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Abstract: 

This paper deals with the dynamic analysis of the linear vibration response of a pre-

stretched circular hyper elastic membrane with large deformation. Geometrical as well as 

material nonlinearity come together due to finite deformations and a hyper elastic 

constitutive relationship. The membrane material is assumed to be isotropic, 

homogeneous, and Neo-Hookean. A commercial finite element code ANSYS is used to 

perform the prestressed modal analysis as well as hyper elastic material curve fitting. The 

results are compared to the analytical solutions obtained from literature. The effect of 

stretching ratio and membrane thickness on the mode frequencies, shapes and order is 

studied. The increase in stretching ratio increases the concentration of in plane modes in 

the lower frequencies, and also decreases the frequency of the same. The out of plane 

modes are dominant in the lower frequencies at lower stretch ratios due to the 

predominance bending stiffness compared to membrane stiffness. Finally, the influence of 

the hyper elastic constitutive laws on linear vibrations is investigated. Results show that 

the selection of appropriate hyper elastic material model plays a crucial part in getting 

the correct results. 
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1.Introduction 

Hyper elasticity refers to materials that can experience large strains (up to 500%) which 

are almost recoverable. They have highly nonlinear load-extension behavior. For most 

cases they are nearly incompressible except for some rubber foam materials where large 

volume changes can be achieved. Elastomers are usually elastically isotropic at small 

deformation, and then anisotropic at finite strain (as the molecule chains tend to realign 

to the loading direction). Under an essentially monotonic loading condition, however, a 

larger class of the elastomers can be approximated by an isotropic assumption, which has 

been historically popular in the modeling of elastomers. 

Hyper elastic membranes have become a topic of interest in recent years due to their 

versatility and applicability in  numerous engineering areas, including civil engineering 

structures, automotive applications (tires, belts, hoses, mounts), Aerospace applications,  

Biomedical/Dental Industries (artificial organs, wheelchairs, implantable surgical 

devices),  Packaging (Styrofoam) and Sports  (safety equipments, shoes, helmets). In 

recent years, intensive research has been conducted on the development of new 

membrane materials, including shape memory polymers and dielectric elastomers. 

Modern developments in the mechanics of rubber-like materials started with the 

pioneering work of R.S. Rivlin. The first developments in this field are compiled and 

collected in the classical work by Green and Adkins.Treolar performed experiments 

using rubber and other hyper elastic materials to determine their properties. These were 

used by Rivlin and others to develop mathematical models. Selvadurai performed 

experimental study on the deflections of rubber membrane and used the available 

material models in literature to find the optimum model. Goncalves developed an 

analytical solution using Galerkin technique to find the theoretical frequencies of a pre 

stretched hyper elastic membrane using Neo Hookean material model. 

There are only a few literatures available on the analysis of dynamic behavior of hyper 

elastic membranes. The aim of the present work is to study the dynamic behavior of a 

pre-stretched circular hyper elastic membrane using the finite element software ANSYS. 

The material properties taken from the experimental data published in reference and 

curve fitted using ANSYS. The results are compared to the analytical solution. A 

detailed parametric analysis is performed to predict the effect of radial stretching and 

membrane thickness in the mode frequencies, shape and order. The membrane material 

is assumed to be isotropic and incompressible, and its behavior is described by the Neo-
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Hookean constitutive law. Finally different hyper elastic constitutive models are verified 

for the same data and the effect of the same is analyzed. 

