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1. Introduction 
A fixed-point problem is that of finding a point x ∈ X such that T(x) = x, where T : X → Y is a map and X ⊆ Y. The famous Banach 
fixed point theorem (also called the contraction mapping principle) states that every contraction mapping defined on a complete 
metric space into itself has a unique fixed point (see, e.g., [1]). The Brouwer fixed point theorem, [7], states that if f : B → B is a 
continuous function and B a closed ball in Rn, then f has a fixed point. These are some of the well-known, in fact some of the most 
celebrated theorems in fixed point theory. The numerous applications of fixed point theory, perhaps, are the reason why it attracts the 
attention of many researchers. The applications are found in such areas as, theory of Ordinary and Partial Differential Equations, 
Integral Equations, Integro-differential Equations, Optimization, Evolution equations and many others (see, e.g., [1], [10]). To solve 
many problems in these areas, one may be able to rewrite the problem as a fixed point problem for some appropriate map in some 
appropriate domain. For instance, to show that the equation 
 x2 − 2 = 0 (1.1) 
has a solution in R, one may consider the function 
Tx = x2 + x − 2, x ∈ R. 
It is immediate that x is a solution of the equation (1.1) if and only if x is a fixed point of T. A fixed-point problem normally has two 
parts: 

• existence/uniqueness of a solution and 
• obtaining a solution. 

The Banach fixed point theorem addresses both existence / uniqueness and obtaining a solution questions. This, among other reasons, 
is what makes it famous (see, e.g., [2]). To address the question of obtaining a solution (of fixed point or other problem), the notion of 
iterative algorithms is developed. The study of fixed point of multi-valued maps has attracted the interest of so many mathematicians 
(and researchers from other fields), where a point x ∈ D(T) ⊆ X is a fixed point of a multi-valued map T : X → 2X if x ∈ Tx 
(see, e.g., [2], [17], [9], [14], [16]). This is partly due to the fact that many problems in some areas of mathematics such as Convex 
Optimization, Game theory, Variational Inequality Problems (VIP), etc. can be written as fixed point problems for multi-valued maps. 
As in the case of single-valued, there are two questions with regard to fixed point problems of multi-valued map: 

• does a solution exist? 
• if a solution exists, how do we obtain it? 

Definition 1.1 (Variational inequality problem (VIP)):Given a real Hilbert space H and f : C ⊆ H → H a map. A variational inequality 
problem (VIP) 
with respect to f and C is of the form  
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  (VIP) 
We denote by V IP(C,f) the set of solutions of the variational inequality problem with respect to C and f. We now see the connection 
between VIP (Variational Inequality Problem) with fixed point problem. We first define a normal cone. Let H be a real Hilbert space 
and let C be a nonempty and convex subset of H. Consider the Indicator function denoted by 1C : H → R ∪ {+∞} defined by 

  (IN) 
The function 1Cis convex. Indeed, for x,y ∈ C and λ ∈ (0,1), 1C(λx + (1 − λ)y) = 0 if x,y ∈ C and λ1C(x) + (1 − λ)1C(y) = +∞ if x and 
yare not in, C. Therefore, 

1C(λx + (1 − λ)y) = 0 ≤ λ1C(x) + (1 − λ)1C(y) if x,y ∈ C 
and λ1C(x) + (1 − λ)1C(y) = +∞ ≥ 1C(λx + (1 − λ)y) if x and y are not inC.  
Hence, for all x,y ∈ H and λ ∈ (0,1), 1C(λx+(1−λ)y) ≤ λ1C(x)+(1−λ)1C(y). 
Definition 1.2 (Normal cone) The normal cone is defined to be the sub differential of the indicator function and it is denoted by NC. 
 
