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Abstract:

The AdaBoost (adaptive boosting) algorithm is widely used algorithm in computer 

vision and machine learning systems. It is a general method for generating a strong 

classifier out of a set of weak classifiers. The object detection algorithm by Viola and 

Jones [1] with Haar-like features as weak classifiers used AdaBoosting to construct a 

strong classifier cascade. This popular object detection algorithm runs in real time on 

desktop processors running in the range of 2GHz clock frequency. But the floating 

point arithmetic becomes a bottleneck for embedded and mobile platforms which has 

limited clock speeds for low power. This paper presents an optimized fixed point 

alternative to the floating point arithmetic used in the time critical classifier 

evaluation functions. The Open-CV library is used as the base software platform. The 

optimized fixed point implementation is tested with several test images consisting of 

one or more frontal faces. The results shows that the proposed implementation has  a 

performance improvement from 3.81 to 5.84 fps.
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1.Introduction 

Face detection is the method of identifying faces of interest in images regardless of size, 

position, and circumstance. A successful algorithm will find the locations and sizes of all 

faces in the image stream that belong to a given class with no or few "false positives". 

Potential face detection applications include monitoring and surveillance, human 

computer interfaces, smart rooms, intelligent robots, and biomedical image analysis. Face 

detection proposed by Viola and Jones is the first approach for real-time face detection 

[1]. This approach utilizes the AdaBoost algorithm [2], which identifies a sequence of 

rectangle features that indicate the presence of a face. The Viola and Jones algorithm is 

most often used for face detection, e.g., in the OpenCV library [3][4], however is 

applicable in other domains. This algorithm requires considerable computational power 

due to the sheer number of rectangle features that must be identified to detect a face. One 

face is comprised of a substantial amount of features, which are typically computed over a 

window of 24×24 pixels. To reduce computation, the detection is performed in stages so 

that windows in an image that do not contain something that looks similar to a face do not 

require computation of all features. There are many proposed approaches for face 

detection in a wide variety of images. While they can successfully detect frontal upright 

faces, many natural images include rotated or profile faces that are not reliably detected in 

the real world. The popular Viola Jones object detection algorithm runs in real time on 

desktop processors running in the range of 2GHz clock frequency. But the floating point 

arithmetic becomes a bottleneck for embedded and mobile platforms which has limited 

clock speeds for low power. This paper presents an optimized fixed point alternative to 

the floating point arithmetic used in the time critical classifier evaluation functions. 

 

2.Face Detection Algorithm

The Viola and Jones [1][7] face detection algorithm is used as the basis of our design. 

While the input image is scanned across location and scale, this algorithm utilizes pattern 

classification to determine the presence of a face. Viola and Jones use a boosted collection 

of features to classify image windows by using the AdaBoost algorithm [2]. In the 

Adaboost algorithm, a set of weak binary classifiers is learned from a training set. Each 

classifier is a simple feature made up of rectangular sums followed by a threshold as 

shown in Fig. 1. 
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Figure 1: Feature prototypes haar-like and center-surround features

 

The main purpose of using features instead of raw pixel values as the input to a learning 

algorithm is to reduce the in-class while increasing the out-of-class variability compared 

to the raw data and thus making classification easier. Features usually encode knowledge 

about the domain, which is difficult to learn from the raw and finite set of input data. A 

very large and general pool of simple haar-like features combined with feature selection 

therefore can increase the capacity of the learning algorithm. From [2], the number of 

features derived from each prototype is quite large and differs from prototype to 

prototype and can be calculated as follows Let X=[W/w] and Y=[H/h] be the maximum 

scaling factors in x and y direction. A upright feature of size wxh then generates 

XY(W+1-w ) (H+1-h ! ) features for an image of size WxH, while a 45° rotated 

feature generates  XY(W+1-z ) (H+1-z ) with z = w+h.

 

2.1.Integral Image 

The speed of feature evaluation is also a very important aspect since almost all object 

detection algorithms slide a fixed-size window at all scales over the input image. As we 

will see, our features can be computed at any position and any scale in the same constant 

time. All the features can be computed very fast and in constant time for any size by 

means of two auxiliary images. For upright rectangles the auxiliary image is the Summed 

Area Table SAT(x, y). SAT(x, y) is defined as the sum of the pixels of the upright 

rectangle ranging from the top left corner at (0, 0) to the bottom right corner at (x, y) (see 

Figure 3a) [5]: 

 SAT(x, y) = (x + a) = I(x , y ),  
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It can be calculated with one pass over all pixels from left to right  and top to bottom by 

means of,

  

SAT(x, y) = SAT(x, y–1)+SAT(x–1,y)+I(x, y)–SAT(x–1,y–1) 

SAT(–1,y)=SAT(x,–1)=0 

 

Figure2: (a) Upright Summed Area Table (SAT) and (b) Rotated Summed Area Table 

(RSAT); calculation scheme of the pixel sum of upright (c) and rotat ed (d) rectangles. 