 

2.Problem Formulation 

 

2.1.Theory 

A material is said to be hyper elastic if there exists an elastic potential function W (or 

strain energy density function) which is a scalar function of one of the strain or 

deformation tensors, whose derivative with respect to a strain component determines the 

corresponding stress component. This can be expressed by: 

2ij
ij ij

W WS
E C
 

 
 

 (1) 

 

Where  

Sij = components of the second Piola-Kirchhoff stress tensor 

W = strain energy function per unit un-deformed volume 

Eij = components of the Lagrangian strain tensor 

Cij = components of the right Cauchy-Green deformation tensor 

 

The Lagrangian strain may be expressed as follows: 

 

 1
2ij ij ijE C    (2) 

 

where: 

ij = Kronecker delta (ij = 1 if  i = j; else ij = 0) 

 

The deformation tensor Cij is comprised of the products of the deformation gradients 

Fij 

 

ij kj kjC F F  (3) 

 

where: 

Fij = components of the deformation gradient tensor 
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Xi = un-deformed position of a point in direction i 

xi = Xi + ui = deformed position of a point in direction i 

ui = displacement of a point in direction i 

The Kirchhoff stress is defined: 

 

ij ik kl jlF S F    

 

And the Cauchy stress is obtained by: 

 
1 1

ij ij ik kl jlF S F
J J

    (4) 

 

The Eigen values (principal stretch ratios) of Cij are 

 , 1

2 , 2

2  and 
2

3 , and exist only if: 

 
2det 0
pij ijC        

 

This can be re-expressed as: 

 
6 4 2

1 2 3 0p p pI I I       (5) 

 

Where: 

 

I1, I2, and I3 = invariants of Cij, 
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 

 (6) 

 

Where J = det [Fij] 
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J is also the ratio of the deformed elastic volume over the reference (un-deformed) 

volume of materials. 

Under the assumption that material response is isotropic, it is convenient to express the 

strain energy function in terms of strain invariants or principal stretches. 

W=W (I1, I2, I3) =W (I1, I2, J)=W (λ1 , λ2,  λ3) 

Define the volume-preserving part of the deformation gradient, as: 

 

1
3

_

ijJ FijF


  (7) 

And thus 
__

det 1ijFJ
 
  
  

 (8) 

The modified principal stretch ratios and invariants are then: 

 

1
3

2
3

_

_

, ( 1, 2,3)p

p

p

J pp

J IpI






 



 (9) 

 

2.2.Material Models 

Following are several forms of strain energy potential (W) provided for the simulation of 

incompressible or nearly incompressible hyper elastic materials. 

 

2.2.1.Neo-Hookean 

The form Neo-Hookean strain energy potential is: 

 2
1

13 1
2

W I J
d

      
 

 (10) 

Where: 

µ= initial shear modulus of materials  

d = material incompressibility  

The initial bulk modulus is related to the material incompressibility parameter by: 

 
2K
d

                                                                                     (11) 

Where: 
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K = initial bulk modulus 

The Neo-Hookean form of strain energy function is a special case of the Mooney–Rivlin 

form of strain energy function when incompressibility is accounted 

 

2.2.2.Mooney-Rivlin 

This option includes 2, 3, 5, and 9 terms Mooney-Rivlin models. The form of the strain 

energy potential for 2 parameter Mooney-Rivlin model is: 

 

 2
10 1 01 2

13 3 1W C I C I J
d

            
   

 (12) 

Where C10, C01 and d are material constants 

The initial shear modulus is given by: 

Μ=2(C01+C10) 

The initial bulk modulus is: 
2K
d


 

 

2.2.3.Ogden Potential 

The Ogden form of strain energy potential is based on the principal stretches of left-

Cauchy strain tensor, which has the form: 

   21 2 3
1 1

13 1i i i

N N
ki

i ki k

W J
d

  
  


  

 

        (13) 

Where: 

i, i, dk = material constants 

A higher N can provide better fit the exact solution, however, it may, on the other hand, 

cause numerical difficulty in fitting the material constants and also it requests to have 

enough data to cover the entire range of interest of the deformation. Therefore a value of 

N > 3 is not usually recommended. 

 

2.2.4.Arruda-Boyce Model 

The form of the strain energy potential for Arruda-Boyce model is: 
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 (14) 

Where: 

= initial shear modulus of material  

L = limiting network stretch 

d = material incompressibility parameter 

As the parameter L goes to infinity, the model is converted to Neo-Hookean form. 

