
www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 198

A Mapping Heuristic Approach for Scheduling the
Tasks on Parallel Multiprocessors

Preeti Gupta

Department of Computer Science

Guru Nanak Dev University Amritsar, India

ISSN: 2278 – 0211

Abstract:

Multiprocessor scheduling is an NP-hard problem, no exact tractable

algorithm exist. Many algorithms to schedule DAGs on multiprocessors have

been proposed but this paper is an attempt to implement the scheduling

algorithm called mapping heuristic of APN class. This paper also gives the

scheduling trace of the algorithm which will describe how the tasks are

allocated to the different processors with the help of Gantt chart.

Key words: Multiprocessor, DAG, Algorithm, List scheduling, parallel

processing.

www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 199

1.Introduction

The problem of finding an optimal schedule for any DAG on an arbitrary multiprocessor

topology has been shown to be NP-complete. This paper presents an algorithms that allocates

the tasks to the homogeneous processors which are represented by directed acyclic graph (DAG)

or task graph with the objective of minimizing the overall finish-time by proper allocation of the

tasks to the processors and arrangement of execution sequencing of the tasks such that system

throughput is maximized. Scheduling is done in such a manner that the precedence constraints

among the tasks are preserved [1], [3]. The overall finish-time of a parallel program is

commonly called the schedule length or makespan. The rest of this paper is organized as

follows. In next section, DAG model has been described. The APN scheduling algorithms is

discussed in Section 3. The experimental set up and results are presented in Section 4 and

Section 5 concludes the paper.

2.DAG Model

The DAG is a generic model of a parallel program consisting of a set of processes among which

there are dependencies. In static scheduling, a parallel program can be represented by a directed

acyclic graph (DAG) G = (V, E) where V is a set of v nodes and E is a set of e directed edges. A

node in the DAG represents a task which in turn is a set of instructions. The weight of a node is

called the computation cost and is denoted by w(ni). The edges in the DAG is denoted by (ni, nj)

which correspond to the communication messages and precedence constraints among the nodes

[8], [10]. The weight of an edge is called the communication cost of the edge and is denoted by

c(ni, nj). The source node of an edge is called the parent node while the sink node is called the

child node. A node with no parent is called an entry node and a node with no child is called an

exit node. The communication-to-computation-ratio (CCR) of a parallel program is defined as

its average edge weight divided by its average node weight. The terms node and task are used

interchangeably.

 The precedence constraints of a DAG dictate that a node cannot start execution before it gathers

all of the messages from its parent nodes. The communication cost between two tasks assigned

to the same processor is assumed to be zero. The node and edge weights are usually obtained by

estimation at compile-time [2], [3], [4].

www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 200

3.APN Scheduling

In this, list scheduling, scheduling attributes, the APN class of DAG scheduling algorithm called

mapping heuristic (MH) has been surveyed. In this, MH (Mapping Heuristic) scheduling

algorithm [4] has been described which is based on list scheduling.

3.1.List Scheduling

The basic idea of list scheduling is to make an ordered list of nodes by assigning them some

priorities and then repeatedly execute the following two steps until a valid schedule is obtained:

 A task prioritizing phase

 A processor selection phase

The priorities are determined statically before the scheduling process begins [8], [9]. In the

scheduling process, the node with the highest priority is chosen for scheduling. In the second

step, the best processor which allows the earliest start time is selected to accommodate this node.

Scheduling algorithms are based on employing variations in the priority assignment methods

such as HLF (Highest level First), LP (Longest Path), LPT (Longest Processing Time) and CP

(Critical Path). Static priority assignment may not always order the nodes for scheduling

according to their relative importance. The drawback of the static approach is that an inefficient

schedule may be generated if a relatively less important node is chosen for scheduling before the

more important ones. Static priority assignment fails to capture the variation in relative

importance of nodes during the scheduling process. In order to avoid scheduling less important

nodes before the more important ones, node priorities need to be determined dynamically during

the scheduling process. The priorities of nodes are re-computed after a node has been scheduled

in order to capture the changes in the relative importance of nodes. The following three steps are

repeatedly executed:

 Determine new priorities of all unscheduled nodes.

 Select the node with the highest priority for scheduling.