 

From this the pixel sum of any upright rectangle r=(x,y,w,h,0) can be determined by four 

table lookups (see also Figure 2(c):

Rec Sum (r)= SAT(x–1,y–1)+SAT( x+w–1, y+h–1)  

                    –SAT(x–1,y+h–1)–SAT(x+w–1,y–1)  

For 45° rotated rectangles the auxiliary image is defined as the Rotated Summed Area 

Table RSAT (x, y). It gives the sum of the pixels of the rectangle rotated by 45° with the 

right most corner at (x, y) and extending till the boundaries of the image (see Figure 2b): 

RSAT(x, y) = ( , , ), | |  

It can be calculated with two passes over all pixels. The first pass from left to right and 

top to bottom determines 

RSAT(x, y) = RSAT( x-1, y-1)+RSAT(x-1,y)+I(x, y)-RSAT(x-2,y-1) 

RSAT(-1,y) = RSAT(-2,y) = RSAT(x,-1) = 0,

Whereas the second pass from the right to left and bottom to top calculates 

RSAT(x, y)=RSAT(x ,y)+RSAT(x–1,y+1)–RSAT(x–2,y) 
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From this the pixel sum of any rotated rectangle r=(x,y,w,h,45°) can be determined by 

four table lookups (see also Figure 2(d))

Rec Sum (r )=RSAT(x+w, y+w)+RSAT(x–h, y+h)

–RSAT(x, y)–RSAT(x+w–h, y+w+h)

Let us assume that the basic unit for testing for the presence of an

object is a window of WxH pixels. Also assume that we have a very 

fast way of computing the sum of pixels of any upright and 45° 

rotated rectangle inside the window. A rectangle is specified by the 

tuple r=(x,y,h,alpha) with x, y lies within the boundary of the rectangle width and height 

W, H respectively.and its pixel sum is denoted by RecSum(r). Two examples of such 

rectangles are given in Figure 2.

featureI =RecSum( ri )

Our raw feature set is then the set of all possible features of the form 

 

3.OpenCV Visual Studio Setup

OpenCV (Open Source Computer Vision Library) is a library of programming functions 

mainly aimed at real-time computer vision, developed by Intel, and now supported by 

Willow Garage. It is free for use under the open source BSD license. The library is cross-

platform. It focuses mainly on real-time image processing. OpenCV includes both its 

traditional C interface as well as a new C++ interface. The main OpenCV site is on 

SourceForge at http:// SourceForge.net/ projects/ opencvlibrary. 

The OpenCV is downloaded and a project is created in Visual studio. The interested 

libraries in the provided libraries are objdetect.lib, imgproc.lib, highgui.lib and core.lib. 

The objdetect.lib provides functions and data structures required for object detection. In  

this section the main C functions used for face detection are explained. 

 

3.1.cvLoad 

The function loads an object from a file. It provides a simple interface to Read. After the 

object is loaded, the file storage is closed and all the temporary buffers are deleted. Thus, 

to load a dynamic structure, such as a sequence, contour, or graph, one should pass a valid 

memory storage destination to the function. The function is used to load a trained cascade 

of haar classifiers from a file or the classifier database embedded in OpenCV. The object 

detection classifiers are stored in XML or YAML files.
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3.2.cvHaarDetectObjects

The function finds rectangular regions in the given image that are likely to contain objects 

the cascade has been trained for and returns those regions as a sequence of rectangles. The 

function scans the image several times at different scales Each time it considers 

overlapping regions in the image and applies the classifiers to the regions using 

RunHaarClassifierCascade function. It may also apply some heuristics to reduce number 

of analyzed regions, such as Canny prunning. After it has proceeded and collected the 

candidate rectangles (regions that passed the classifier cascade), it groups them and 

returns a sequence of average rectangles for each large enough group. 

 

3.3.Integral

This function computes integral image of a given input image.

 

3.4.RunHaarClassifierCascade 

The function runs the Haar classifier cascade at a single image location. Before using this 

function the integral images and the appropriate scale (window size) should be set using 

SetImagesForHaarClassifierCascade. The function returns a positive value if the analyzed 

rectangle passed all the classifier stages (it is a candidate) and a zero or negative value 

otherwise.

 

3.5.CV setimagesforhaarclassifiercascade 

The function assigns images and/or window scale to the hidden classifier cascade. If 

image pointers are NULL, the previously set images are used further. Scale parameter has 

no such a “protection” value, but the previous value can be retrieved by the 

GetHaarClassifierCascadeScale function and reused again. The function is used to 

prepare cascade for detecting object of the particular size in the particular image. The 

function is called internally by HaarDetectObjects, but it can be called by the user if they 

are using the lower-level function RunHaarClassifierCascade. 

 

3.6.icvEvalHidHaarClassifier

This function is the critical function that evaluates and checks if a rectangle with top left 

cornet point (x,y) is passes a given classifier’s tree. The function reads the integral image 

data for the rectangles given in each node of the tree, calculates area of the rectangles and 

produces the difference, then it compares the area difference with the threshold of the 
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node, if the area difference is less than the threshold at any node the evaluation moves 

onto the next left node of the tree or else the right node is chosen in the tree, .if the end of 

the tree is reached the weight of the tree (alpha) is chosen. This alpha will be summed 

with the alpha values obtained in all other classifier trees evaluated for this classifier 

stage. As we discussed, if the sum of alpha values at a stage is less than the classifier 

stage threshold then the rectangle is said to contain the intended object.  

