
www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 684

An Efficient Software Testing By Diminishing
No Of Test Executions

Pradeep Udupa
Ass.professor M.E.S Engineering College Kerala, India

Abstract:
Software Testing is the process of executing a program or system with the intent of finding
errors or, it involves any activity aimed at evaluating an attribute or capability of a program or
system and determining that it meets its required results Software is not unlike other physical
processes where inputs are received and outputs are produced. Where software differs is in the
manner in which it fails. Most physical systems fail in a fixed (and reasonably small) set of ways.
By contrast, software can fail in many bizarre ways. Detecting all of the different failure modes
for software is generally infeasible.
Unlike most physical systems, most of the defects in software are design errors, not
manufacturing defects. Software does not suffer from corrosion, wear-and-tear -- generally it
will not change until upgrades, or until obsolescence. So once the software is shipped, the design
defects -- or bugs -- will be buried in and remain latent until activation.
In this study execution code& algorithm is developed To optimize
The testing efficiency by fetching test inputs from the database which will
reduce time, effort & no of executions. here an efficient code is developed
to fetch test data from database and to fetch the data from data table to
increase the execution speed decrease the effort and increase testing
efficiency
And our main objective is
1) To reduce number of all test cases. Generally, the larger the input domain, the more
exhaustive the testing would be. To avoid this problem, a minimum set of test cases needs to
be created using an algorithm to select a subset that represents the entire input domain. In
addition, when test cases are larger, the testing itself would take longer to run, particularly
for regression testing where every change in the program demands repeat testing. Therefore,
reducing number of the test cases does have advantage in efficiency.
2) To find the technique for automatic generation of test cases. To reduce the high cost of
manual software testing while increasing reliability of the testing Processes, IT researchers
and technicians have found methods to automate the reduction process. With the automatic
process, the cost of software development could be significantly reduced.
3) To keep a minimum number of test runs. The best technique must be able to generate test
cases from only one example test run.

ISSN: 2278 – 0211 (Online)

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 685

1.Introduction

Software testing is a process of verifying and validating that a software application or

program. Software testing

 Meets the business and technical requirements that guided its design and

development, and

 Works as expected.

Software testing also identifies important defects, flaws, or errors in the application code

that must be fixed. The modifier “important” in the previous sentence is, well, important

because defects must be categorized by severity. Software testing also identifies

important defects, flaws, or errors in the application code that must be fixed. The

modifier “important” in the previous sentence is, well, important because defects must be

categorized by severity.

During test planning we decide what an important defect is by reviewing the

requirements and design documents with an eye towards answering the question

“Important to whom?” Generally speaking, an important defect is one that from the

customer’s perspective affects the usability or functionality of the application. Using

colors for a traffic lighting scheme in a desktop dashboard may be a no-brainer during

requirements definition and easily.

2.Need & Scope Of The Study

 To increase Testing Efficiency

 Reduce No of Execution & Execution Time &Effort

2.1.Software-Testing Techniques

With finding errors as the primary objective of software testing, higher probability of

detecting defects has become the defining quality of an effective test. Computer-based

systems, Which are known to offer testers with diversity of testing methods and, hence,

enhance probability of detection, are therefore recommended as the most efficient tools

currently Available [4], [6].

 Path testing: aims to inspect the validity of selected Paths without the need for

testing every possible path (as Required in Structural testing). The test is

preferable when the Number of all available paths is so great that testing all of

Them become impractical [1].

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 686

 Independent program paths: an independent program Path is any path through the

program that introduces at least One new set of processing statements or a new

condition. When stated in terms of a flow graph, an independent path Must move

along at least one edge that has not been traversed Before the path is defined.

 For example:

Figure 1

2.2.Cyclomatic Complexity

The cycloma tic complexity gives a quantitative measure of The logical complexity. This

value gives the number of Independent paths in the basis set and an upper bound for the

Number of tests to ensure that each statement is executed at Least once. An independent

path is any path through program That is A new condition (i.e. new edge) [1]. Example

 Number of regions of flow graph

 Edges-nodes+2

 Predicate node+1.

2.3.Deriving Test Cases

 1.Using the design or code, draw the corresponding flow graph

 2.Determine the cyclomatic complexity of the flow graph

 3.Determine a basis set if independent paths.

