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Abstract: 

In many applications of graph algorithms, including communication networks, 

VLSI design, graphics, and assembly planning, graphs are subject to discrete 

changes, such as additions or deletions of edges or vertices. In the last two 

decades there has been a growing interest in such dynamically changing graphs, 

and a whole body of algorithms and data structures for dynamic graphs has been 

discovered. This paper presents two different data structures that maintain 

properties of dynamically changing trees: topology trees, ET trees. Next, in the 

course of the presentation, it was also highlighted how these techniques have 

been applied to solve the fully dynamic connectivity and/or minimum spanning 

tree problems, and which update and query bounds can be achieved when they 

are deployed. 
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1.Definitions 

 An update on a graph is an operation that inserts or deletes edges or vertices 

of the graph or changes attributes associated with edges or vertices, such as 

cost or color. 

 A dynamic graph is a graph that undergoes a sequence of updates. 

 

2.Observation 

 In a typical dynamic graph problem, one would like to answer queries on 

dynamic graphs, for instance, whether the graph is connected, or which is 

the shortest path between any two vertices. 

 The goal of a dynamic graph algorithm is to update efficiently the solution 

of a problem after dynamic changes, rather than having to re compute it from 

scratch each time. Given their powerful versatility, it is not surprising that 

dynamic algorithms and dynamic data structures are often more difficult to 

design and to analyze than their static counterparts. 

 

3.Definitions 

We can classify dynamic graph problems according to the types of updates allowed. 

 A dynamic graph problem is said to be fully dynamic if the update 

operations include unrestricted insertions and deletions of edges or vertices. 

 A dynamic graph problem is said to be partially dynamic if only one type of 

update, either insertions or deletions, is allowed. 

 A dynamic graph problem is said to be incremental if only insertions are 

allowed. 

 A dynamic graph problem is said to be decremental if only deletions are 

allowed. 

 

4.Observation 

 This paper examines the dynamic problems on undirected graphs. To 

illustrate those techniques, we focus particularly on dynamic minimum 

spanning trees and on connectivity problems. 
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4.1.Dynamic Problems On Undirected Graphs 

This part considers fully on dynamic algorithms for undirected graphs. These al-

gorithms maintain efficiently some property of a graph that undergoes structural 

changes defined by insertion and deletion of edges, and/or updates of edge costs. To 

check the graph property throughout a sequence of these updates, the algorithms 

must be prepared to answer queries on the graph property efficiently. 

 

5.Examples 

  The fully dynamic minimum spanning tree problem consists of maintaining 

a minimum spanning forest of a graph during insertions of edges, deletions 

of edges, and edge cost changes. 

 A fully dynamic connectivity algorithm must be able to insert edges, delete 

edges, and answer a query on whether the graph is connected, or whether 

two vertices are in the same connected component. 

 

6.Observation 

The goal of a dynamic algorithm is to minimize the amount of re computation 

required after each update. 

All the dynamic algorithms described are able to maintain dynamically the graph 

property at a cost (per update operation) which is significantly smaller than the cost 

of re computing the graph property from scratch. 

This part, presents general techniques and tools used in designing dynamic 

algorithms on undirected graphs, and then survey the fastest algorithms for solving 

two of the most fundamental graph problems: connectivity and minimum spanning 

trees. Many of the algorithms proposed in the literature use the same general 

techniques, and hence begin by describing these techniques. As a common theme, 

most of these techniques use some sort of graph decomposition, and they partition 

either the vertices or the edges of the graph to be maintained. Moreover, data 

structures that maintain properties of dynamically changing trees are often used as 

building blocks by many dynamic graph algorithms. The basic update operations 

are edge insertions and edge deletions. Many properties of dynamically changing 

trees have been considered in the literature. 
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7.Examples 

 The basic query operation is tree membership: while the forest of 

trees is dynamically changing, the researcher likes to know at any 

time which tree contains a given vertex, or whether two vertices are in 

the same tree. Dynamic tree membership is a special case of dynamic 

connectivity in undirected graphs, and indeed in 1.2 and in 1.3 it is 

observed some of the data structures presented here for trees are 

useful for solving the more general problem on graphs. 

 Other properties have also been considered: the parent of a vertex, 

the least common ancestor of two vertices, and the center or the 

diameter of a tree When costs are associated either to vertices or to 

edges, one could also ask what is the minimum or maximum cost in a 

given path. 

 

8.Topology Trees 

Topology trees have been introduced to maintain dynamic trees upon 

insertions and deletions of edges. 

 

9.Definitions 

 Given a tree T of a forest, a cluster  is a connected sub graph of T. 

 The card inalit y of a cluster is the number of its vertices. 

 The ex terna l degree of a cluster is the number of tree edges 

incident to it. 

 A topology tree is a hierarchical representation of a tree T of the 

forest: each level of the topology tree partitions the vertices of T into 

clusters. Clusters at level 0 contain one vertex each. Clusters at level 

£' > 1 form a partition of the vertices of the tree T' obtained by 

shrinking each cluster at level £' - 1 into a single vertex. The basic 

partition must be suitably chosen so that the topology tree has depth 

O (log n) and, so that during edge insertions and deletions, each level 

of the topology tree can be updated by applying only a few local 

adjustments. 
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10.Assumption 

In order to illustrate the solution proposed by Frederickson [7, 8], let us assume that 

the tree T has maximum vertex degree 3: this is without loss of generality, since a 

standard transformation can be applied if this is not the case [9]. 