 Select the most suitable processor to accommodate this node. Scheduling algorithms which

employ the above three-step approach can generate better schedules but can increase the

complexity of the algorithm.

3.2.Scheduling Attributes

 The main scheduling attributes [9], [11] used in DAG for assigning priority while evaluating the

algorithms are as follow:

www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 201

3.2.1.T-Level

T-level of the node ni in DAG is the length of the longest path from entry node to ni not

including ni. It is the sum of all the nodes computational costs and edges weights along the path.

 T-level (ni) = max (t-level(nm) + wm + cm,i)

 where nm ԑ predecessors of ni, wm stands for computational cost, cm,i stands for the

communication cost and

 t-level (nentry) = 0.

3.2.2.B-Level

B-level of node ni in DAG is the length of the longest path from ni to the exit node. It is the sum

of all nodes computational costs and edges weights along the path.

 b-level(ni) = wi + max (b-level(nm) + cm,i)

 where nm ԑ successors of ni, wm stands for computational cost, cm,i stands for the communication

cost and b-

level(nexit) = w(vexit).

3.2.3.Sl (Static Level)

If the edges weights are not taken while considering the b-level then it is called Static Level.

 SL(ni) = wi + max(SL(nm))

 where nm ԑ successors of ni and SL (nexit) = w(vexit).

3.2.4.Cp (Critical Path)

It is the length of the longest path from standing node to the exit node in DAG.

3.2.5.Est (Earliest Starting Time)

Earliest Starting Time is same as the t-level.

EST(ni) = max(EST(nm) + wm + cm,i)

where nm ԑ predecessors of ni, wm stands for computational cost, cm,i stands for the

communication cost and

EST(nentry) = 0.

3.2.6.Lst (Latest Starting Time)

 Latest Starting Time of node is computed by following the path starting from exit node upwards

till the desired node is reached.

www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 202

 LST (ni) = min (LST (nm) – cm,i) – wi

 where nm ԑ successors of ni, wm stands for computational cost, cm,i stands for the communication

cost and LST (nexit) = EST (nexit).

3.2.7.DL (Dynamic Level)

 Dynamic level of the node is calculated by subtracting the Earliest Start Time from the Static

Level.

 DL = SL-EST

 where SL stands for static level and EST stands for early start time.

3.3.Mh (Mapping Heuristic) Algorithm

The MH (Mapping Heuristic) algorithm [4] first assigns priorities by computing the sl of all

nodes in decreasing priorities.

The MH algorithm is briefly described below.

 Compute the SL of each node ni in the task graph.

 Initialize a ready node list by inserting all entry nodes in the task graph. The list is ordered

according to node priorities, with the highest priority node first.

Repeat

 ni ¬ the first node in the list

 Schedule ni to the processor which gives the smallest start-time. In determining the start-

time on a processor, all messages from the parent nodes are scheduled and routed by

consulting the routing tables associated with each processor.

 Append all ready successor nodes of ni, according to their priorities, to the ready node

list.Until the ready node list is empty.

4.Experimental Setup And Results

This section will focus on experiment setup in which Mapping Heuristic (MH) APN algorithm is

coded in C for 7 nodes.

Directed Acyclic Graph (DAG) with 7 nodes is considered as shown in figure 7.1(a). In this,

task n1 is the Entry task and task n7 is Exit task. Task n2, n3 and task n4 are dependent upon task

n1 and cannot be executed until task n1 is not completed. Similarly task n5 cannot be executed

until tasks n2 and n4 are not completed and tasks n6 cannot be executed until tasks n2, n3 and n4

are not completed. Thus task n7 cannot be executed until tasks n5 and n6 are completed.

www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 203

Figure 1: DAG with 7 nodes

4.1.Implementation of MH algorithm

The first step is to enter the number of nodes. The second step is to enter the network diagram

for 7 nodes in which only non-zero values are entered and -1 is printed to exit. Similarly all the

values for the network diagram are entered. Then the third step is the calculation of critical path

which n1, n4, n5, n7.