 4. Prepare test cases that will force execution of each path in The basis test.

Independent paths: Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11 Path 3: 1-2-3-6-8-9-10-1-11 Path 4: 1-2-3-6-7-9-10-1-11

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 687

Note that each new path introduces a new edge. The path 1-2-3-4-5-10-1-2-3-6-8-9-10-1-

11 Is not considered to be an Independent

Already specified paths and does not traverse any new edges. Paths 1, 2, 3, and 4

constitute a basis set for the flow graph in Figure 2.1. That is, if tests can be designed to

force execution Of these paths (2, 4, 6, 7), every statement in the program is Guaranteed

to be executed at least one time, and every Condition will have been executed on its true

and false sides. It Should

Number of different basis sets can be derived for a given Procedural design.

B.Dynamic Domain Reduction (DDR): DDR is the technique that creates a set of

values that Executes a specific path. It transforms source code to a Control Flow Graph

(CFG). A CFG is a directed graph that Represents the control structure of the program.

Each node in The graph is a basic block, a junction, or a decision node [8].

2.4.Test Case Generation Technique

DDR uses the GetSplit algorithm to find a split point to divide the domain.

The GetSplit algorithm is as follows:

Algorithm

Getsplit (LeftDom, RightDom, SrchIndx) Precondition

LeftDom and RightDom are initialized appropriately And SrchIndx is one more than the

last time Getsplit was called with these domains for this expression.

Split value = (LeftDom.Bot AND RightDom.Bot) and Split value =(LeftDom.Top AND

RightDom.Top) Input

LeftDom: Left expr’s domain with Bot and Top values RightDom: right expr’s domain

with Bot and Top values Output

Split–a value the divides a domain of values into two sub domains.

BEGIN

-- Compute the current search point

-- srchPt = (1/2, 1/4, 3/4, 1/8, 3/8 …)

-- Try to equally split the left and right expression's domains.

IF (LeftDom.Bot>= RightDom.Bot AND LeftDom.Top< = RightDom.Top)

 Split=(LeftDom.Top -LeftDom.Bot)*srchPt + LeftDom.Bot ELSE IF

(LeftDom.Bot<= RightDom.Bot AND LeftDom.Top >= RightDom.Top)

 Split=(RightDom.Top -RightDom.Bot)*srchPt + RightDom.Bot

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 688

 ELSE IF (LeftDom.Bo>t= RightDom.Bot AND LeftDom.Top >=

RightDom.Top)

 Split=(RightDom.Top - LeftDom.Bot)*srchPt + LeftDom.Bot

 ELSE -- LeftDom.Bot<= RightDom.Bot AND LeftDom.Top< = RightDom.Top

 Split=(LeftDom.Top - RightDom.Bot)*srchPt + RightDom.Bot

2.5.End If Return Split End Getsplit

In the dynamic domain reduction procedure, loops are handled dynamically instead of

finding all possible paths.

The procedure exits the loop and continues traversing the path on the node after the loop.

This eliminates the need for loop unrolling, which allows more realistic programs to be

handled. [2][7]

3.Propesd Technique

3.1.Objectives

 In this study execution code& algorithm is developed to Optimize the

testing efficiency by fetching test inputs from The database which will

reduce time, effort & no of Executions. Here an efficient code is

developed to Fetch test data from database and to fetch the data from

Data table to increase the execution speed decrease the effort and increase

testing efficiency.

 To develop execution code for fetching the data from data table which is

used to retrieve test case data directly from Data table without expecting

data to be inputted By implementing this procedure. It will automate the

execution process And cost & effort involved in doing manual work Will

be diminished.

 Developing execution code to calculate overall time required to find an

efficiency of execution Example test run. in terms of speed In this paper,

a new algorithm is used to meet the above-mentioned objectives, using

the following steps.

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 689

3.2.Test Cases Generation Technique

There are four steps to generate test cases:

 Finding all possible constraints from start to finish nodes. A Constraint is a pair

of algebraic expressions which dictate Conditions of variables between start and

finish nodes (>, >=, <, <=, ==, !=)

 Identifying the variables with maximum and minimum Values in the path, if any.

Using conditions dictated by the Constraints, two variables, one with maximum

value and the Other with minimum value, can be identified. To reduce the Test

cases, the maximum variable would be set at the highest Value within its range,

while assigning the minimum variable At the lowest possible value of its range.

 Finding constant values in the path, if any. When constant Values can be found

for any variable in the path, the values Would then be assigned to the given

variables at each node.

 Using all of the above-mentioned values to create a table to Present all possible

test cases.

3.3.Expected Results

 Using the methodology, the new algorithm would have the Following

characteristics:

 Number of test cases. The number of test cases is smaller since each variable has

a fixed value, either as maximum,Minimum or constant values.

 Automatic test cases generation. The test cases can be automatically generated

with the reduction process.

