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Abstract: 
B.D.Acharya and E. Sampathkumar [1] defined Graphoidal cover as partition of edge 

set of G into internally disjoint paths (not necessarily open). The minimum cardinality 

of such cover is known as graphoidal covering number of G. 

Let G = {V, E} be a graph and let ψ be a graphoidal cover of G. Define f: V  E → 

{1, 2, …, p+ q} such that for every path P = (v0v1v2 … vn) in ψ with f*(P) = f(v0) + 

f(vn) +  

n

1
i1i )vv(f  = k, a constant, where f* is the induced labeling on ψ. Then, we 

say that G admits ψ - magic graphoidal total labeling of G.  

A graph G is called magic graphoidal if there exists a minimum graphoidal cover ψ of 

G such that G admits ψ - magic graphoidal total labeling. 

In this paper, we proved that Book K1,n  K2, Ladder Pn  K2 and Cn  K2 are magic 

graphoidal. 
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1.Introduction 

By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of 

a graph G denoted are by V(G) and E(G) respectively. K1,n  K2 is a Book, Pn  K2 is 

Ladder and Cn  K2. Terms and notations not used here are as in [3]. 

 

2.Preliminaries 

Let G = {V, E} be a graph with p vertices and q edges. A graphoidal cover ψ of G is a 

collection of (open) paths such that 

(i)  every edge is in exactly one path of ψ 

(ii) every vertex is an interval vertex of atmost one path in ψ. 

We define γ(G) = 
ζψ

ψ    min


 , 

where  ζ   is the collection of graphoidal covers ψ of G  and 

                         γ is graphoidal covering number of G. 

Let ψ be a graphoidal cover of G. Then we say that G admits ψ - magic graphoidal total 

labeling of G if there exists a bijection f: V  E → {1, 2, …,p+ q} such that for every 

path P = (v0v1v2 … vn) in ψ, then, f*(P) = f(v0) + f(vn) +  

n

1
i1i )vv(f  = k, a constant, 

where f* is the induced labeling of ψ. A graph G is called magic graphoidal if there exists 

a minimum graphoidal cover ψ of G such that G admits ψ - magic graphoidal total 

labeling.  In this paper, we proved that Book K1,n  K2, Ladder Pn  K2 and Cn  K2 are 

magic graphoidal. 

Result 2.1 [11] : 

 Let G = (p, q) be a simple graph. If every vertex of G is an internal vertex in ψ then γ(G) 

= q – p. 

Result 2.2 [11] :  

 If every vertex v of a simple graph G, where degree is more than one ie d(v) > 1, is an 

internal vertex of ψ is minimum graphoidal cover of G and         γ(G) = q – p + n where n 

is the number of vertices having degree one. 

 

 



www.ijird.com                  October, 2012                  Vol 1 Issue 8 
 

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 46 
 

Result 2.3 [11] :  

Let G be (p, q) a simple graph then γ(G) = q – p + t where t is the number of vertices 

which are not internal. 

Result 2.4 [11] :   

For any tree G, γ(G) =   where  is the maximum degree of a vertex in G. 

Result 2.5 [11] :  

 For any k – regular graph G, k  3,  γ(G) = q – p. 

Result 2.6 [11] :   

For any graph G with   3, γ(G) = q – p. 

 

3.  Magic Graphoidal On Product Graphs 

Theorem 3.1 :  

 Book  K1,n   K2  is magic graphoidal. 

 

Proof:    

Let  G = K1,n   K2   

                 V(G) = {u, v, ui, vi : 1  i  n } 

       E(G) = {(uv)  [(uui)  (vvi)  (uivi) / 1 i  n] } 

Define f : V  E → { 1, 2, 3, …, p+q}  by 

f(u)       =  p + q – 1  

f(v)       =  p + q   

f(ui)       =  4n  + i,             1  i  n 

f(vi)       =  f(vvi)  + 1         1  i  n 

f(uui )     =   i                       1  i  n 

f(uivi )     =   n + i                1  i  n 

f(vvn+1-i ) =  (2n -1) + 2i      1  i  n 

f(uv )       =  p + q – 2  

Let ψ = { (uv), (uuiviv) / 1 i  n }  

f*[(uv)]     =   f(u) + f(v) +  f(uv) 

                  =   p + q – 1 + p + q + p + q – 2 

                  =    15n + 6   ------- (A) 
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f*[(uuiviu)]   =   f(u) + f(v) + f(uui) + f(uivi) + f(viv) 

                    =   p + q – 1 + p + q + i + n + i + (2n-1) + 2(n+1-i) 

                    =    15n + 6   ------- (B) 

From (A) and (B), we conclude that ψ is minimum magic graphoidal cover.  Hence, the 

Book K1,n   K2  is  magic graphoidal. For example, the magic graphoidal cover of the 

Book  K1,4   K2   is shown in figure 1. 

 

Figure 1:   K1,4   K2 

ψ = {(uu1v1v), (uu2v2v), (uu3v3v), (uu4v4v), (uv)}, γ = 5, K = 66 

 

Theorem 3.2  

Pn  K2  (n - even) is magic graphoidal. 