1.1. Iterative Algorithms for single-valued maps 

 Theorem 1.1 (Banach fixed point theorem, see, e.g., [1], [10] ) Let (X,d) be a complete metric space and T : X → X be a 
contraction, i.e., there exist sk ∈ [0,1) such that d(T(x),T(y)) ≤ kd(x,y) for allx, y ∈ X. Then T has a 

unique fixed point. Moreover, the sequence{xn} generated iteratively by 

(BFT) 
 
 
from arbitraryx0 ∈ X converges to the unique fixed point of T. 
The theorem above is perhaps the most applicable theorem in fixed point theory. This is, partly, due to the fact that it guarantees the 
existence and uniqueness of the fixed point and it gives a simple algorithm which converges to unique fixed point. Moreover, the error 
estimate in the convergence is 1. 
Despite the simplicity and numerous applications of the Banach fixed point theorem, one may not be able to apply it if the map is not 
a contraction. For example if the map is non-expansive. In fact if K is closed nonempty subset of a Banach space (therefore complete), 
a non-expansive map T : K → K may not have a fixed point. For instance, T : [0,∞] → [0,∞], Tx = 1+x. This map has no fixed point 
even though [0,∞] is complete and T is non-expansive. If X is a normed linear space, T : K → K is a non-expansive map and K is 
convex. The iterative sequence generated by xn+1 = (1 − λ)xn + λTxn which was given by Schaefer was used with a lot of success in 
approximating fixed point of non-expansive maps. See the monograph of Chidume ([1], Ch. 6). In trying to extend the result of 
Banach (1.1) which was given in 1922, to the setting of non-expansive maps, Browder in 1967 proved the following theorem: 

 Theorem 1.2 (Browder theorem [4])Let H be a Hilbert space H and let D be abounded, closed and convex subset H. If T : D 
→ D is a non-expansive map,{tn} ⊂ (0,1) : tn → 1−, then sequence {xn} generated by 

 
 
(BT) 
 

converges to a fixed point of T. 
• Theorem 1.2 addresses both the question of existence and that of obtaining a fixed point. Although, the theorem required the 

domain to be bounded, which is a huge restriction and the scheme is not iterative, it has provided the chance to have existence as well 
as obtaining fixed point of a map which is more general than the contraction in the setting of a Hilbert space. Naturally, it is desirable 
to obtain a similar result in a more general Banach space. To this end, Reich in [15] obtained the following theorem in 1980. 

 Theorem 1.3 (Reich, [15]) Let X be a uniformly smooth real Banach space and let D bounded, closed and convex subset of X. 
If T : D → D is a non-expansive map, 

, 
(RT) 

 + (1 − t)u,t ∈ (0,1). 
Then the sequence {xt} converges to a fixed point of T ast → 1−. 

• Reich extended the result of Browder to a setting of uniformly smooth Banach space, which is more general than Hilbert 
space. It is worthy of mention here that to prove both Theorem 1.2 and Theorem 1.3, Banach fixed point theorem (Theorem 1.1) has 
to be used. This further indicates the indispensability of the theorem. In continuation of the quest for better and sharper result, Morales 
and Jung extended the result of Riech to a more general one. They were able to give a profound generalization in two directions: 

1. with regard to the map, 
2. with regard to the space. 
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Precisely, they proved the following theorem: 
 Theorem 1.4 (Morales and Jung, [3])Let X be a reflexive Banach space which has uniformly Gaˆteaux differentiable norm 

and K be a nonempty, closed and convex subset of X and T : K → K be a pseudo-contractive mapping with F(T) ≠ ∅. 
Suppose that every nonempty closed convex bounded subset of K has a fixed point property for non-expansive mappings. 
Then there exists a continuous path t → zt, satisfying 

 
 

(MJ) 
. 
 

Then the sequence {yt} converges strongly to a fixed point of T. 
 