 Less time to test run. A single generation of test cases Reduces the time of test

run and compilation.

4.Evaluation

A comparative evaluation has been made between the Proposed Techniques, the Existing

Technique (Get Split Algorithm technique). The following areas are used to compare With

existing techniques:

 Number of test cases

 Reduction percentage of test cases

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 690

 Compilation time

The evaluation is described using two examples

4.1.Example

The function value takes three marks as input such as mark1, Mark2, mark3 and returns

some total mark for student depending upon the performance.

 Source code

int Result(mark1,mark2,mark3)

{ int total; Total=0;

 If(mark1<mark2)

 {

 Mark3=mark3+5;

If (mark1<mark3) sum=mark1+10; Else Total=mark1+5;

Else{mark3=mark3+10;

 sum=mark1+mark2+mark3;

 }

 return (sum);

}

5.Proposed Technique For Increasing Efficiency

In this study A Test Execution technique is adopted for making test case efficient by

feeding data from database directly Advantage of this is once we store test data in

database we can use it for many Test run and save the overall time & Effort

And for this purpose a piece of code is developed as follows

Option explicit Dim con,rs

Set con=createobject(“adodb.connection”)

 Set rs=createobject(“adodb.recordset”) con.provider=(“Microsoft.jet.oledb.4.0”)

con.open “c:\document anssettings\mydocuments\test.mdb”

rs.open “select * from test”,con do until rs.eof=true invokeapplication “c;\program

files\test.exe”

 Diolog(“Result”).Activate

Diolog(“Result”).WinEdit(“mark1:”).Set rs.fields(“m1”)

Diolog(“Result”).WinEdit(“mark2:”).Setrs.fields(“m2”)

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 691

Diolog(“Result”).WinEdit(“mark3:”).Setrs.fields(“m3”)

 Window(“testapplication”).close Rs.movenext

 loop

Another approach used is first feeding all Test case data into data table and then using it

from the

Data table of excel by using following proposed code

EXECUTION Code Used For Calculating Test Case Time =>

Service.startTransaction

Dim m1,m2,m3,ST,ET,TT

ST=timer()

ET=timer()

m1=datatable(“mark1”,1)

m2=datatable(“mark2”,1)

m3=datatable(“mark3”,1)

invokeapplication“c;\programfiles\test.exe”

Diolog(“Result”).Activate Diolog(“Result”).WinEdit(“mark1:”).Set m1

 Diolog(“Result”).WinEdit(“mark2:”).Set m2

 Diolog(“Result”).WinEdit(“mark3:”).Set m3

Window(“testapplication”).close

T= Result(m1,m2,m3)

TT=ST-ET

msgbox(“Totaltime:=”&TT)

Service.EndTransaction

Contributing in increasing in efficiency & Execution code for calculating test case

Time is implemented to find total time required

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 692

5.2.Control Flow Graph

Figure 2

5.3.No Of Independent Path

 Path1: 1, 2,4,6,8

 Path2: 1, 2,4,7,8 Path3: 1,3,5,8

5.4.Evaluation Result For Proposed Method

Assume that the path 1-2-4- 6-8 is elected and the initial domains of the input variables are

<0 to 30>, <10 to 50>, <0 to 40> A step follows:

 Finding all possible constraints from start to finish nodes. Ma1 < ma2, ma1> = ma3

 Find minimum values in the path, if any.

From the above conditions, it is possible to identify ma3 as the Variable with the

minimum value and ma2 as the variable with Maximum value. In accordance to the

finding, a value of zero, The lowest value within the range of variable ma3, can then be

Assigned to ma3 while the value of ma2 can be set at 50, the Highest value of the

variable.

 Finding constant values in the path, if any. Ma1 constant Value for variable

ma3found on Node 2 of the path has been Used to replace the fix value of ma3

(10) at the node.

 Using all of the above-mentioned values to create a table to Present all possible test

Cases.ma1 value is 10..30, ma2 as the Variable with maximum value = 50, ma3 as the

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 693

Variable with The minimum value = 10.

