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Abstract:
Volatility and averages are one of the most essential parameters in the new era of
financial market. They have profound and significant impact on modeling various
financial asset pricebehaviors. Main purpose of modeling these parameters is to predict
future profit and loss of the portfolio. Our endeavors areto tune these parameters more
accurately and have shown comparison of volume weighted average price and multiple
moving average priceson S&P 500 over last 15 years of data along with the algorithm

that we have proposed.
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C
Introduction

Mathematical modeling of financial asset is very complex issue. Tuning right parameters
withappropriate values are highly desirable in creating successful algorithmic strategies.
More over risk management is the key for a successful strategy. This has raised the need
of modeling various parameters. Volatility is one of these parameters which will help to
know future profit and loss of a portfolio. The GARCH (p, q) model, introduced by
Bollerslev (1986), often provides a parsimonious representation of the wvolatility
dynamics in financial time series[2].

One traditional difficulty in constructing GARCH based models is that the volatility
process 1s inherently unobservable. We surmount this problem by using a proxy of
monthly wvolatility caleculated using daily data. Moreover GARCH models treat
heteroscedasticityas a variance to be modeled. As a result, not only are the deficiencies
of least squares corrected, but a prediction is computed for the variance for each error
term|7].We have more faith in the reliability of these volatility estimates. We are using
volume weighted average price and multi moving average price along with volatility

output. This makes the strategy more robust.

Need For Forecasting Volatility For A Model

The main purposes of forecasting volatility are measuring the potential future profit and
losses of a portfolio of financial assets. Moreover it helps a lot in asset pricing
phenomenon. One of the most common use of volatility for any commodity, options,
stocks are to find oul next dav’s volatility based on historical volatility, This helps to
know approximate value of reruns over investment. Several recent studies have found
that the volatility of daily U.S. dollar exchange rates tends to be highly persistent and
well approximated by an integrated or long memory-type GARCH process[6].In asset
allocation, the Markowitz approach of minimizing risk for a given level of expected
returns has become a standard approach, and of course an estimate of the variance-
covariance matrix is required to measure risk. Perhaps the most challenging application
of volatility forecasting, Seasonality in financial-market volatility is pervasive. The
historical variance of the Standard and Poor's composite stock-price index in October is
almost ten times the variance for March [8]. S0 in todav's highly volatile marketit 1s
important to specify various parameters which help to derive volatility more accurately.
High kurtosis exists within financial time series of high frequencies (observed on daily or

weekly basis). This confirms the fact that distribution of returns generated by
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GARCH(p,q) model is always leptokurtic, even when normality assumption is
introduced. Right combination of velatility parameter will help to give more reliable and
accurate value of volatility. It is important to note that kurtosis is both a measure of peak
and fat tails of the distribution. So we have tried to make it as accurate as possible.In the
vast empirical finance literature models are well known within the GARCH framework
where alternative assumptions on the conditional distribution have been suggested and

extensively analyzed[12].

Kurtosis Of Garch(1,1) Process
GARCH models are very popular for representing the dynamic evaluation ofvelatility of

financial returns.(see, e.g..Bollerslev, Engle, and Nelson 1994, Engle 1994, Bera and
Higgins 1995, Diebold and Lo pez 1995, and McAleer and Oxley 2003, among many
others [4]).

GARCH(1,1) process:' has been assumed
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From covariance stationary condition of GARCH(1,1) process, and strictly positively
conditional variance:
-, -4 >0
. (4)

g =0
Follows that the second moment of {L}} process exists. To assure the existence of the

fourth moment, apart from conditions in (4), it is necessary in relation (3) to satisfy this

restriction:
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Since kurtosis is defined as:
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After some rearrangement in (7) we can write:
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From relation (8) follows that distribution of returns generated from GARCH(1,1)
process always results in excess kurtosis, i.e. Fisher's kurtosis (& = 3) even normality

assumption is introduced, if and only if conditions in (4) are satisfied. These conditions
also could be satisfied when parameter ¢z, — 0. Only in that case innovations distribution
would be normally shaped (& = 3). Therefore, the kurtosis 1s very sensitive on value of

parameter /; .In general kurtosis increases much intensively with larger parameter ; in

comparison to parameter /7,.

Degrees Of Freedom E stimation

Generally, there are three parameters that define a probability density function: (a)
location parameter, (b) scale parameter and (c¢) shape parameter. The most common
measure of location parameter is the mean. The scale parameter measure variability of
probability density function (pdf), and the most commonly used is variance or standard
deviation. The shape parameter (kurtosis and/or skewness) determines how the variations
are distributed about the location parameter.

If the data are heavy tailed, the VaR calculated using normal assumption differs
significantly from Students t-distribution. Therefore, we find that kurtosis and degrees of
freedom from Student's distribution are closely related.

The density function of no central Student t-distribution is given as:
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Where 4 1s location parameter, § scale parameter and df shape parameter, 1.¢. degrees

I

flx)

©)

of freedom, and /° {) 1s gamma function. Standard Student's t-distribution assumes that
=0, p=1, with integer degrees of freedom. However, degrees of freedom can be

estimated as non-mteger, relating to kurtosis:

6
df =

k=

v3 0 wdf = 4. (10)

From relation (10) it's obvious that standard t-distribution has heavier tails than normal
distribution when 4 =df =30. Hence, if empirical distribution is more leptokurtic
estimated degrees of freedom would be smaller.

The second and fourth central moment of function (9) are defined as:
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with Fisher's kurtosis:
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Therefore, we may apply method of moments and get consistent estimators:
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Where the sample variance is biased estimator of //.To get unbiased estimator of

standard deviation we use correction factor:

3 +.£3"* (14)
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which is equivalent to:
42 (15)
daf
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In practice, the kurtosis is often larger than six, leading to estimation of non-integer
degrees of freedom between four and five. However, kurtosis will depend on volatility
persistence. Volatility persistence is defined as the sum of parameters «, + /3, in

GARCH(1,1) model.

If we rearrange condition variance equation of GARCH(1,1) model as follows:

Y

ol =a, + czj(.srfj - cr,?I:l+{.:xI +B,)5l . (16)

Then the sum of parameters o, + /), shows the time which is needed for shocks in
volatility to die out. If this sum 1s close to 1 long time is needed for shocks to die out.
However, if the sum is equal to unity the covariance stationary condition is not satisfied
and GARCH(1,1) model follows integrated GARCH process of order one, i.e.
IGARCH(1,1).

If we substitute o =z v, than stationary condition occurs from ARMA(L,1)

representation of GARCH(1,1) model:

'C"rz =, - [‘TJ I ;’91)‘?::1 bV — BV s 17)
Proposed Algorithm

Volatility Caleulation

Volatility parameters of GARCH(1,1) like variance — covariance matrix, Kurtosis,
probability density function are calculated on basis of historical data. We have shown
empirical results for last 14 years for S&P 500 in Table 1.

Boundary Value Calculation
Once volatility parameters are calculated, they are fed to the equation from which
boundary value is obtained. Boundary values are calculated based on volume weighted

average price and multiple weighted moving averages which is shown in figure 1.

Decision Support System

Economic theory frequently suggests that economic agents respond not only to the mean,
but also to higher moments of economic random variable[9].If the opening value is
ereater than boundary value the conclusion is reached that the instrument is overvalued.
Hence short position is taken with selling point being the difference between opening
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C
value and predicted volatility. On the other hand if the opening value is less than the
boundary value the conclusion is reached that the instrument is undervalued. Hence, long
position is taken with the selling point being the sum of volatility and opening. It can be
noted that for both cases the profit is volatility.

We take multiple moving average prices and assign weights to that. In this algorithm we
have taken 5,10,20,50,130,260 day moving averages. We have divided them into three
different categories. Those are short term, medium term and long term averages. We
have assigned those 30%, 30% and 40% weights. Out of those moving averages 5 and 10
day moving averages are treated as short term, 20 and 50 are considered as medium term
moving averages. And 130 and 260 is considered as long term average. These are fed to
the equation from which boundary value is obtained. This boundary value acts as the
reference for the decision support system. Figure 1 shows the flow to find out boundary

value.

| 5 | 10 | 20 | 50 | 130 | 160 |

1L

Short term | Medium Term | Long Term
Average Average Average

Il

[ 30% Weight | 30% Weight | 40% Weight |

1l

Moving average with multiple weights + Kurtosis
obtained

L

Boundary value

Figure 1: Boundary value calculation
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C
Empirical Results

The findings with the algorithms are presented here. The performance of the S&P 500
has been analyzed. Monte-Carlo simulation has been performed over random subset of
stocks. We use daily data to make forecasts for the next day and have overmght time
mterval from the close of trading open of the next day, risk-free rates are used. The
transaction cost incurred is 1% when we change our position. It will be based on
tomorrow’s closing price because we focus on out-of-sample prediction and we assume
that we place our order to buy or sell immediately before the close of trading tomorrow.
Of course we mayv use tomorrow’s opening price or high frequency data in practice. We
believe that here the strategy will be more profitable because of more flexibility and less
delay. As shown in figure 2, multiple moving average or volume weighted average price
can be used. To make decision more precise some short of neural network or genetic
algorithm with use of fuzzy logic will definitely improve the decision criteria.

The leverage feedback effect has magnified the fluctuation in the market caused by the
extreme events. For example, after Lehman Brothers declared its bankruptey on
September 14™, 2008, a series of bank and insurance company failures triggered the
global financial crisis in which the market fluctuates dramatically. It is the extreme
event. 1.e.. the declaration of Lehman Brothers™ bankruptev. together with the volatility
clustering plus the leverage feedback effect caused by Lehman Brothers bankruptecy
news result in the catastrophic financial crisis in 2008. So leverage and transaction cost
cannot be neglected. Our empirical results take both of these parameters in account.
Figure 3 shows Cumulative classic return obtained via logarithmic return for S&P 500
from 1994 to 2011.Table 1 shows all evaluation parameters comparison between

volumes weighted average price and multiple moving average price of the test in detail.

Value for Volume Value for
Parameters Weighted Avg. Price | multiple moving

Avg. Price
Logarithmic Return 195% 198%
Classic Return 580% 589%

Mean Daily Logarithmic 0.0801% 0.0810%

return
Standard Deviation 0.0075 0.0073
Skewness 0.36 0.34

Kurtosis 10.085 10.024

Table 1: Performance of the strategy in terms of daily logarithmic returns for S&P 500
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C
Conclusion

Andersen et al.1998 [1] and Christodoulakis and Satchell 2003 [5] have argued that the
poor forecasting from GARCH models are too smooth to capture the entire variation of
volatility. In our strategy volatility is the main parameter to get boundary value and entry
point.

We have also introduced the concept of volume weighted average value of asset with
multiple period based boundary conditions along with volatility. Moreover some short of
artificial intelligence like neural network,genetic algorithm or fuzzy logic will make
boundary value decision more precise. This gives more reliable entry points along with
volatility. Moreover we have also included multiple moving average concepts. Both of
this can be separately used in the strategy. The result shows that more return has
beengained by using multiple moving average compare to volume weightedprice. By
only using volume weighted price logarithmic return is approximately 195%, whereas
with use of multiple moving average can get 198% of logarithmic return. Mean daily

logarithmic return is also higher in case of multiple moving averages.
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