 

4.Profiling Results

To improve the performance of the application, the most frequently executed portions of 

an application’s data flow should be identified. Because optimization of these portions 

will directly accelerate the application execution. Hence the face detection application 

that uses the Haar object detection component of the OpenCV library is profiled using 

Microsoft Visual C++ tool. Table 1 shows the results.

 

Function Name
Percentage of total 

execution time 

icvEvalHidHaarClassifier 86 

cvSetImagesForHaarClassifierCascade 
2

Integral 1

All other miscllenious functions 11 

Table 1: Profiling Results
 

From the profiling results shown, we come to know that 86% of the application total 

execution time is consumed in the icvEvalHidHaarClassifier function that evaluates the 

classifier equations. The second most frequent time consuming function is setting the 

integral image pointer for the cascade to be evaluated at a scale level. This function 

consumes 2% of the total application execution time. Integral image computation takes 

1% and the rest of the functionality e.g. cascade creation, loops to iterate through all the 

classifiers takes 11%.  Thus the classifier evaluation and image setting functions are the 

right candidates for optimization.

 

5.Fixed Point Optimization 

The pseudo code for the icvEvalHidHaarClassifier function  is given below. 
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 do 

{

node = next_node; 

t = node->threshold * variance_norm_factor;

sum = Area(rect[0])*rect[0].weight; 

sum += Area(rect[1])*rect[1].weight;

if( node has third rectangle ) 

sum += Area(rect[2])*rect[2].weight; 

next_node = sum < t ? left_node : right_node; 

}

while( next_node != NULL ); 

return alpha value of the last node found;

From the pseudo code we can identify various operations involved in the time critical 

icvEvalHidHaarClassifier function. The operations are listed in Table 2.

Operation Purpose Count 

Floating Point Additions 
Area calculation of three 

rectangles
6 

Floating Point Subtractions
Area calculation of three 

rectangles
6 

Floating Point Additions Producing the variable ‘sum’ 3 

Floating Point Multiplications Variance normalization 1 

Floating Point Multiplications 
Weighting the three rectangle 

areas 
3 

Floating Point Comparisons  Comparing sum with threshold 1 

Table 2: Various Operations In icvEvalHidHaarClassifier 

 

From Table II we come to know that the function involves 20 floating point operations for 

every node of the classification tree. During our simulations, it is observed that for lena 

test image with resolution 352X288, the function is called 3 million times. Since the haar 

training data used for simulations has 2 nodes in all the weak classification trees, total 6 

million classifier nodes are evaluated. This means for the 352X288 test image, 20X6=120 

million floating point operations have to be computed. Since the desktop computers runs 
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at high clock speed in the range of 2 GHz, and have high speed multi cores, the face 

detection application is running at a decent speed of 5.01 fps.  For embedded or mobile 

platforms the floating point operation will become bottleneck as each floating point 

operation takes several cycles latency. Also the floating point arithmetic consumes 

relatively more chip area. Therefore we proposed fixed point alternative to the floating 

point arithmetic used in the icvEvalHidHaarClassifier and related functions. The main 

drawback of this optimization is, the fixed point arithmetic lowers the detection rate due 

to a lack of accuracy. This problem is overcome by choosing the bit precisions of the 

fixed-point variables in such a way that the detection rate is preserved. Experiments are 

conducted to determine the safe bit widths for the data path signals of the various 

parameters, at the same time, the bit width of these parameters are chosen in such a way 

that they are byte aligned which is very important in processor based designs. The bit 

precisions of different variables of the algorithm are shown in Table 3

Variable Name 
Total Bit 

Width  

Fixed Point Format 

Integer Bits Fractional Bits

Integral Image Data 32 32 0 

Weak Classifier Threshold 24 9 23

Variance Normalization  

Factor
16 32 

0 

Pixel Area 32 32 0 

Feature Rectangle Weight  32 17 15

Weighted Sum 32 8 24

Tale 3: Bit Precision Details
 

6.Result 

The fixed point optimized code is tested with multiple test images having one or more 

frontal faces. Figure 3 shows the face detection output for the lena test image. Table IV 

shows the comparison between the OpenCV floating point software implementation with 

our fixed point optimized implementa-tion.  
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Figure 3: Face detection output for lena test image 

Image Resolution 

Frame Rate (fps) 

Floating Point 

Implementation

Fixed Point 

Implementation

352X288 3.81 5.84 

512X512 1.5 2.0

Table 4: Performance Comparison

7.Conclusion 

In this paper presents an optimized fixed point alternative to the time consuming floating 

point arithmetic used in the time critical classifier evaluation functions of OpenCV object 

detection module. The fixed point implementation improved the performance from 3.81 

fps to 5.84 fps.  
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