
www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 356

Dynamic Problems On Undirected Graphs

G.Srinivasu
Dept. of Mathematics, PBR VITS KAVALI, SPSR Nellore Dist., A.P., INDIA

D.Ramalinga Reddy

Dept. of Mathematics,Prakasam engineering college,kandukur,Prakasam Dist., A.P.,
INDIA

Abstract:

In many applications of graph algorithms, including communication networks,

VLSI design, graphics, and assembly planning, graphs are subject to discrete

changes, such as additions or deletions of edges or vertices. In the last two

decades there has been a growing interest in such dynamically changing graphs,

and a whole body of algorithms and data structures for dynamic graphs has been

discovered. This paper presents two different data structures that maintain

properties of dynamically changing trees: topology trees, ET trees. Next, in the

course of the presentation, it was also highlighted how these techniques have

been applied to solve the fully dynamic connectivity and/or minimum spanning

tree problems, and which update and query bounds can be achieved when they

are deployed.

ISSN: 2278 – 0211 (Online)

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 357

1.Definitions

 An update on a graph is an operation that inserts or deletes edges or vertices

of the graph or changes attributes associated with edges or vertices, such as

cost or color.

 A dynamic graph is a graph that undergoes a sequence of updates.

2.Observation

 In a typical dynamic graph problem, one would like to answer queries on

dynamic graphs, for instance, whether the graph is connected, or which is

the shortest path between any two vertices.

 The goal of a dynamic graph algorithm is to update efficiently the solution

of a problem after dynamic changes, rather than having to re compute it from

scratch each time. Given their powerful versatility, it is not surprising that

dynamic algorithms and dynamic data structures are often more difficult to

design and to analyze than their static counterparts.

3.Definitions

We can classify dynamic graph problems according to the types of updates allowed.

 A dynamic graph problem is said to be fully dynamic if the update

operations include unrestricted insertions and deletions of edges or vertices.

 A dynamic graph problem is said to be partially dynamic if only one type of

update, either insertions or deletions, is allowed.

 A dynamic graph problem is said to be incremental if only insertions are

allowed.

 A dynamic graph problem is said to be decremental if only deletions are

allowed.

4.Observation

 This paper examines the dynamic problems on undirected graphs. To

illustrate those techniques, we focus particularly on dynamic minimum

spanning trees and on connectivity problems.

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 358

4.1.Dynamic Problems On Undirected Graphs

This part considers fully on dynamic algorithms for undirected graphs. These al-

gorithms maintain efficiently some property of a graph that undergoes structural

changes defined by insertion and deletion of edges, and/or updates of edge costs. To

check the graph property throughout a sequence of these updates, the algorithms

must be prepared to answer queries on the graph property efficiently.

5.Examples

 The fully dynamic minimum spanning tree problem consists of maintaining

a minimum spanning forest of a graph during insertions of edges, deletions

of edges, and edge cost changes.

 A fully dynamic connectivity algorithm must be able to insert edges, delete

edges, and answer a query on whether the graph is connected, or whether

two vertices are in the same connected component.

6.Observation

The goal of a dynamic algorithm is to minimize the amount of re computation

required after each update.

All the dynamic algorithms described are able to maintain dynamically the graph

property at a cost (per update operation) which is significantly smaller than the cost

of re computing the graph property from scratch.

This part, presents general techniques and tools used in designing dynamic

algorithms on undirected graphs, and then survey the fastest algorithms for solving

two of the most fundamental graph problems: connectivity and minimum spanning

trees. Many of the algorithms proposed in the literature use the same general

techniques, and hence begin by describing these techniques. As a common theme,

most of these techniques use some sort of graph decomposition, and they partition

either the vertices or the edges of the graph to be maintained. Moreover, data

structures that maintain properties of dynamically changing trees are often used as

building blocks by many dynamic graph algorithms. The basic update operations

are edge insertions and edge deletions. Many properties of dynamically changing

trees have been considered in the literature.

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 359

7.Examples

 The basic query operation is tree membership: while the forest of

trees is dynamically changing, the researcher likes to know at any

time which tree contains a given vertex, or whether two vertices are in

the same tree. Dynamic tree membership is a special case of dynamic

connectivity in undirected graphs, and indeed in 1.2 and in 1.3 it is

observed some of the data structures presented here for trees are

useful for solving the more general problem on graphs.

