
www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 49

Design Of Radix-4 FFT In VHDL Using Simulink

Shruti Khandelwal
M.Tech.Scholar, ET&T Department , DIMAT Raipur

Prof. Pankaj Gulhane

Lecturer ET&T, ET&T Department , DIMAT Raipur

Abstract:

FFT is suitable for high speed environment because it provides the transfer of data at

a very high speed. Main focus of this paper is to design an FFT with the help of

MATLAB and simulink along with system generator (SysGen). Such tools take as their

input a high-level representation of an application written in MATLAB R2007a and

generate RTL (Register Transfer Level) implementation for an FPGA. The RTL code

is synthesized using Xilinx Project Navigator XILINX ISE 9.2i and simulated using

Model Sim5.8c simulator providing superior performance making it an increasingly

preferred choice of many engineers today.

Key words: FFT, SysGen , MATLAB, Simulink, DFT, Butterfly Algorithm, Xilinx
System Generator

ISSN: 2278 – 0211 (Online)

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 50

1.Introduction

This paper comprises of FFT i.e. Fast Fourier Transform which is an

efficient algorithm to compute the discrete Fourier transform (DFT) and its inverse.

There are many distinct FFT algorithms involving a wide range of mathematics, from

simple complex-number arithmetic to group theory and number theory. An FFT is a way

to compute the same result more quickly: computing a DFT of N points in the naive way,

using the definition, takes O(N2) arithmetical operations, while an FFT can compute the

same result in only O(N log N) operations. The difference in speed can be substantial,

especially for long data sets where N may be in the thousands or millions—in practice,

the computation time can be reduced by several orders of magnitude in such cases, and

the improvement is roughlyproportional to N / log(N). This huge improvement made

many DFT-based algorithms practical; FFTs are of great importance to a wide variety of

applications, from digital signal processing and solving partial differential equations to

algorithms for quick multiplication of large integers.

 The aim of this work is to design and implement the FFT using MATLAB along with

simulink. In this work FFT is designed using SysGen after that results are verified and

then compared with the previous work which shows the present work provides better

performance than the previous work.

1.1. FFT System Model

FFT algorithms depend upon the factorization of N, but there are FFTs with

O(N log N) complexity for all N, even for prime N. Many FFT algorithms only depend

on the fact that e-2πi/N is an Nth primitive root of unity, and thus can be applied to

analogous transforms over any finite field, such as number-theoretic transforms. Since

the inverse DFT is DFT, the opposite sign . in the exponent and a 1/N factor, any FFT

algorithm can easily be adapted for it. It has been described as "the most

important numerical algorithm of our lifetime".

Figure 1: Block diagram of FFT [5]

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 51

An FFT computes the DFT and produces exactly the same result as evaluating the DFT

definition directly; the only difference is that an FFT is much faster. (In the presence

of round-off error, many FFT algorithms are also much more accurate than evaluating

the DFT definition directly, as discussed below)

Let x0,, xN-1 be complex numbers. The DFT is defined by the formula

Xk = xn e-2πkn/m, where k=0 to N-1----(a)[2]

Evaluating this definition directly requires O(N2) operations: there are N outputs Xk, and

each output requires a sum of N terms. An FFT is any method to compute the same

results in O(N log N) operations. More precisely, all known FFT algorithms

require Θ(N log N) operations (technically, O only denotes an upper bound), although

there is no known proof that better complexity is impossible.

To illustrate the savings of an FFT, consider the count of complex multiplications and

additions. Evaluating the DFT's sums directly involves N2 complex multiplications

and N(N − 1) complex additions [of which O(N) operations can be saved by eliminating

trivial operations such as multiplications by 1]. The well-known radix-2 butterfly

algorithm, for N a power of 2, can compute the same result with only

(N/2) log2 N complex multiplies (again, ignoring simplifications of multiplications by 1

and similar) and N log2N complex additions. In practice, actual performance on modern

computers is usually dominated by factors other than arithmetic and is a complicated

subject but the overall improvement from O(N2) to O(N log N) remains. FFT has an

extremely high throughput through programmable parallelism of input data samples. It

has ultra high speed continuous time operation and is area efficient too. It allows us to

relate events in time domain to events in frequency domain. The FFT of the simple

sinusoidal wave is given below:

Figure 2(a): Sine wave

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 52

Figure 2(b): FFT of sine wave

1.2.FFT with Butterfly Algorithm

A butterfly is a portion of the computation that combines the results of smaller discrete

Fourier transforms (DFTs) into a larger DFT, or vice versa (breaking a larger DFT up

into subtransforms). The name "butterfly" comes from the shape of the data-flow

diagram in the radix-2 case, as described below. The same structure can also be found in

the Viterbi algorithm, used for finding the most likely sequence of hidden states.