 

2.2.5.Yeoh Model  

The Yeoh model is also called the reduced polynomial form. The strain energy potential 

is: 

 2
0 1

1 1

13 1
iN N

k
i

i k k

W C I J
d



 

     
 

                              (15) 

N = material constant  

Ci0 = material constants  

dk = material constants  

The Neo-Hookean model can be obtained by setting  

N = 1. 

The initial shear modulus is defined: 

μ = 2C10 

The initial bulk modulus is: 

1

2K
d


 

 

2.3.Problem Formulation
 An isotropic, circular hyper elastic membrane with deformed radius R0, thickness h, and 

mass density G is considered. It is assumed that h/R0 is very much less than one, so that 

the deformed membrane can be described by the theory of hyper elastic membranes 

under finite deformations. This also facilitates the use of shell elements for the finite 

element modeling of the same. 
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Rubber-like materials exhibit very small volume changes so incompressibility is usually 

assumed for simplicity. If   the material is incompressible then the strain-energy density 

is a function of the first two strain invariants. The stress components can be determined 

after choosing the constitutive law. In this study, Neo-Hookean model with the second 

term of equation (10) neglected is utilized. The material properties and analytical 

formulations are taken from [787]. A circular membrane with initial radius r = 1 m, 

thickness h= 0.001m, and mass density = 2200 kg/m3 is considered for the numerical 

analysis. Stretch ratio is defined as the ratio of final radius (R) to the initial un-deformed 

radius (r). Unless specified otherwise the above mentioned model with a stretch ratio of 

1.1 is used for analysis with Neo-Hookean material model of material constant given in 

table 

 

2.4.Finite Element Theory 

Geometric non linearity refers to the nonlinearities in the structure or component due to 

the changing geometry as it deflects. That is, the stiffness [K] is a function of the 

displacements {u}. The stiffness changes because the shape changes and/or the material 

rotation. The geometric nonlinearities accounted in this analysis are: 

 

2.5.Large Deflection 

Pure displacement formulation is considered in this paper only takes displacements or 

velocities as primary unknown variables. All other quantities such as strains, stresses and 

state variables in history-dependent material models are derived from displacements. 

Naturally, they are applicable to small deformations, small deformation-large rotations, 

and stress stiffening as particular cases. The formulations are based on principle of 

virtual work. It is the most widely used formulation and is able to handle most nonlinear 

deformation problems. Minimal assumptions are used in arriving at the slope of 

nonlinear force-displacement relationship, i.e., element tangent stiffness. Hence, they are 

also called consistent formulations 12. 

 

k k
ij ijkl kl ij ik kj

i jV V

u DuD W e C De dV e De dV
x x


   
  

   
   

   (16) 
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Where 

 
ij ij

V

W e dV     is the internal virtual work 

ij = Cauchy stress tensor 

ijklC = Material constitutive tensor 

ui = displacement 

xi = current coordinate 

1
2

ji
ij

j i

dudue
dx dx

    
  

, deformation tensor 

V = Volume of deformed body 

D = Differential operator 

The above equation is a set of linear equations of displacement change. They can be 

solved out by linear solvers. The stiffness has two terms: the first one is material stiffness 

due to straining; the second one is stiffness due to geometric nonlinearity (stress 

stiffness). 

 

2.6.Stress Stiffening 

Stress stiffening (also called geometric stiffening, incremental stiffening, initial stress 

stiffening, or differential stiffening) is the stiffening (or weakening) of a structure due to 

its stress state. This stiffening effect normally needs to be considered for thin structures 

with bending stiffness very small compared to axial stiffness, such as cables, thin beams, 

and shells and couples the in-plane and transverse displacements. This effect also 

augments the regular nonlinear stiffness matrix produced by large strain or large 

deflection effects. The effect of stress stiffening is accounted for by generating and then 

stiffness matrix is added to the regular stiffness matrix in order to give the total stiffness 

in the nonlinear theory of elasticity, the expressions for the strain components in an 

arbitrary orthogonal coordinate system are 10  

 