1.2. Iterative Algorithms for Multi-valued Maps 
Researchers have devoted a lot of time to see how much of the result which were obtained in the fixed point theorem of single-valued 
maps (see, [2], [1], [17], [9], [14], [16]) can also be obtained for the multi-valued settings. Certainly, a lot of challenges were faced 
and are still being faced due to the complexity of the multi-valued situation. In this direction Pietramala in [9] gave an example which 
shows that Browder’s Theorem 1.2 cannot be extended to multi-valued settings. Very recently, Ofoedu and Zegeye (see, [17]) 
obtained the multi-valued version of the theorem 1.4 of Morales and Jung. They proved the following lemma: 

 Lemma 1.1 (Ofoedu and Zegeye, [17])Let D be a nonempty, open and 
 

convex subset of a real Banach space X. Assuming that T : D → CB(X) is a multi-valued continuous (with respect to the hausdorff 
metric), bounded and 
pseudo-contractive mapping satisfying weakly inward condition and u ∈ D be 

 
fixed. Then for t ∈ (0,1) there exists yt ∈ D satisfying yt ∈ tTyt + (1 − t)u. If in addition, X is reflexive and has uniformly Ga´teaux 
differentiable norm and 

 
is such that every closed, convex and bounded subset of D has the fixed-point property for non-expansive self-mapping, then T has a 
fixed point if and only if{yt} remains bounded ast → 1; moreover, in this case, {yt} converges strongly to a fixed point of T ast → 1. 
This marked a serious breakthrough in extending results which were known in single-valued setting to multi-valued setting. Utilizing 
this Lemma (1.1), Ofoedu and Zegeye were able to develop an algorithm which converges strongly to a fixed point Lipschitzs pseudo-
contractive maps in the setting of reflexive real Banach space having Gaˆteaux differentiable norm. In fact they proved the following 
theorem: 

 Theorem 1.5 (Ofoedu and Zegeye, [17]) Let X be a reflexive real Banach space having a uniformly Gateauxˆ differentiable 
norm, D be a nonempty, open and convex subset of X, such that every closed, convex, bounded and nonempty subset of D 
has the fixed-point property for non-expansive self-mapping. Let T : D → K(D) be a pseudo-contractive Lipschitzian 
mapping with constant L >0 and let u ∈ D be fixed. Let{xn} be a sequence generated iteratively from 

arbitraryx0 ∈ D, w0 ∈ Tx0 by 
 

 
(OZ) 

. 
 

Suppose that||wn−wn−1 ||= d(wn−1,Txn),n ≥ 1. If F(T) ≠ ∅. Then{xn} converges strongly to a fixed point of T. 
Even though Theorem 1.5 above has provided an algorithm that generates a sequence which converges strongly to a fixed point of a 
multi-valued map, Chidume et al. in [2] made the following observations: 
 Remark 1.1 

1. To establish convergence of the scheme (OZ) in Theorem 1.5, the authors assumed that||wn − wn−1||= d(wn−1, Txn) for all n ≥ 1. A 
sufficient condition to guarantee this is to assume that for each x, the set Tx is proximal. In this addition Tx is convex and E is 
for example, a real Hilbert space, such wn is characterized as follows: 

<wn−1 − wn,wn − un> ≥ 0 ∀un ∈ Txn. 
Consequently, this condition requires that a sub-programme be constructed to first compute wn at each step of the iteration 
process. 

2. Nadler remarked in [14] that requiring a multi-valued mapping to be Lipschitz is placing a strong continuity condition on the 
mapping. They (the authors in [2]) sought to weaken this condition. In fact, the Lipschitz condition of the map T in Theorem 
2.1.5 was weakened to continuity and boundedness of the mapT. 

Moreover, in many applications, the real Banach space X is either an Lp-space, a -space, 1 < p <∞, m ≥ 1, or a Hilbert space. As 
has been remarked before, all these spaces are q-uniformly smooth and reflexive. With these above remarks in their mind, it was the 
purpose in the paper [2] to prove strong convergence theorems for fixed point of multi-valued bounded continuous pseudo contractive 
maps defined on q-uniformly smooth real Banach spaces. They used the recursion formula in Theorem 1.5, dispensing with the 
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restriction that ||wn − wn−1|| = d(wn−1, Txn) ∀n ≥ 1. Furthermore, their iteration process, in the setting of q-uniformly smooth real 
Banach spaces, is direct, much more applicable than the process in (OZ) since it does not require the creation of a sub-programme to 
first compute wn at each step of the iteration process. In particular, in q-uniformly smooth real Banach spaces, their theorems extend 
Theorem 1.5 (of Ofoedu and Zegeye) from multi-valued lipschitz pseudo-contractive mappings to the much more general class of 
multi-valued continuous, bounded and pseudo-contractive mappings. They proved the following theorem: 

 Theorem 1.6 (Chidume et al., [2]) Let X be a q-uniformly smooth real Banach space and D be a nonempty, open and convex 
subset of X. Assume that 

 
T:D → CB(D) is a multi-valued continuous (with respect to the hausdorff metric),bounded and pseudo-contractive mapping with F(T) 
≠ ∅. Let{xn} be 

 
a sequence generated iteratively from arbitraryx1 ∈ D by 

(CCDM) 
. 
 
 
 

Then, there exists a real constantγ0>0 such that if 
, 

the sequence{xn} converges strongly to a fixed point of T. 
In this paper, motivated by the above theorem 1.6, we were able to provide an application of the theorem in convex optimization 
problem. However, we were able to show that finding a solution of a convex optimization problem is equivalent to finding a fixed 
point of some multi-valued maps. 
 
2. Preliminaries and Results 
Remark 2.1For the purpose of both Application one and Application two, we note that every Hilbert space is 2−uniformly smooth. 
Indeed, the modulus of smoothness ρH of any Hilbert space is given by which gives ρH(τ) < τ2 (see, 
e.g., [8]). 
 

 Remark 2.2 
1. In every nonempty normed linear space X, Jq(x) ≠ ∅ from one of the consequences of Hahn-Banach Theorem. 
2. The generalized duality map is the identity map when X is a real Hilbert space. 

Definition 2.1 (Sub-differential function) Let H be a Hilbert space and let D be a nonempty convex subset of H. Suppose f:D → R ∪ 
{+∞} is a convex function. The sub-differential function of f, ∂f:H → 2H is defined by 
∂f(x) = {y ∈ H:f(u) ≥ f(x) + hy,u − xi ∀u ∈ H} 
 

 Remark 2.3 
1. Elements of the sub-differential of f are called the sub-gradients of f. 
2. Sub-differential function is maximal monotone. 

Lemma 2.1 Let X be a normed space and let A be an open subset of X. If f: A → R has a local minimum or local maximum at a ∈ A 
and f is Gaˆteaux 
differentiable at a, then DGf(a) = 0. 
Proof: Suppose f has a local maximum at a point a ∈ A. It follows that there exists some r > 0 such that B(a, r) ⊂ A and f(x) ≤ f(a) ∀x 
∈ B(a,r). 
Therefore, for all x in X y 6= 0 we have 

. 

Thus,  Hence, DGf(a)(y) ∀≤ 0 y ∈ X. This implies DGf (a)(−y) ∀≤ 0 y ∈ X since DGf(a) ∈ X∗ . We 
have DGf(a) ∀≥ 0 y ∈ X and therefore, DGf(a)(y) = 0 ∀y ∈ Y. 

 Lemma 2.2Letf : A ⊂ X → R be a convex function on an open subset A of a normed space X and Gaˆteaux differentiable at x 
in A then ∂f(x) = {DGf(x)}. 

 
 Remark 2.4 

1. When f is Gaˆteaux differentiable, it is usual to write ∂f(x) = DGf(x). 
2. Also, for f:A ⊆ X → R differentiable, it is usual to denote by ∇f the derivative off. 

Now, we take the following preliminaries: 
 Lemma 2.3Let f : H → R be a convex and Gâteux differentiable function. Then fora ∈ H, a is a minimizer of f if and only 

iffG
0 (a) = 0. 
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 Proof: 
(⇒) Suppose fG

0 (x0) = 0. We show that x0 is a global minimizer. Now let x ∈ H and let λ ∈ (0,1). By convexity of f, 
 f(λx + (1 − λ)x0) ≤ λf(x) + (1 − λ)f(x0) 
 = λf(x) + f(x0) − λf(x0). 
By rearranging this we have f(λx + (1 − λ)x0) − f(x0) ≤ λ(f(x) − f(x0)). f(λx + (1 − λ)x0) − f(x0) 
Dividing through by λ we obtain  
 

. 
Taking limit as λ → 0+ and we have, 

 
From our hypothesis fG

0 (x0) = 0 so that we obtain 0 ≤ f(x) − f(x0) ∀x ∈ H. This shows that f(x0) ≤ f(x) ∀x ∈ H. So x0 is a global 
minimizer of f. Hence the result. 
(⇐ ) Suppose x0 ∈ C is a minimizer, goal is to show that fG

0 (x0) = 0. This was shown in Lemma 2.1. Hence the proof. 
Lemma 2.4 Let f:H → R be a convex function. If f is bounded on bounded sets, then for all x0 ∈ H and for all ρ >0, f is Lipschitz on 
Bρ(x0). 
Let x0 ∈ H and let ρ >0. We find L >0 such that ∀x,y ∈ Bρ(x0), kf(x) − f(y)k ≤ Lkx − yk. Since f bounded on bounded sets, there exists 
some m >0 such that kf(x)k ≤ m ∀x ∈ Bρ(x0). Now let  . Then 

 

Therefore, . We observe that 

 . 

Since , we have  . Therefore, 

 (by convexity of f) 
Now we have 

. 
Observing that, 

 

we have that . Using the fact that f is bounded 
on bounded sets, it follows that there exists some m ∈ R, m >0 such that 

|f(u)| ≤ m for all Thus, f(x)−f(y) ≤ 

 Following similar arguments we have  
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Therefore, . Setting , we conclude that 
|f(x) − f(y)| ≤ L||x –y||for all . Since ρ was arbitrarily chosen, the result follows. 

 Lemma 2.5 ([6], Ch. 16)Let H be a real Hilbert space and letf : H → R be 
convex and differentiable. Suppose f is bounded on bounded set, then the gradient map ∇f : H → H is bounded on bounded subset of 
H. 

 Lemma 2.6 Suppose H is a Hilbert space. If A : H → 2H is monotone, then 
(I − A) is pseudo-contractive.  

 Proof: 
Let A : H → 2H be monotone. Then by definition <u − v,x –y> ∀≥ 0 u ∈ Ax, v ∈ Ay. Our goal here is to show that I −A is pseudo-
contractive. Now, define T := I − A, we recall from Remark 2, J2 = I (the identity map on H) for real Hilbert spaces. Therefore, for x, 
y∈ H, u¯ ∈ Tx and v¯ ∈ Ty, 
 <u¯ − v,J¯ (x − y)>= <u¯ − v,I¯(x − y)> 
 = <u¯ − v,x¯− y> 
 = <x − u − y + v,x –y>, u ∈ Ax, v ∈ Ay 
 = <x − y − (u − v),x –y>, u ∈ Ax, v ∈ Ay 

So we have, 

= <x − y,x –y> − hu − v,x –y>, u ∈ Ax, v ∈ Ay. 

 <u¯ − v,J¯ (x − y)> ≤ ||x –y||2 −<u − v, x–y>, u ∈ Ax, v ∈ Ay. 
From hypothesis, <u − v, x–y> ∀≥ 0 u ∈ Ax, v ∈ Ay. Therefore, <u¯ − v,J¯ (x − y)> ≤ ||x –y||2. This shows that T is pseudo-
contractive. Hence the result. Remark 2.5 The sub-differential function of the indicator function is 

  (INS) 
Indeed, by definition (see, Definition 2.1), NC(x) = ∂1C = {u ∈ H: 1C(y) ≥ 1C(x) + <u, y− x>∀y ∈ H}. For x /∈ C and u ∈ H, 1C(x) + 
<u, y− x>= +∞ >0 = 1C(y) ∀y ∈ C ∀u ∈ H. Therefore, there exists no u ∈ H such that 1C(y) ≥ 1C(x) + <u, y− x>∀y ∈ H. Hence, 
∂1C(x) =  ∅ for x not in C. For x ∈ C and u ∈ H, 1C(y) = +∞ ≥ 1C(x) + <u, y–x>∀y not in C. This implies that for x ∈ C, u ∈ H, 1C(y) ≥ 
1C(x) + <u, y–x>y ∈ H ⇔ 1C(y) ≥ 1C(x) + <u, y–x> ∀y ∈ C. Therefore, 

∂1C(x) = {u ∈ H: 1C(y) ≥ 1C(x) + <u, y–x> ∀y ∈ C}. 
 = {u ∈ H: 1C(y) ≥ <u, y–xi>∀y ∈ C} (since ∂1C(x) = 0). 
 = {u ∈ H:<u, y–x> ∀≤ 0 y ∈ C} (since ∂1C(y) = 0). 

Hence, 

 
 Lemma 2.7Let H be a real Hilbert space and C be a nonempty and convex subset of H. Assume that f:C → H is a map. Then 

V IP(C, f) = F(T), where T = I − (f + NC). 
 Proof: Now, 

x ∈ V IP(C,f) ⇔ x ∈ C and hf(x),y − xi ∀ ∈≥ 0 y  C 
 ⇔ x ∈ C and h−f(x),y ∀ ∈− xi ≤ 0 y  C 
 ⇔ −f(x) ∈ NC(x) 
 ⇔ 0 ∈ f(x) + NC(x) 
 ⇔ x ∈ x − f(x) − NC(x) 
 ⇔ x ∈ (I − f − NC)(x) 
 ⇔ x ∈ (I − (f + NC))(x) 
 ⇔ x ∈ Tx. 

Hence the result. 
 Lemma 2.8 ([6], Ch.1)Let X be a normed linear space. Suppose A is a nonempty subset of X. A map f:A → R ∪ {+∞} is 

lower semi-continuous if and only if for every x ∈ A and {xn} ⊂ A, xn → x impliesf(x) ≤ liminf f(xn) asn→∞ 
 Lemma 2.9 ([13]) Let X be a real Banach space. Suppose f:X → R∪ {+∞} 

is convex, proper (i.e., f(x0) <∞ for somex0 ∈ X) and lower semi-continuous. Then the sub-differential of f is maximal monotone. 
 Lemma 2.10The sub-differential of the indicator function (NC) is maximal monotone. 
 Proof: 

http://www.ijird.com


 www.ijird.com                                                                                     August, 2017                                                                                Vol 6 Issue 8 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT           DOI No. : 10.24940/ijird/2017/v6/i8/AUG17074 Page 138 
 

Since 1C is convex and proper, it suffices to show that NC is lower semi- continuous. Now let x ∈ H and 1C : H → R ∪ {+∞}. 
Let x ∈ H and {xn} ⊂ H such that xn → x. If x ∈ C, 1C(x) = 0 ≤ 1C(xn) for all n. Therefore, 

1C(x) ≤ liminf 1C(xn) as n→∞ 
For x not in C, since C0 is open and xn → x ∈ C then, there exists some Nin N such that xn ∈ C0 for each n ≥ N. So, 1C(xn) = +∞ for all 
n ≥ N. Therefore, liminf 1C(xn) = +∞ = 1C(x) ∀x ∈ H. Now we have 1C(x) ≤ liminf 1C(xn) as n→∞. n→∞ 
Thus 1C is lower semi-continuous and so proper and NC, the sub-differential of 1C is maximal monotone. 

 Lemma 2.11 ([11])Let X be a reflexive Banach space. Let T1 : X → 2X  ∗ and T2 : X → 2X  ∗ be two maximal monotone maps. 
Suppose that D(T1)Tint(DT2) 6= ∅ . ThenT1 + T2 is maximal monotone. 

 
3. Main Result 
Application 

 Theorem 3.1Let H be a real Hilbert space and let D be a nonempty, open and convex subset of H. Suppose f : H → His a 
continuous monotone map and NCis continuous (with respect to Hausdorff metric), I − (f + NC)is bounded on bounded set 
and(I − (f + NC))(C) ⊆ C, where C = D. Define a sequence iteratively by 

 
 

(A2) 
, 
 

where {λn} and {θn} are sequences in(0,1) satisfying the following conditions: 
(i) λn(1 + θn) <1; (ii) lim θn = 0; n→∞ 

); 

. 
Suppose V IP(C,f) 6= ∅ . Then, there exists a real constantγ0>0 such thatifλq

n
−1 < γ0θn ∀n ≥ 1, the sequence{xn} converges strongly 

tox∗  ∈ V IP(f,C). 
 Proof: 

The scheme is well defined using the facts D is convex, Remark 1.6.4, (I −(f + NC))(C) ⊂ C and the condition λn(1 + θn) <1. Indeed, 
for λ,θ ∈ (0,1) : 0 < λ(1 + θ) <1, x,y,z ∈ C, we have 

 
Now, using the scheme (A2) we have 
 xn+1 = xn − λnf(xn) − λnun − λnθn(xn − x1) with un ∈ NC(xn) 
 = xn − λnxn + λnxn − λnf(xn) − λnNC(xn) − λnθn(xn − x1) 

= xn − λnxn + λn(xn − f(xn) − NC(xn)) − λnθn(xn − x1)  
= (1 − λn)xn + λn(I − (f + NC))(xn) − λnθn(xn − x1). 

Setting T := I−(f+NC), we see that xn+1 := (1−λn)xn+λnvn−λnθn(xn−x1) for some vn ∈ Txn, which is exactly the scheme in theorem 1.6 We 
note that x∗  ∈ Tx∗  ⇔ x∗  ∈ V IP(C,f) by Lemma 2.7. Therefore, every x∗  ∈ F(T) is a solution of the variational inequality problem. It is 
enough, therefore, to show that {xn} converges to a fixed point of T. To do this, we employ Theorem 1.6. 
Space requirement: The authors in [2] worked on a nonempty, open and convex subset D of a q-uniformly smooth real Banach space 
X. We have a real Hilbert space H, i.e., X = H. From our assumption D is a nonempty open and convex subset of H. It is well known 
that every Hilbert space is 2-uniformly smooth space (see Remark 2.1). So, the space requirements of Theorem 1.6 are satisfied. Map 
requirements: In Theorem 1.6, the map used is a multivalued continuous, bounded and pseudo-contractive mapping. We need to show 
that the map used in the application also satisfies all these conditions. The set Tx = {x−f(x)}−NC(x) is closed since NC(x) is closed. This 
is because ∂f(x) is closed for any convex function f. Also, Tx is bounded from hypothesis. So Tx is closed and bounded. Also, Tx ⊆ 
T(C) ⊆ CB(C). Thus, Tx ∈ CB(C). To show pseudo-contractiveness of the map, we have D(f)∩int(D(NC)) ⊇ H∩int(C) ≠∅  

 
(since C = D and D is open and nonempty). Therefore using Lemma 4.2.8, f + NC is maximal monotone. Also by Lemma 4.1.10, I − (f 
+ NC) is pseudo contractive. For continuity, from our hypothesis, f is continuous. The identity function I is also continuous. From 
hypothesis, NC is continuous with respect to the Hausdorff metric. So, we have f + NC to be continuous with respect to the Hausdorff 
metric. The fact that the difference of two continuous functions is also a continuous function, we obtained I − (f + NC) to be 
continuous. We also have I − (f + NC) map bounded sets to bounded sets. Thus, all the map requirements of Theorem 1.6 are satisfied. 
In Theorem 1.6, it was assumed that (the set of fixed points) F(T) is not empty. C is nonempty closed convex subset of a real Hilbert 
space H, by lemma 2.7, F(T) = V IP(C,f). Since V IP(C, f) 6= ∅  from hypothesis, F(T) is not empty. We therefore conclude that {xn} 
converges to a fixed point of T which is a solution of the variational inequality problem (VIP) with respect to C and f. 
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