Most commonly, the term "butterfly" appears in the context of the Cooley–Tukey FFT

algorithm, which recursively breaks down a DFT of composite sizen = rm into r smaller

transforms of size m where r is the "radix" of the transform. These smaller DFTs are then

combined via size- r butterflies, which themselves are DFTs of size r (performed m times

on corresponding outputs of the sub-transforms) pre-multiplied by roots of unity (known

as twiddle factors). This is the "decimation in time" case; one can also perform the steps

in reverse, known as "decimation in frequency", where the butterflies come first and are

post-multiplied by twiddle factors. The butterfly can also be used to improve the

randomness of large arrays of partially random numbers, by bringing every 32 or 64 bit

word into causal contact with every other word through a desired hashing algorithm, so

that a change in any one bit has the possibility of changing all the bits in the large array.

Figure 3: Data flow diagram of Radix-4 FFT[2]

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 53

2.Implementation Details

FFT is now considered as a mature and well established technology. Its main advantage

is that it allows transmission over highly frequency selective channels at a low receiver

implemetation cost. MATLAB is an excellent tool for algorithm development and data

analysis . Now-a-days 90% of the algorithm used today originate as MATLAB models.

Simulink is a graphical tool, which lets a user to implement graphically.

Equation (a) can be rewritten as

X(k) = x(n) WN
nk ---------(B)[6] The quantity WN

nk is

defined as

WN
nk = e-j2πnk/N -------------(C) [6]

This factor is also called twiddle factor and is calculated. Here 64 point DIT , Radix-4

FFT has been designed using simulink in MATLAB and implemented on FPGA using

VHDL.[2]

Xilinx System Generator(XSG) is a tool which offers block libraries that plugs into

simulink tool to create HDL designs from MATLAB. It provides many features such as

system resource estimation to take full advantage of FPGA resources, hardware co-

simulation and accelerated simulation through hardware in the loop co-simulation which

give many orders of simulation performance increase. It also provides a system

integration platform for the design of DSP FPGA’s that allows the RTL , simulink,

MATLAB and C/C++ components of a system to come together in a single simulation

implementation environment.

Here 64 point DIT , Radix-4 FFT has been designed using simulink in MATLAB.

Figure 4: Implementation of FFT in MATLAB using simulink.

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 54

3.Simulation Results

FFT is designed using MATLAB and synthesized using Xilinx Project Navigator Xilinx

ISE 9.2i. Results are verified using Modelsim XE 5.8c simulator.Simulation results

verified that the FFT would perform with suitably low bit error for the full range of

coding and modulation schemesand for various of all channel impairments. VHDL

functional verification confirmed that the HDL design exhibited good performance.

Figure 5: Internal RTL view of FFT

4.Conclusion

The main focus of this work is to show the capability of designing and simulating FFT .

This work’s main emphasis was on designing and simulation of synthesizable VHDL

code of the COFDM transceiver using Xilinx’s ISE 9.1i and simulated using ModelSim

XE 5.8c simulator.

The simulated output of the required FFT is given :

Figure 6: Simulation result of FFT

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 55

The logic utilization of FFT compared with the previous ones:

Logic utilization Used available Utilization

No. of slice

registers

5133 9312 55%

No. of fully used

bit slices

3265 9312 35%

No. of bonded

IOBs

91 232 39%

No. of BUFG 17 32 52%

No. of DSP48Es 24 32 75%

Table 1: Comparison with previous FFT’s

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 56

5.Reference

1. S. B Weinstein and P.M. Ebert, “Data Transmission by Frequency Division

Multiplexing Using the Discrete Fourier Transform”, IEEE Transactions on

Communication Technology”, vol. com-19 , pp. 628-634, October 1971.

2. Simon H ay kin, “Communication Systems”, Jhon Wiley & Sons, Inc., 4th

Edition, ISBN 0- 471-17869-1, 2001.

3. “High level Synthesis tools for Xilinx FPGA” by the staff of Berkley Design

Technology In.

4. System Generator: The State-of-art FPGA Design tool for DSP Applications

,by Sparsh Mittal , Saket Gupta, and S. Dasgupta from Department of Electronics

and Computer Engineering, Indian Institute of Technology Roorkee.

5. Product brief, Parallel N-point FFT/IFFT core, RAD communications.

6. “ Design of COFDM Transceiver using VHDL” by Hemant Kumar Sharma,

Sanjay P. Sood and Balwinder Singh.