Proof :      

Let  G = Pn  K2   

                V(G) = {ui, vi :  1  i  n}                 

     E(G) = {[(uiui+1) : 1  i  n-1]  [(vivi+1) : 1  i  n-1 ]  [(uivi) : 1  i  n] } 

Define f : V  E → {1,  2, …., p+q} by 

f(u1)        =   p + q 

f(v1)        =   p + q -1 


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





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


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2nf  =   4 (n –1) + i +1                  1  i   
2
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-1 

f(ui+1)         =   4 ( n – 1) + 1 – 2i               1  i  
2
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
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
v
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2

2nf    =   5 ( n – 1) + 1 – i                1  i  
2
n

-1 

f(uiui+1)      =   i                                     1  i  n -1  

f(vivi+1)      =   2( n – 1) + i                   1  i  n – 1  

f(uivi)         =   2( n – 1) + 1 – i             1  i  n – 1  

f(unvn)         =   5( n – 1) + 1   

Let  ψ =  { [(uiui-1vi-1vi) : 2  i  n]  (un vn) } 

f*[(unvn)]     =   f(un) + f(un) + f(unvn)  

                   =  4(n-1) – 2 





 1

2
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2
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

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
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2
n

 + 3  …….. (A) 

For 2  i  1
2
n
 , 

f*[(ui ui-1vi-1 vi)]   =   f(ui) + f(vi) + f(uiui-1) + f(ui-1vi-1) + f(vi-1vi) 

                            =  4(n-1)+1 – 2(i-1) + 5(n-1) + 1 – 





 1

2
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f*[(ui ui-1vi-1 vi)]   =   f(ui) + f(vi) + f(uiui-1) + f(ui-1vi-1) + f(vi-1vi) 

                             =  4(n-1)– 2 

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                               =  13(n-1) – 







2
n

 + 3  …….. (C) 

From (A),(B) and (C), we conclude that ψ is minimum magic graphoidal cover.  Hence, 

Pn  K2 : (n -even) is  magic graphoidal. For example, the magic graphoidal cover of the 

P6  K2   is shown in figure 2. 

 

Figure 2: (P6  K2) 

ψ = {(u2u1v1v2), (u3u2v2v3), (u4u3v3v4), (u5u4v4v5), (u6u5v5v6), (u6v6)}, γ = 6, K = 65 

Theorem 3.3  

 Pn  K2  (n - odd, n  7) is magic graphoidal. 

Proof :     

 When n = 3, the labeling is in figure 3 

 

Figure 3: P3  K2 

ψ = {(u2u1v1v2), (u3u2v2v3), (u3v3)}, γ = 3, K = 32 

Let  G = Pn  K2   

Let  V(G) = {ui,vi :  1  i  n}                 

        E(G) = {[(uiui+1) : 1  i  n–1]  [(vivi+1) : 1  i  n–1 ]  [(uivi) : 1  i  n] } 

Define f : V  E → {1,  2, …., p+q}  

When n = 5 or  7 

f(u1)          =  p + q 

f(v1)          =  p + q – 1  

f(uiui+1)     =   n – i                          1  i  n –1 
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f(uivi)        =   n –1 +  i                    1  i  n–1 

f(vivi+1)     =   2(n–1) + i                  1  i  n–1 

f(unvn)      =   p + q – 2    
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For example, the magic graphoidal cover of the P7  K2   is shown in figure 4 

 

Figure4: P7  K2 

ψ = {(u2u1v1v2), (u3u2v2v3), (u4u3v3v4), (u5u4v4v5), (u6u5v5v6), (u7u6v6v7), (u7v7)}, γ = 7, K 

= 78 

 

Theorem 3.4   

Cm  K2, (m - odd) is magic graphoidal. 

Proof:  

 Let  G = Cm  K2   

Let V(G) = {ui, vi :   1  i  m}                 

     E(G) = {[(uiui+1)  (vivi+1): 1 i  m-1]  (u1um)  (v1vm)  [(uivi): 1  i  m]} 
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Define f : V  E → {1,  2, …., p+q}  by 

f(ui) = 3m + i                                 1 i  m 

f(vi) = 5m + 1 – i                           1 i  m 

 f(ui ui+1)  =   i    1 i   m -1 

 f(u1um)  =  m     1 i   m -1 

f(uivi)  =  
2

1m3 
 + i   1 i  

2
1m 
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 where vm+1 = v1 

Let ψ =  {(ui+1uivivi+1) : 1 i   m where um+1 = u1, vm+1 = v1} 

For 1 i   
2

1m 
 

f*[(ui+1uivivi+1)] =   f(ui+1) + f(vi+1) + f(ui+1ui) + f(uivi)+f(vivi+1) 

                 =  3m + i +1 + 5m + 1 - (i+1) + i + 
2
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f*[(ui+1uivivi+1)] =   f(ui+1) + f(vi+1) + f(ui+1ui) + f(uivi)+f(vivi+1) 

                 =  3m + i +1 + 5m + 1 - (i+1) + i + m + i – 

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2
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From (A) and (B), we conclude that ψ is minimum magic graphoidal cover.  Hence, Cm  

K2 : (m -odd) is  magic graphoidal. For example, the magic graphoidal cover of the C5  

K2   is shown in figure 4. 

 

Figure 4: C5  K2 

ψ = {(u2u1v1v2), (u3u2v2v3), (u4u3v3v4), (u5u4v4v5), (u1u5v5v1)}, γ = 5, K = 65 
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