 Other properties have also been considered: the parent of a vertex,

the least common ancestor of two vertices, and the center or the

diameter of a tree When costs are associated either to vertices or to

edges, one could also ask what is the minimum or maximum cost in a

given path.

8.Topology Trees

Topology trees have been introduced to maintain dynamic trees upon

insertions and deletions of edges.

9.Definitions

 Given a tree T of a forest, a cluster is a connected sub graph of T.

 The card inalit y of a cluster is the number of its vertices.

 The ex terna l degree of a cluster is the number of tree edges

incident to it.

 A topology tree is a hierarchical representation of a tree T of the

forest: each level of the topology tree partitions the vertices of T into

clusters. Clusters at level 0 contain one vertex each. Clusters at level

£' > 1 form a partition of the vertices of the tree T' obtained by

shrinking each cluster at level £' - 1 into a single vertex. The basic

partition must be suitably chosen so that the topology tree has depth

O (log n) and, so that during edge insertions and deletions, each level

of the topology tree can be updated by applying only a few local

adjustments.

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 360

10.Assumption

In order to illustrate the solution proposed by Frederickson [7, 8], let us assume that

the tree T has maximum vertex degree 3: this is without loss of generality, since a

standard transformation can be applied if this is not the case [9].

11.Definition

 A restricted partition of a tree T is a partition of its vertex set V into

clusters of external degree < 3 and cardinality < 2 such that:

Each cluster of external degree 3 has cardinality 1.

Each cluster of external degree < 3 has cardinality at most 2.

No two adjacent clusters can be combined and still satisfy the above.

 An example of topology tree, together with the restricted partitions used to

obtain its levels, is given in Figure1.

12.Observation

 There can be several restricted partitions for a given tree T, based upon

different choices of the vertices to be unioned.

 From the above definition it is observed, the restricted partition implements

a cluster-forming scheme according to a locally greedy heuristic, which does

not always obtain the minimum number of clusters, but which has the

advantage of requiring only local adjustments during updates.

13.Approach

13.1.Edge Deletion

let us sketch how to update the clusters of a restricted partition when an edge e is

deleted from a tree T. First, removing e splits T into two trees, say Tl and T2, which

inherit all of the clusters of T, possibly with the following exceptions.

 If e is entirely contained in a cluster, this cluster is no longer connected and

therefore must be split. After the split, we must check whether each of the

two resulting clusters is adjacent to a cluster of tree degree at most 2, and if

these two adjacent clusters together have cardinality < 2. If so, we combine

these two clusters in order to maintain condition (3).

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 361

 If e is between two clusters, then no split is needed. However, since the tree

degree of the clusters containing the endpoints of e has been decreased, we

must check if each cluster should be combined with an adjacent cluster,

again because of condition (3).

Tree T and clusters of level 1 Clusters of level 2

Clusters of level 3 Clusters of level 4 Cluster of level 5

Figure 1: Restricted partitions and topology tree of a tree T

13.2.Edge Insertion

Similar local manipulations can be applied to restore invariants (1) - (3) of the

definition of restricted partition, in case of edge insertions.

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 362

13.3.Construct ion Of The Topology Tree

The levels of the topology tree are built in a bottom up fashion by repeatedly

applying the locally greedy heuristic.

13.4.Update Of The Topology Tree

Each level can be updated upon insertions and deletions of edges in tree T by

applying few locally greedy adjustments similar to the ones described before. In

particular, a constant number of basic clusters are examined: the changes in these

basic clusters percolate up in the topology tree, possibly causing vertex clusters to

be regrouped in different ways.

14.Inference

 The number of nodes at each level of the topology tree is a constant fraction

of that at the previous level, and thus the number of levels is O(log n)

 The fact that only a constant amount of work has to be done on O (log n)

topology tree nodes implies a logarithmic bound on the update time.

 The update of a topology tree because of an edge insertion or deletion can be

supported in O (log n) time.

15.ET Trees

Euler Tour trees have been introduced by Henzinger and King [11] to work on

dynamic forests whose vertices are associated with weighted or unweighted keys.

Updates allow it to cut arbitrary edges, to insert edges linking different trees of the

forest, and to add or remove the weighted key associated to a vertex. Supported

queries are the following:

 Connected (u, v): tells whether vertices u and v are in the same tree.