 The fourth step is to enter the weights of each node. After entering the weights of each node, the

next step is to enter the sl values of each node. Then after this, DAG table or priority table is

displayed as shown in table I which includes various scheduling attributes such as sl-level, t-

level, b-level, p-level and alap. For each node, all the scheduling attributes are calculated, since

each of the algorithms requires different attributes for mapping tasks to processors.

Table 1: DAG table

By using the DAG table, the final schedule list for MH algorithm is n1, n3, n4, n2, n5, n6, n7.

 For the DAG shown in Fig. 1, the scheduling trace of MH algorithm for 3 processors is given in

Table 2.

DAG TABLE
Ni Sl t-level b-level ALAP p-level
n1 105 0 140 0 0
n2 60 32 70 70 1
n3 45 30 52 88 1
n4 55 34 106 34 1
n5 40 92 48 92 2
n6 15 79 18 122 2
n7 5 135 5 135 3

www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 204

 In the table, the execution start times of each node on all available processors at each step are

given and the nodes on the list are scheduled one by one to the processor that allows the earliest

execution start time.

Steps Nodes P1 P2 P3 Selected P

1 n1 0 0 0 P1
2 n3 25 30 30 P1
3 n4 55 34 34 P2
4 n2 55 74 32 P3
5 n5 92 74 92 P2
6 n6 79 109 79 P3
7 n7 117 109 117 P2

Table 2: Scheduling trace of MH algorithm for 3 processors

The Gantt chart for MH algorithm for 3 processors is shown in figure 2. The MH algorithm uses

sl attribute to schedule the tasks in the list. Task 1 is schedule to P1 first as its starting time is 0

seconds and it completes at 25 seconds. Since task 3 is dependent on task 1 so task 3 waits till

task 1 completes and task 3 starts right where task 1 completes and task 3 completes at 55

seconds. Task 4 is scheduled to P2 because its earliest starting time is 34seconds. After task 4,

task 2 is schedule on P3, since P3 is the only processor left on which there is no task scheduled.

Task 5 depends on task 2 and 4 so it has to wait till all of them are completed.

Task 5 is scheduled on P2 because its earliest starting time is 74 seconds. Task 6 can be

scheduled on P1 or P3 as both are available so task 6 is schedule on P3 and task 7 is scheduled

on P2.

Figure 2: Gantt Chart of MH algorithm for 7 Nodes

www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 205

5.Conclusion

A generalized mapping scheme for a parallel computing environment is proposed. The strategy

uses the knowledge from the given algorithm and the given architecture to guide the mapping. In

this, Mapping Heuristic (MH) APN scheduling algorithms has been implemented for task

scheduling in parallel multiprocessor system including the communication delays to reduce the

completion time and to increase the throughput of the system.

www.ijird.com October, 2012 Vol 1 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 206

6.Reference

1. Shahid H. Bokhari, “On the Mapping Problem”, IEEE Transactions on Computers, vol. C-30,

1981, pp. 207- 214.

2. A.F. Bashir, V. Susarla, and K. Vairavan, “A Statistical Study of the Performance of a Task

Scheduling Algorithm,” IEEE Transactions on Computers, vol. C-32, no. 8, Aug.1983, pp.

774-777.

3. J.K. Lenstra, A.H.G. Rinnooy Kan, “An Introduction to Multiprocessor Scheduling”,

Technical Report, CWI, Amsterdam, 1988.

4. H. El-Rewini and T.G. Lewis, “Scheduling Parallel Programs onto Arbitrary Target

Machines,” Journal of Parallel and Distributed Computing, vol. 9, no. 2, Jun. 1990, pp. 138-

153.

5. V. Chaudhary and J. K. Aggarwal, “Generalized mapping of parallel algorithms onto parallel

architectures,” in Proc. Int. Conf. Parallel Processing, Aug, 1990, pp. 137- 141.

6. G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-

Constrained Heterogeneous Processor Architectures,” IEEE Transactions on Parallel and

Distributed Systems, vol. 4, no. 2, Feb. 1993, pp. 75-87.

7. Viph Chaudhary, Member, IEEE, and J. K. Agganval, Fellow, “A Generalized Scheme for

Mapping Parallel Algorithms”, IEEE Transactions on Parallel and Distributed Systems, vol. 4,

no. 3, march 1993.

8. A.A. Khan, C.L. McCreary, and M.S. