Structural And Optical Property Of Core-Shell Tio₂/Sno₂nanocomposites Exhibiting Photocatalytic Behavior #### Pawan Chetri Dept.of Physics, Tezpur University, Napaam, Assam, India Priyanka Basyach Dept.of Physics, Tezpur University, Napaam, Assam, India Amarjyoti Choudhury Dept.of Physics, Tezpur University, Napaam, Assam, India #### Abstract: Here we report on the morphological and optical properties of TiO₂/SnO₂ nanocomposites prepared by a sol-gel method. The method comprises of a simple chemical reaction between Titanium isopropoxide solution and Water as well as subsequent addition of SnCl₂ solution to avail the coating of SnO₂ layer on the surface of TiO₂ nanoparticles. The as synthesized TiO₂ nanoparticles display strong UV absorbance characteristics. The XRD patterns verify the anatase phase of TiO₂ nanoparticles. The presence of both TiO₂ and SnO₂ in the sample is confirmed through XRD pattern. HRTEM images show clear evidence of formation of composite(coreshell) nanostructure in the sample. Optical properties of both TiO₂ and composite TiO₂/SnO₂ nanostructures are studied using UV-Vis absorption spectra, Photoluminescence and FTIR spectra. The performance of the composite nanostructure as a photocatalytic agent in comparison to the core TiO₂ nanostructures is also investigated for methyl orange dye under illumination of light. The Urbach energy of both the system is calculated and correlated with the photocatalytic degradation. Keywords: nanocomposties, XRD, HRTEM, Photoluminescence, photocatalytic, strain #### Introduction The study of semiconductor nanoparticles has caught enormous attraction as an important area of research because of their unique optical and electrical properties which led them to find a place for the application in various fields. Generally coating a lower energy gap nanomaterial by a higher energy gap material yields core-shell nanostructures where the cores and shells may be any kind of colloidal particles, i.e. metals, insulators and all classes of semiconductors [1]. Amongst core-shell nanostructures, TiO₂/SnO₂ nanostructures are highly useful in fabrication of photovoltaic devices as well as good photocatalytic agent as they show good TYPE 2 characteristics [2-4]. Akurati and his co-workers synthesized SnO₂/TiO₂ composite nanoparticles via a single-step method by adding evaporated precursor mixtures into an atmospheric pressure diffusion flame Photocatalytic activity of the composite particles is tested for the degradation of methylene blue and more improved photocatalytic activity than TiO₂ was observed [5]. Even degradation of 2-Propanol is reported with TiO₂/SnO₂ nanostructure acting as a photocatalytic agent [3]. In our work, we prepared core-shell TiO₂/SnO₂ nanoparticles via a simple sol-gel method and studied their photocatalytic activity for methyl orange dye under UV light illumination which is found to be greatly enhanced than TiO₂ nanoparticles. ## Materials and method Titanium iso propoxide, 2-Propanol, distilled water, tin chloride, hydrochloric acid are used as the main reactants. The core TiO₂ nanpoparticles was prepared via a simple sol gel procedure [6] and upon the core TiO₂ nanostructures a shell layer of SnO₂ was achieved following the procedure [7]. ## **Structural Properties** Structural determination of TiO₂ and TiO₂/SnO₂ core shell nanostructures is done using X-ray diffraction as shown in fig 1(a). The XRD of TiO₂ is shown as a reference. In TiO₂/SnO₂ system, the characteristic peak of both SnO₂ (110) and TiO₂ (101) is observed. It apparently shows the formation of TiO₂/SnO₂ core shell structure while it is confirmed by HRTEM image, shown in fig 1(b). The TEM image (left) for TiO₂ and (right) core-shell TiO₂/SnO₂ nanostructures. No distinct particle is present in the core structure as we did not use any kind of surfactant in the reaction. Figure 1(a): XRD Figure 1(b): HRTEM ## **Optical Property analysis** Fig 2 (left) shows the UV-Vis absorption spectra where it is clearly seen that both core TiO₂ and core-shell TiO₂/SnO₂ structure show strong UV absorbance with a slight red shift in the core-shell structure. From PL (right) spectra, it is observed that the band edge emission peak of TiO₂ occurring at 375 nm is completely quenched in the core-shell TiO₂/SnO₂ structure. This is attributed to the formation of a TYPE 2 core-shell structure in the sample accompanied with less recombination resulting in quenching of band edge emission peak. Figure 2: UV-Vis Absorption spectra Photoluminescence Spectra # **Photoluminescence Spectra** Photocatalytic activity of both pure TiO₂ and TiO₂/SnO₂ core shell samples are studied by monitoring the decrease of the maximum absorbance of methyl orange (MO) at 464 nm [fig 3]. For UV irradiation the time interval was chosen to be 10, 20, 40 and 60 min respectively. Actually the absorbance at 464 nm of MO is due to functional group present in the system. The used photocatalytic agent is able to break the functional group hence producing the degradation. The percent degradation for both the system is listed in the table 1. The increase in degradation with TiO₂/SnO₂ core shell nanostructure over pure TiO₂ might be due to the presence of surface oxygen vacancies. This surface oxygen vacancies produce a great amount of distortion in the system. This distortion is proved from the higher value of Urbach energy [8] as listed in the table 1. Figure 3: Degradation of MO | Sample | Urbach
energy(meV) | Irradiation time(minutes) | Absorbance
at 464 nm | Degradation $[(A_0-A)/A_0]$ 100% | |---|-----------------------|---------------------------|-------------------------|----------------------------------| | TiO ₂ /SnO ₂ core shell | 1102.54 | 00 | 3.14 | 0 | | | | 10 | 3.14 | 0 | | | | 20 | 3.14 | 0 | | | | 40 | 1.50 | 52.20 | | | | 60 | 1.02 | 67.52 | | Pure TiO ₂ | 109.41 | 00 | 3.14 | 0 | | | | 10 | 3.14 | 0 | | | | 20 | 3.14 | 0 | | | | 40 | 3.14 | 0 | | | | 60 | 2.98 | 5.1 | Table 1 ## **Conclusion** Thus, we have shown successful synthesis of both core TiO_2 and core-shell TiO_2/SnO_2 nanostructures with detailed study of their optical properties. In our work, we obtained that the core-shell TiO_2/SnO_2 nanostructures exhibit very high photocatalytic property and it is expected that the core-shell nanostructure can also be used as a photocatalytic agent under visible light illumination. # Acknowledgement Author¹ and Author² want to acknowledge DST,Govt of India for providing financial assistance with INSPIRE FELLOWSHIP and Author³ acknowledges DST, Govt of India for financial support through a project with reference no. SR/NM/NS 98/2010(G)/TUPHY1 .We also thank SAIF, NEHU, SHILLONG for the HRTEM characterization. ## Reference - 1. Günter Schmid.(2004) Nanoparticles: From Theory to Application, Germany. - Vinodgopal, K., Bedja,I., Kamat ,V. (1996). Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO₂/TiO₂ Composite Systems and Its Role in Photocatalytic Degradation of a Textile Azo Dye. Chem. Mater., 8, 2180-2187. - 3. Chai,S. Y., Kim, Y. S. & Lee, W. I. (2006). Photocatalytic Property of TiO₂ Loaded with SnO₂ Nanoparticles, J. Electroceram., 17, 323–326. - 4. Chen, S., Chen, L., Gao, S.& Cao, G. (2006). The Preparation of Coupled SnO₂–TiO₂ Photocatalyst by Ball Milling.Mater. Chem. Phys., 98, 116–120. - 5. Akurati, K. K. et al. (2005) One-step flame synthesis of SnO₂/TiO₂ composite nanoparticles for photocatalytic applications. INTERNATIONAL JOURNAL OF PHOTOENERGY. 7, 153-161. - 6. Sasani, M.S., et al. (2006). Synthesis of TiO₂ nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Semiconductor Physics, Quantum Electronics & Optoelectronics, 9,65-68. - 7. Chetri, P. & Choudhury, A., Investigation of optical properties of SnO₂ nanoparticles. PHYSE-D-12-00182 (Communicated). - 8. Abdel-Bakia, M., Abdel Wahabb, F. A., El-Diasty, F.(2006). Optical characterization of xTiO₂-(60-x) SiO₂-40Na₂O glasses: I. linear and nonlinear dispersion properties. Materials Chemistry and Physics, 96, 201-210.