

<u>ISSN:</u> <u>2278 – 0211 (Online)</u>

Magic Graphidal on Product graphs

A. Nellai Murugan Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu, India

Abstract:

B.D.Acharya and E. Sampathkumar [1] defined Graphoidal cover as partition of edge set of G into internally disjoint paths (not necessarily open). The minimum cardinality of such cover is known as graphoidal covering number of G.

Let $G = \{V, E\}$ be a graph and let ψ be a graphoidal cover of G. Define $f: V \cup E \rightarrow \{1, 2, ..., p+q\}$ such that for every path $P = (v_0v_1v_2 \dots v_n)$ in ψ with $f^*(P) = f(v_0) + f(v_0)$

$$f(v_n) + \sum_{i=1}^{n} f(v_{i-1}v_i) = k$$
, a constant, where f^* is the induced labeling on ψ . Then, we

say that G admits ψ - magic graphoidal total labeling of G.

A graph G is called magic graphoidal if there exists a minimum graphoidal cover ψ of G such that G admits ψ - magic graphoidal total labeling.

In this paper, we proved that Book $K_{1,n} \times K_2$, Ladder $P_n \times K_2$ and $C_n \times K_2$ are magic graphoidal.

Key words : Graphoidal Cover, Magic Graphoidal, Graphoidal Constant. 2000 *Mathematics Subject Classification* 05C78.

1.Introduction

By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of a graph G denoted are by V(G) and E(G) respectively. $K_{1,n} \times K_2$ is a Book, $P_n \times K_2$ is Ladder and $C_n \times K_2$. Terms and notations not used here are as in [3].

2.Preliminaries

Let G = {V, E} be a graph with p vertices and q edges. A graphoidal cover ψ of G is a collection of (open) paths such that

- (i) every edge is in exactly one path of ψ
- (ii) every vertex is an interval vertex of atmost one path in ψ .

We define
$$\gamma(G) = \frac{\min}{\psi \in \zeta} |\psi|$$

where ζ is the collection of graphoidal covers ψ of G and γ is graphoidal covering number of G.

Let ψ be a graphoidal cover of G. Then we say that G admits ψ - magic graphoidal total labeling of G if there exists a bijection f: $V \cup E \rightarrow \{1, 2, ..., p+q\}$ such that for every path $P = (v_0v_1v_2 \dots v_n)$ in ψ , then, $f^*(P) = f(v_0) + f(v_n) + \sum_{1}^{n} f(v_{i-1}v_i) = k$, a constant, where f^* is the induced labeling of ψ . A graph G is called magic graphoidal if there exists a minimum graphoidal cover ψ of G such that G admits ψ - magic graphoidal total labeling. In this paper, we proved that Book $K_{1,n} \times K_2$, Ladder $P_n \times K_2$ and $C_n \times K_2$ are magic graphoidal.

Result 2.1 [11]:

Let G = (p, q) be a simple graph. If every vertex of G is an internal vertex in ψ then $\gamma(G) = q - p$.

Result 2.2 [11] :

If every vertex v of a simple graph G, where degree is more than one ie d(v) > 1, is an internal vertex of ψ is minimum graphoidal cover of G and $\gamma(G) = q - p + n$ where n is the number of vertices having degree one.

Result 2.3 [11] :

Let G be (p, q) a simple graph then $\gamma(G) = q - p + t$ where t is the number of vertices which are not internal.

Result 2.4 [11] :

For any tree G, $\gamma(G) = \Delta$ where Δ is the maximum degree of a vertex in G.

Result 2.5 [11] :

For any k – regular graph G, $k \ge 3$, $\gamma(G) = q - p$.

Result 2.6 [11] :

For any graph G with $\delta \ge 3$, $\gamma(G) = q - p$.

3. Magic Graphoidal On Product Graphs

Theorem 3.1 :

Book $K_{1,n} \times K_2$ is magic graphoidal.

