1.63,1.67,1.7,1.78,1.89

Population-I1
0.93,1.36,1.64,1.68,1.73,1.81,2,1.39,1.49,1.59,
1.61,1.66,1.68,1.82,2.01,0.77,1.11,1.50,1.54,1.60,
1.66,1.69,1.76,0.81,1.29,1.48,1.5,1.61,1.7,0.86,
1.24,1.3,1.51,1.55

The estimated results presented in the below tables
e ————————————————————————
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Loss Function
meter MLEs Square LINEX - General Entropy
P Error q=205 1_05 qg=1 q=-1 h=0.5 — 05 h=1 h=-1
a, 0.60131 0.60110 | 0.59802 | 0.60421 | 0.59499 | 0.60737 | 0.58568 | 0.59597 | 0.58051 | 0.60110
a, 0.82613 | 0.82603 | 0.82107 | 0.83107 | 0.81619 | 0.83620 | 0.80790 | 0.820003 | 0.80182 | 0.82603
p 0.46032 | 0.44853 | 0.44763 | 0.44943 | 0.44674 | 0.45032 | 0.45032 | 0.44651 | 0.44030 | 0.44853
Table 16: Estimates incase of informative prior
Loss Function
S MLEs Square LINEX - General Entropy
P Error q=05 q=—05 qg=1 q=-1 h=0.5 — 05 h=1 h=-1
ay 0.60131 0.60131 | 0.59822 | 0.60445 | 0.59516 | 0.60763 | 0.58578 | 0.59615 | 0.58058 | 0.60131
a, 0.82613 | 0.82613 | 0.82115 | 0.83119 | 0.81625 | 0.83633 | 0.80793 | 0.82008 | 0.80183 | 0.82613
p 0.46032 | 0.46154 | 0.46060 | 0.46248 | 0.49568 | 0.46341 | 0.45527 | 0.45947 | 0.45313 | 0.46154
Table 17: Estimates incase of non-informative prior
(n,m) Y1 Y4 Ym
i (Lower,Upper ) Length (Lower,Upper) Length (Lower,Upper) Length
(0.003885,0.647453) (0.206151,2.44255)
(63,8) 0.643568 2236399 (1.47171,523.283) 521.8113
(n.m) Y1 Y5 Ym
’ (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
(0.003121,0.504563) (0.252328,2.29968)
(63,10) 0501442 2047352 (1.78619,715.471) 713.6848
(n.m) Y1 Y6 Ym
’ (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
(0.002609,0.412524) (0.290711,2.19359)
(63,12) 0409915 1.902879 (2.06724,925.124) 923.0568
(n.m) Y1 Y7 Ym
’ (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
(0.002412,0.377882) (0.360861,2.41261)

(63,13) 037547 2051749 (2.19827,103602) 1033.822
Table 18: Bayesian prediction boundsY;, Length of the Bayesian prediction corresponding 95% in case informative prior for thereal
data set

(n,m) Y1 Y4 Ym
’ (Lower,Upper ) Length (Lower,Upper) Length (Lower,Upper) Length
(63,8) | (0.003954,0.65195) 0.647995 | (0.208615,2.43116) 2.222545 | (1.47224,506.547) 505.0748
(n.m) Yl Y5 Ym
’ (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
(63,10) | (0.003177,0.508787) 0.50561 (0.255198,2.29073) 2.035532 | (1.7835,692.542) 690.7585
(nm) Yl Y6 Ym
’ (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
(63,12) | (0.0026564,0.416387) 0.413731 | (0.293882,2.18632) 1.892438 | (2.06098,895.431) 893.37
(nm) Yl Y7 Ym
’ (Lower,Upper) Length (Lower,Upper) Length (Lower,Upper) Length
(63,13) | (0.002456,0.381568) 0.379112 | (0.364498,2.40181) 2.037312 | (2.19015,1002.75) 1000.56

Table 19: Bayesian prediction boundsY,, Length of the Bayesian prediction corresponding 95% in case non-informative prior for the

7. Summary and Conclusion

real data set

In this paper we have addressed the estimation and prediction problems of the mixture Weibull and Lomax distributions. Different
estimators of the parameters are obtained using maximum likelihood and Bayesian methods, under the informative and non-
informative prior distributions for the parameters, assuming. Our observations are as follows:
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It is clear from Tables (1-3) that the performance of the estimates under LINEX loss function is smallest especially when
(q = 1),and also the Bayesian estimate under general entropy loss function in case of the value (h = —1) are almost the
same as the estimates under square error loss function .

From Tables(4) and (6) the performances of the MLEs and Bayes estimates under squared error loss function are quite
similar for the parameters a; and «,. Bayes estimation with LINEX loss function have smaller MSE value especially when
q=0.9.

We conclude from Table (7-13) that the Bayes estimates perform better under informative prior than non-informative prior
for all different loss functions.

Estimates of the mixing weight parameter tend to converge to the true parametric value by increasing the sample size for
maximum likelihood estimation and for all loss functions, this indicates that the MSE are positively skewed.

The estimates of @; and «, in the case of asymmetric loss function is best at the positive value of q and h than with negative
values.

Tables (14-15) show that the lengths of the Bayesian prediction intervals decrease as the sample size increases, that the
Bayesian simulated coverage probability of Y; are close to the confidence level 95%. In general, the length of the Bayesian
prediction intervals increases ass increases.

From the analysis, estimates and Bayesian prediction for Y;based onthe real data, indicate that the Bayes estimates under
informative prior has a better value than the Bayes estimates under non-informative prior. We note, that general entropy loss
function is best especially whenh = 1 in terms of estimates. It is evident from Tables (18-19), ingeneral, that the length of the
Bayesian prediction intervals increase as s increases based on the given set of data.
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