 2 2 2
11 11 11 12 31

1= e  e +e +e
2

                                               (17) 

 2 2 2
22 22 22 12 23

1= e  e +e +e
2

                                          (18) 

 2 2 2
33 33 33 31 23

1= e  e +e +e
2

                                           (19) 
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 12 12 21 11 12 22 21 31 32 e  e   e e  e e  e e                 (20) 

 13 12 21 11 12 22 21 31 32 e  e   e e  e e  e e             (21) 

 23 23 32 22 23 33 32 12 13 e  e   e e  e e  e e               (22) 

 
Where ij (i=1, 2, 3) are the direct strains  

ij (i=1, 2, 3 and i≠j)) are the shear strains 

eij   are the functions of the displacements u, v and w along the three axes with respect to 

the orthogonal coordinate system under consideration. The equations are used to 

formulate the effect of nonlinear strain that accounts for the stress stiffening effect. 

 

3.Finite Element Analysis 

 

3.1.The Finite Element Model 

The software package ANSYS is used for the current analysis. The quadrilateral 

configuration of the quadratic shell element (SHELL 281) having 8 nodes, (4 corners and 

4 mid-side nodes) is employed in this analysis. These elements are well suited to model a 

doubly curved shell, geometric nonlinearity, pressure load stiffness and stress stiffening. 

Each node has 6 degrees of freedom, translations and rotations in x, y, and z direction. 

The degenerate form of the element (triangular configuration) should be avoided during 

meshing in order to maintain the accuracy level. The variation of displacement u can be 

expressed by the following polynomial in natural co-ordinates 12. 

 
2 2 2 2

1 2 3 4 5 6 7 7= a +a r a s a r +a rs+a s a r s a r su      (4) 
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Figure 1:  Eight noded rectangular element 
 

The shape functions (Ni) for the element is given by 

 

     1
1 1  r  1  s r – s –1
4

N       
 (23) 

     2
1  1  r  1  s r – s –1
4

N      
 (24) 

    3
1  1  r  1  s r s –1
4

N       
 (25) 

    4
1 1  r  1  s r  s –1
4

N        
 (26) 

    5
1N =  1  r  1  r 1  s
2
     

 (27) 

    6
1  1  r  1  s 1 –  s
2

N      
 (28) 

    7
1  1  r  1  s 1  s
2

N       
 (29) 

    8
1 1  r  1  s 1 –  s  
2

N      
 (30) 

 

  1 2 3 4 5 6 7 8N  [N  N  N  N  N  N  N  N ]T
  

The components of displacements and rotations are given as  

 
8 8 8

1 1 1
8 8 8

1 1 1

, ,

, ,

i i i i i i
i i i

x i xi y i yi z i z i
i i i

u N u v N v w N w

N N N     

  

  

  

  

  

  

 (31) 
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 The modal analysis is performed by initially providing a pre-stretch in the large 

deformation static analysis and then using the prestressed matrix with the deformed 

configuration in the modal analysis using fixed end conditions. 

 

4.Results And Discussion 

 

4.1.Material Curve Fitting 

In order to establish the constants for each constitutive law, the experimental stress–

strain curve given in 1 is used. The values are fed to the ANSYS material curve fitting 

utility, and the material constants for each constitutive model are calculated using an 

error minimization procedure.  

 

 
Figure 2: Curve fitting g of hyper elastic models (set 1) 

 

 
Figure 3: Curve fitting g of hyper elastic models (set 2) 

The material constants are tabulated in 
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Neo Hookean Gent 

µ=352942.68 µ = 352942.677 

            Jm= -

58987280255.8 

 

Mooney-Rivlin 

(2 parameter) 

 

C10=170878.24 

      C01=14868.89 

Ogden (1) 

µ = 359986.137 

 A1= 1.98 

Arruda Boyce  

µ = 351719.998 

L= 24.95077 

 

Blatz-ko foam 

µ = 1201376.769 

Table 1: Hyper elastic material constants 

 

Table 2: Frequencies of the first 4 modes using different hyper elastic models 

 

The results obtained using the material models are verified with the analytically 

computed frequencies given in 3. It is found that that Arruda Boyce, Ogden (1), Gent, 

Polynomial (1), Neo-Hookean, Mooney Rivlin (2 parameter) and Yeoh models resulted 

in almost similar frequencies with very low deviations. Mode order as well as shape was 

the same. Deviations were noticed in case of Blatz-Ko foam, Ogden hyper foam, 

Polynomial (2, 3), Ogden (2,3) and Mooney Rivlin (5,9 parameter). This is due to the 

more number of terms in these formulations for modeling compressibility along with 

incompressibility. All the material constants are not displayed for the sake of brevity. 

Modes 
Neo- 

Hookean 

Ogden 

1st 

Mooney 

2 parameter 
Arruda Boyce Yeoh order 3 

N
o 

Type 

(m,n) 

1 1,0 3.199 3.218 3.312 3.195 3.244 

2 1,1 5.098 5.127 5.273 5.091 5.169 

3 0,ipt 6.534 6.568 6.714 6.526 6.621 

4 1,2 6.833 6.873 7.065 6.824 6.921 
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4.2.Modal Analysis 

Modal analysis of the membrane structure yielded mode shapes which can be identified 

in terms of wave numbers m and n. 

 

 

 

 

 

Figure 4: Wavenumbers of circular palte vibration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.Parametric Study 

 

4.3.1.Effect Of Radial Stretching 

The equation for the natural frequency shows that there is a considerable effect of stretch 

ratio on the frequency of vibration. The analysis results also confirm the same along with 

certain interesting findings. The stretch ratio is found to affect not only the mode 

frequencies of in plane as well as out of plane modes but also the order of modes. At a 

stretching ratio of unity, bending stiffness of the membrane dominates over the 

membrane stiffness due to zero stretching. Only out of plane modes are found even up to 

 
 

 
Figure 5: Mode shapes for  first 4 modes 
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first twenty frequencies. Also the frequencies are clustered together to a great extent. The 

in plane modes are almost absent. 

As the stretch ratio increases we see that the order of modes also changes. More are more 

in-plane modes starts appearing, first in the lower frequency domain and then  

Moving to the lower frequencies form the back pushing down the out o plane modes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Variation of frequencies with stretching 

 

5.Conclusion 

The development of an accurate hyper elastic model has been a highly intriguing work 

due to the highly nonlinear response over a wide range of strains. This makes the static as 

well as the dynamic behavior of hyper elastic structures highly complex.  The paper 

highlights the importance of the same and suggests a finite element procedure to model 

hyper elastics based on the experimental data obtained. Due to the relative importance of 

membrane structures in diverse fields and their complex behavior under different loading 

as well as geometric configuration, proper analysis of static as well as dynamic response 

is essential especially in aerospace applications, vibration control and biomedical devices. 

The modal analysis of pre-stretched hyper elastic circular membrane showed that the 

increase in stretching increases the frequencies of out of plane modes till a saturation level 

is attained. Majority of in plane modes exhibit decrease in frequencies with increase in 

stretching till a saturation level is attained. The changes in frequencies are drastic in the 

initial stretching zone compared to the later stages. At very high stretching values (>2) we 

can see that the in plane and out of plane modes form clusters of same frequency 
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depending on the wave number. The increase in stretching also produces a change in 

mode order which is of great significance in vibration control. The mode order plays a 

crucial role in determining the placement of actuators and to avoid spillover effects. 

Variation in membrane thickness had no effect on mode frequencies, order or shapes. The 

selection of material model was found to be crucial. The incompressible behavior of 

rubber was best modeled using Neo-Hookean and Arruda Boyce models. Other models 

were also found to give very good match. The work has significant contributions owing to 

the limited studies on statics and dynamics of hyper elastic structures. The work may be 

further extended to modeling of complex structures incorporating effects of 

compressibility, nonlinear vibration and different loading/boundary conditions. 
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