Proof:

Let
$$G = K_{1,n} \times K_2$$

$$V(G) = \{u, v, u_i, v_i : 1 \le i \le n \}$$
$$E(G) = \{(uv) \cup [(uu_i) \cup (vv_i) \cup (u_iv_i) / 1 \le i \le n] \}$$

Define $f: V \cup E \rightarrow \{1, 2, 3, ..., p+q\}$ by

$$\begin{array}{lll} f(u) &= p+q-1 \\ f(v) &= p+q \\ f(u_i) &= 4n + i, & 1 \leq i \leq n \\ f(v_i) &= f(vv_i) + 1 & 1 \leq i \leq n \\ f(uu_i) &= i & 1 \leq i \leq n \\ f(u_iv_i) &= n+i & 1 \leq i \leq n \\ f(vv_{n+1-i}) &= (2n-1) + 2i & 1 \leq i \leq n \\ f(uv) &= p+q-2 \end{array}$$

Let $\psi = \{ (uv), (uu_iv_iv) / 1 \le i \le n \}$

$$f^{*}[(uv)] = f(u) + f(v) + f(uv)$$

= p + q - 1 + p + q + p + q - 2
= 15n + 6 ------ (A)

October, 2012

$$f^{*}[(uu_{i}v_{i}u)] = f(u) + f(v) + f(uu_{i}) + f(u_{i}v_{i}) + f(v_{i}v)$$

= p + q - 1 + p + q + i + n + i + (2n-1) + 2(n+1-i)
= 15n + 6 ------ (B)

From (A) and (B), we conclude that ψ is minimum magic graphoidal cover. Hence, the Book $K_{1,n} \times K_2$ is magic graphoidal. For example, the magic graphoidal cover of the Book $K_{1,4} \times K_2$ is shown in figure 1.

Figure 1: $K_{1,4} \times K_2$

 $\psi = \{(uu_1v_1v), (uu_2v_2v), (uu_3v_3v), (uu_4v_4v), (uv)\}, \gamma = 5, K = 66$

Theorem 3.2

 $P_n \times K_2$ (n - even) is magic graphoidal.

Proof:

Let $G = P_n \times K_2$

$$\begin{split} V(G) &= \{u_i, \, v_i: \ 1 \leq i \leq n\} \\ E(G) &= \{[(u_i u_{i+1}): 1 \leq i \leq n\text{-}1] \cup [(v_i v_{i+1}): 1 \leq i \leq n\text{-}1] \cup [(u_i v_i): 1 \leq i \leq n] \} \end{split}$$

Define $f: V \cup E \rightarrow \{1, 2, ..., p+q\}$ by

$$f(u_{1}) = p + q$$

$$f(v_{1}) = p + q - 1$$

$$f\left(u_{\frac{n+2}{2}}\right) = 4(n - 1)$$

$$f\left(v_{\frac{n+2}{2}}\right) = 4(n - 1) + 1$$

$$f\left(u_{\frac{n+2}{2}+i}\right) = 4(n - 1) - 2i$$

$$1 \le i \le \frac{n}{2} - 1$$

$f\left(v_{\frac{n+2}{2}+i}\right) = 4(n-1) + i + 1$	$1 \le i \le \frac{n}{2} - 1$
$f(u_{i+1}) = 4(n-1) + 1 - 2i$	$1 \le i \le \frac{n}{2} - 1$
$f\left(v_{\frac{n+2}{2}-i}\right) = 5(n-1)+1-i$	$1 \le i \le \frac{n}{2} - 1$
$f(u_iu_{i+1}) = i$	$1 \le i \le n - 1$
$f(v_i v_{i+1}) = 2(n-1) + i$	$1 \leq i \leq n-1$
$f(u_iv_i) = 2(n-1) + 1 - i$	$1 \leq i \leq n-1$
$f(u_n v_n) = 5(n-1) + 1$	
Let $\psi = \{ [(u_i u_{i-1} v_{i-1} v_i) : 2 \le i \le n] \cup (u_n v_n) \}$	}
$f^*[(u_nv_n)] = f(u_n) + f(u_n) + f(u_nv_n)$	
$= 4(n-1) - 2\left(\frac{n}{2} - 1\right) + 4(n-1) + 1$	$+\left(\frac{n}{2}\!-\!1\right)+5(n\!-\!1)+1$
$= 13(n-1) - \left(\frac{n}{2}\right) + 3$ (A)	
For $2 \le i \le \frac{n}{2} - 1$,	
$f^*[(u_i u_{i-1}v_{i-1} v_i)] = f(u_i) + f(v_i) + f(u_i u_{i-1}) + f(u_i$	$f(u_{i-1}v_{i-1}) + f(v_{i-1}v_i)$
= 4(n-1)+1-2(i-1)+5(n-1)	$) + 1 - \left(\frac{n}{2} - 1\right) - 2 + i + i$
1+2(n-1)+1	- (i-1) + 2(n-1)+i -1
$= 13(n-1) - \left(\frac{n}{2}\right) + 3 \dots$	(B)
For $\frac{n}{2} < i \le n$,	

$$\begin{split} f^*[(u_i \, u_{i\text{-}1} v_{i\text{-}1} \, v_i)] &= f(u_i) + f(v_i) + f(u_i u_{i\text{-}1}) + f(u_{i\text{-}1} v_{i\text{-}1}) + f(v_{i\text{-}1} v_i) \\ &= 4(n\text{-}1) - 2\left(i - \frac{n+2}{2}\right) + 4(n\text{-}1) + i - \left(\frac{n+2}{2}\right) + 1 + (i\text{-}1) + 2(n\text{-}1) + 1 - (i\text{-}1) + 2(n\text{-}1) + (i\text{-}1) \end{split}$$

$$= 13(n-1) - \left(\frac{n}{2}\right) + 3$$
 (C)