Reduced test cases:

Variables All test cases

ma1 ma2 ma3 10 50 10

 11 50 10

 12 50 10

 13 50 10

 14 50 10

 15 50 10

 16 50 10

 17 50 10

 18 50 10

 19 50 10

 20 50 10

 21 50 10

 22 50 10

 23 50 10

 24 50 10

 25 50 10

 26 50 10

 27 50 10

 28 50 10

 29 50 10

 30 50 10

Total 21

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 694

 5.5.Evaluation Result For Existing Method

Assume that the path 1-2-4- 6-8 is elected and the initial Domains of the input

variables are

 <0 to 30>, <10 to 50>, <0 to 40>

A step follows:

 Finding all possible constraints from start to finish nodes. ma1<ma2, ma1>=ma3,

ma3=10

 Calculate split value and splitting Intervals for all constraints.

o For constraints ma1<ma2

Splitting values are 8, 10, 11, 13, 15. We choose the split Value=15from above

mentioned values. Then divided the input domain into two intervals

No Ma1 Ma2

1 0 to 15 10 to 30

2 16 to 30 31 to 50

Table 1

From the constraints ma1 is lesser than ma2. Then choose the interval from constraints

checking. The selected interval is

No Ma1 Ma2

1 0 to 15 -

2 16 to 30 31 to 50

Table 2

For the second constraint ma1>=ma3.the split values

Are 7, 10, 11, 15, 17.We choose the split value=10 from above Mentioned values. Then

divided the input domain into two Intervals

No Ma1 Ma2

1 0 to 10 0 to 10

2 11 to 30 11 to 40

Table 3

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 695

From the constraints ma1 is Greater than equal to ma3 then choose the interval from

constraints checking. The selected interval is

No Ma1 Ma2 Ma3

1 0 to 10 0 to 10 16

2 11 to 30 - -

Table 4

 Third constraint is ma3=16

No Ma3

1 16

Table 5

From Table 2, Table4, Table 5, finally calculate all selected intervals

No Ma1 Ma2 Ma3

1 0 to 10 - 16

2 11to 30 31 to 50 -

Table 6

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 696

6.Evaluation Results

Method/

 Proposed

Existing

Algorithm

area

Algorithm

 All possible

52111

52111

test Cases

 Reduced 21 651

 test cases

 Saving (%) 99.95 98.75

 Time of

5.25

162.25

compilation

Table 7

Total possible test case came from number values on each variable 31*41*41

Saving (%) = 100-((100*Reduced Test Case)/All PossibleTest Case).

7.Analysis Graph

Figure 1: X-axis for algorithm, Y-axis for reduced test cases, 1- for proposed solution, 2-
for existing solution

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 697

7.Conclusion
The new implemented technique has achieved higher reduction Percentage of the test

cases by fetching data directly from the data table or D.B and running as many times as

needed. Furthermore, because It retrieves test data directly from data table or D.B it takes

less time Among the one existing technique. Based on the observation done,The

proposed method can be considered a superior technique From all others available in

current literatures. and it diminishes no of executions

The proposed Technique Lies In its requirement for Identification Of Fix values For All

variables, either as Maximum, minimum or constant values

www.ijird.com Ferbruary, 2013 Vol 2 Issue 2

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 698

8.Reference

1. G. Rothermel, L. Li, and M. Burnett. Testing strategies for Form-based visual

programs. In Proceedings of the 8thInternational Symposium on Software

Reliability Engineering,Pages 96–107, Albuquerque, NM, November 1997.

2. G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioritization:

An empirical study. In Proceedings of the International Conference on Software

Maintenance, pages 179–188, August 1999.

3. G. Rothermel, Roland H. Untch, Chengyun Chu, and M. J.Harrold. Prioritizing

test cases for regression testing. IEEE Transactions on Software Engineering,

27(10):929–948, October 2001a.

4. Gregg Rothermel, Margaret Burnett, Lixin Li, Christopher Dupuis, and Andrei

Sheretov. A methodology for Testing Spreadsheets. ACM Transactions on

Software Engineering and Methodology, 10(1):110–147, January 2001b.

5. Andrew Sears. Layout appropriateness: A metric for evaluating user interface

widget layout. IEEE Transactions on Software Engineering, 19(7):707–719,

1993.

6. Andrew Sears. Layout appropriateness: Ametric for evaluating user interface

widget layout. IEEE Transactions onSoftwareEngineering, 19(7):707–719, 1993.

7. Forrest Shull, Ioana Rus, and Victor Basili. Improving software inspections by

using reading techniques. In Proceedings of the 23rd International Conference on

Software Engineering, pp 726–727. IEEE Computer Society, 2001.

8. Ian Sommerville. Software Engineering. Addison-Wesley, 6th edition, August

2000.

9. Elaine Weyuker. Axiomatizing software test data adequacy. IEEE Transactions

on Software Engineering, (12): 1128–1138,December 1986.

10. James A. Whittaker. What is software testing? and why is it so hard? IEEE

Software, 17(1):70–76, January/February 2000.