 

11.Definition 

 A restricted partition of a tree T is a partition of its vertex set V into 

clusters of external degree < 3 and cardinality < 2 such that: 

Each cluster of external degree 3 has cardinality 1. 

Each cluster of external degree < 3 has cardinality at most 2. 

No two adjacent clusters can be combined and still satisfy the above. 

 An example of topology tree, together with the restricted partitions used to 

obtain its levels, is given in Figure1. 

 

12.Observation 

 There can be several restricted partitions for a given tree T, based upon 

different choices of the vertices to be unioned. 

 From the above definition it is observed, the restricted partition implements 

a cluster-forming scheme according to a locally greedy heuristic, which does 

not always obtain the minimum number of clusters, but which has the 

advantage of requiring only local adjustments during updates. 

 

13.Approach 

 

13.1.Edge Deletion  

let us sketch how to update the clusters of a restricted partition when an edge e is 

deleted from a tree T. First, removing e splits T into two trees, say Tl and T2, which 

inherit all of the clusters of T, possibly with the following exceptions. 

 If e is entirely contained in a cluster, this cluster is no longer connected and 

therefore must be split. After the split, we must check whether each of the 

two resulting clusters is adjacent to a cluster of tree degree at most 2, and if 

these two adjacent clusters together have cardinality < 2. If so, we combine 

these two clusters in order to maintain condition (3). 
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 If e is between two clusters, then no split is needed. However, since the tree 

degree of the clusters containing the endpoints of e has been decreased, we 

must check if each cluster should be combined with an adjacent cluster, 

again because of condition (3). 

 

                          
Tree T and clusters of level 1                                         Clusters of level 2 

            
Clusters of level 3                              Clusters of level 4          Cluster of level 5 

 
Figure 1: Restricted partitions and topology tree of a tree T 

 

13.2.Edge Insertion 

Similar local manipulations can be applied to restore invariants (1) - (3) of the 

definition of restricted partition, in case of edge insertions. 

 



www.ijird.com                 Ferbruary, 2013                 Vol 2 Issue 2 
 

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 362 
 

13.3.Construct ion Of The Topology Tree 

The levels of the topology tree are built in a bottom up fashion by repeatedly 

applying the locally greedy heuristic. 

 

13.4.Update Of The Topology Tree 

Each level can be updated upon insertions and deletions of edges in tree T by 

applying few locally greedy adjustments similar to the ones described before. In 

particular, a constant number of basic clusters are examined: the changes in these 

basic clusters percolate up in the topology tree, possibly causing vertex clusters to 

be regrouped in different ways. 

 

14.Inference 

 The number of nodes at each level of the topology tree is a constant fraction 

of that at the previous level, and thus the number of levels is O(log n)  

 The fact that only a constant amount of work has to be done on O (log n) 

topology tree nodes implies a logarithmic bound on the update time. 

  The update of a topology tree because of an edge insertion or deletion can be 

supported in   O (log n) time. 

 

15.ET Trees 

Euler Tour trees have been introduced by Henzinger and King [11] to work on 

dynamic forests whose vertices are associated with weighted or unweighted keys. 

Updates allow it to cut arbitrary edges, to insert edges linking different trees of the 

forest, and to add or remove the weighted key associated to a vertex. Supported 

queries are the following: 

 Connected (u, v): tells whether vertices u and v are in the same tree. 

 Size (v): returns the number of vertices in the tree that contains v. 

 Minkey(v): returns a key of minimum weight in the tree that contains v; if 

keys are unweighted, an arbitrary key is returned. 

 

16.Definitions 

 An Euler  tou r  of a tree T is a maximal closed walk over the graph 

obtained by replacing each edge of T by two directed edges with opposite 
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direction. The walk traverses each edge exactly once; hence, if T has n 

vertices, the Euler tour has length (2n – 2) [Fig-2]. 

 An ET t ree is a dynamic balanced binary tree (the number of nodes in 

the left and right sub trees of each node differs by at most one) over some 

Euler tour around T. Namely; leaves of the balanced binary tree are the 

nodes of the Euler Tour, in the same order in which they appear (Fig. 2). 

 

      
       Tree T                                  Replacing edges of '1' with directed edges 

 

 

 
Figure 2: Dynamic balanced binary tree 

 

17.Observation 

Although each vertex of T may occur several times in the Euler tour (an arbitrary 

occurrence is marked as representative of the vertex), an ET tree has 0(n) nodes. 

 

18.Approach 

 

18.1.Edge Insertion And Deletion 

 If trees in the forest are linked or cut, a constant number of splits and 

concatenations allow it to reconstruct the new Euler tour(s); the ET tree(s) can then 

be rebalanced by affecting only 0(log n) nodes. 
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18.2.Connectivity Queries 

The query Connected (u, v) can be easily supported in 0(log n) time by finding the 

roots of the ET trees containing u and v and checking if they coincide. 

 

18.3.Size And Minkey Queries 

To support Size and Minkey queries, each node q of the ET tree maintains two 

additional values, the number s (q) of representatives below it and the minimum 

weight key k(q) attached to a representative below it. Such values can be 

maintained in 0(log n) time per update and allow it to answer queries of the form 

Size(v) and Minkey(v) in 0(log n) time for any vertex v of the forest: the root r of 

the ET tree containing v is found and values s(r) and k(r) are returned, respectively. 

See [11] for additional details of the method. 

 

19.Inference 

Both updates and queries can be supported in 0(log n) time using ET trees. 
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