From (A),(B) and (C), we conclude that ψ is minimum magic graphoidal cover. Hence, P_n × K₂ : (n -even) is magic graphoidal. For example, the magic graphoidal cover of the P₆ × K₂ is shown in figure 2.

Figure 2: $(P_6 \times K_2)$

 $\psi = \{(u_2u_1v_1v_2), (u_3u_2v_2v_3), (u_4u_3v_3v_4), (u_5u_4v_4v_5), (u_6u_5v_5v_6), (u_6v_6)\}, \gamma = 6, K = 65$

Theorem 3.3

 $P_n \times K_2$ (n - odd, $n \le 7$) is magic graphoidal.

Proof:

When n = 3, the labeling is in figure 3

Figure 3: $P_3 \times K_2$

 $\psi = \{(u_2u_1v_1v_2), (u_3u_2v_2v_3), (u_3v_3)\}, \gamma = 3, K = 32$

Let $G = P_n \times K_2$

Let $V(G) = \{u_i, v_i : 1 \le i \le n\}$

 $E(G) = \{ [(u_iu_{i+1}) : 1 \le i \le n-1] \cup [(v_iv_{i+1}) : 1 \le i \le n-1] \cup [(u_iv_i) : 1 \le i \le n] \}$

Define $f: V \cup E \rightarrow \{1, 2, \dots, p+q\}$

When n = 5 or 7

 $\begin{array}{lll} f(u_1) & = \ p+q \\ f(v_1) & = \ p+q-1 \\ f(u_iu_{i+1}) & = \ n-i & 1 \leq i \leq n-1 \end{array}$

$f(u_iv_i) = n-1 + i$	$1 \le i \le n-1$		
$f(v_i v_{i+1}) = 2(n-1) + i$	$1 \le i \le n-1$		
$f(u_nv_n) = p+q-2$			
$f\left(u_{\frac{n+1}{2}+i}\right) = 4(n-1) - 2(i-1)$	$1 \le i \le \frac{n-1}{2}$		
$f(u_2) = 3n-2$			
$f(u_{2+i}) = 4n-3-2i$	$1 \le i \le \frac{n-3}{2}$		
$f\left(v_{\frac{n+1}{2}+i}\right) = 4(n-1)+i$	$1 \le i \le \frac{n-1}{2}$		
$f(v_{2+i}) \qquad = 9 \left(\frac{n-1}{2} \right) + i$			
$f(v_2) = 11\left(\frac{n-1}{2}\right)$			

For example, the magic graphoidal cover of the $P_7 \times K_2$ is shown in figure 4

u _{1 6} u	2 5 1	¹ 3 4 ¹	4 3 1	1 ₅ 2 U	16 1 U	17
	19	23	21	24	22	20
7	8	9	10	11	12	31
	33	28	29	25	26	27
v ₁ 13 v	7 ₂ 14 v	3 15 T	7 ₄ 16 T	7 ₅ 17 t	7 ₆ 18 T	J7

Figure4: $P_7 \times K_2$

$$\begin{split} \psi &= \{(u_2u_1v_1v_2), \, (u_3u_2v_2v_3), \, (u_4u_3v_3v_4), \, (u_5u_4v_4v_5), \, (u_6u_5v_5v_6), \, (u_7u_6v_6v_7), \, (u_7v_7)\}, \, \gamma = 7, \, K \\ &= 78 \end{split}$$

 $\label{eq:constraint} \begin{array}{l} \textit{Theorem 3.4} \\ C_m \times K_2, \, (m \mbox{ - odd}) \mbox{ is magic graphoidal.} \\ \textit{Proof:} \\ \mbox{Let } G = C_m \times K_2 \\ \mbox{Let } V(G) = \{u_i, v_i: \ 1 \leq i \leq m\} \\ \\ \mbox{E}(G) = \{[(u_i u_{i+1}) \cup (v_i v_{i+1}): 1 \leq i \leq m-1] \cup (u_1 u_m) \cup (v_1 v_m) \cup [(u_i v_i): 1 \leq i \leq m]\} \end{array}$

Define $f:V\cup E \rightarrow \{1,\ 2,\ ...,\ p+q\}$ by

$$\begin{split} f(u_i) &= 3m + i & 1 \leq i \leq m \\ f(v_i) &= 5m + 1 - i & 1 \leq i \leq m \\ f(u_i \ u_{i+1}) &= i & 1 \leq i \leq m - 1 \\ f(u_1 u_m) &= m & 1 \leq i \leq m - 1 \\ f(u_1 v_i) &= \frac{3m + 1}{2} + i & 1 \leq i \leq \frac{m - 1}{2} \\ f\left(u_{\frac{m - 1}{2} + i} v_{\frac{m - 1}{2} + i}\right) &= m + i & 1 \leq i \leq \frac{m + 1}{2} \\ f(v_i v_{i+1}) &= 3m + 1 - 2i & 1 \leq i \leq \frac{m - 1}{2} \\ f\left(v_{\frac{m - 1}{2} + i} v_{\frac{m + 1}{2} + i}\right) &= 3m - 2(i - 1) & 1 \leq i \leq \frac{m + 1}{2} \text{ where } v_{m+1} = v_1 \end{split}$$

Let $\psi = \{(u_{i+1}u_iv_iv_{i+1}): 1 \le i \le m \text{ where } u_{m+1} = u_1, v_{m+1} = v_1\}$

For
$$1 \le i \le \frac{m-1}{2}$$

 $f^*[(u_{i+1}u_iv_iv_{i+1})] = f(u_{i+1}) + f(v_{i+1}) + f(u_{i+1}u_i) + f(u_iv_i) + f(v_iv_{i+1})$
 $= 3m + i + 1 + 5m + 1 - (i+1) + i + \frac{3m+1}{2} + i + 3m + 1 - 2i$
 $= 11m + \frac{3m+1}{2} + 2 - \dots - (A)$

For $\frac{m+1}{2} \le i \le m$,

 $f^*[(u_{i+1}u_iv_iv_{i+1})] = \ f(u_{i+1}) + f(v_{i+1}) + f(u_{i+1}u_i) + f(u_iv_i) + f(v_iv_{i+1})$

$$= 3m + i + 1 + 5m + 1 - (i+1) + i + m + i - \left(\frac{m-1}{2}\right) + 3m$$
$$- 2\left(i - \frac{m-1}{2} - 1\right)$$
$$= 11m + \frac{3m+1}{2} + 2 \quad ---- \quad (B)$$

From (A) and (B), we conclude that ψ is minimum magic graphoidal cover. Hence, $C_m \times K_2$: (m -odd) is magic graphoidal. For example, the magic graphoidal cover of the $C_5 \times K_2$ is shown in figure 4.

Figure 4: $C_5 \times K_2$

 $\psi = \{(u_2u_1v_1v_2), (u_3u_2v_2v_3), (u_4u_3v_3v_4), (u_5u_4v_4v_5), (u_1u_5v_5v_1)\}, \gamma = 5, K = 65$

4.Reference

- 1. B.D.Acarya and E. Sampath Kumar, Graphoidal covers and Graphoidal covering number of a Graph, Indian J.Pure Appl. Math. 18(10).(1987).882-890.
- J.A. Gallian, A Dynamic Survey of graph labeling, The Electronic journal of Coimbinotorics 6 (2001) # DS6.
- 3. F. Harary, Graph Theory, Addition Wesley publishing company Inc, USA, 1969.
- 4. A. Nellai Murugan and A. Nagarajan, Magic Graphoidal on Trees. (Communicated).
- A. Nellai Murugan and A. Nagarajan, Magic Graphoidal on Join of two graphs. (Communicated)..
- A. Nellai Murugan and A. Nagarajan, Magic Graphoidal on Path related graphs. (Communicated).
- 7. A. Nellai Murugan and A. Nagarajan, On Magic Graphoidal graphs. (Communicated)
- 8. A. Nellai Murugan and A. Nagarajan, Magic Graphoidal on Special type of Unicyclic Graphs. (Communicated).
- 9. A. Nellai Murugan and A. Nagarajan, Magic Graphoidal on special types of graphs. (Communicated).
- 10. A. Nellai Murugan and A. Nagarajan, Magic Graphoidal on special class of graphs. (Communicated).
- C. Packiam and S. Arumugam, On the Graphoidal covering number of a Graph. Indian J.Pure Appl. Math. 20 (1989), 330-333.