 Size (v): returns the number of vertices in the tree that contains v.

 Minkey(v): returns a key of minimum weight in the tree that contains v; if

keys are unweighted, an arbitrary key is returned.

16.Definitions

 An Euler tou r of a tree T is a maximal closed walk over the graph

obtained by replacing each edge of T by two directed edges with opposite

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 363

direction. The walk traverses each edge exactly once; hence, if T has n

vertices, the Euler tour has length (2n – 2) [Fig-2].

 An ET t ree is a dynamic balanced binary tree (the number of nodes in

the left and right sub trees of each node differs by at most one) over some

Euler tour around T. Namely; leaves of the balanced binary tree are the

nodes of the Euler Tour, in the same order in which they appear (Fig. 2).

 Tree T Replacing edges of '1' with directed edges

Figure 2: Dynamic balanced binary tree

17.Observation

Although each vertex of T may occur several times in the Euler tour (an arbitrary

occurrence is marked as representative of the vertex), an ET tree has 0(n) nodes.

18.Approach

18.1.Edge Insertion And Deletion

 If trees in the forest are linked or cut, a constant number of splits and

concatenations allow it to reconstruct the new Euler tour(s); the ET tree(s) can then

be rebalanced by affecting only 0(log n) nodes.

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 364

18.2.Connectivity Queries

The query Connected (u, v) can be easily supported in 0(log n) time by finding the

roots of the ET trees containing u and v and checking if they coincide.

18.3.Size And Minkey Queries

To support Size and Minkey queries, each node q of the ET tree maintains two

additional values, the number s (q) of representatives below it and the minimum

weight key k(q) attached to a representative below it. Such values can be

maintained in 0(log n) time per update and allow it to answer queries of the form

Size(v) and Minkey(v) in 0(log n) time for any vertex v of the forest: the root r of

the ET tree containing v is found and values s(r) and k(r) are returned, respectively.

See [11] for additional details of the method.

19.Inference

Both updates and queries can be supported in 0(log n) time using ET trees.

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 365

20.Reference

1. S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup, Minimizing

diameters of dynamic trees, Proc. 24th Int. Colloquium on Automata,

Languages and Programming (ICALP 97) (1997), LNCS 1256, 270-280.

2. S. Alstrup, J. Holm, and M. Thorup, Maintaining center and median in

dynamic trees, Proc. 7th Scandinavian Workshop on Algorithm Theory

(SWAT 00) (2000), 46-56.

3. G. Ausiello, G. F. Italiano, A. Marchetti-Spaccamela, and U. Nanni,

Incremental algorithms for minimal length paths, J. of Algorithms 12(4)

(1991), 615-638.

4. C. Demetrescu and G. F. Italiano, Fully dynamic transitive closure: Breaking

through the 0(n2) barrier, Proc. of the 41st IEEE Annual Symposium on

Foundations of Mathematical computing (FOCS'00) (2000), 381-389.

5. C. Demetrescu and G.F. Italiano, A new approach to dynamic all pairs

shortest paths, Proc. 35th Symp. on Theory of Computing (STOC'03), San

Diego, CA (2003), 159-166.

6. D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification - A

technique for speeding up dynamic graph algorithms, J. Assoc. Comput.

Mach., 44 (1997), 669-696.

7. G. N. Frederickson, Data structures for on-line updating of minimum

spanning trees, SIAM J. Comput. 14 (1985), 781-798.

8. G. N. Frederickson, Ambivalent data structures for dynamic 2-edge-

connectivity and k smallest spanning trees, SIAM J. Comput. 26(2) (1997),

484-538.

9. F. Harary, Graph Theory, Addison-Wesley, 1969.

10. M. R. Henzinger and V. King, Maintaining minimum spanning trees in dy-

namic graphs, Proc. 24th Int. Colloquium on Automata, Languages and

Programming (ICALP 97) (1997) 594-604.

11. M. R. Henzinger and V. King, Randomized fully dynamic graph algorithms

with polylogarithmic time per operation, J. Assoc. Comput. Mach. 46(4)

(1999), 502-536.

12. V. King, Fully dynamic algorithms for maintaining all-pairs shortest paths

and transitive closure in digraphs, Proc. 40-th Symposium on Foundations

of Mathematical computing (FOCS 99) (1999).

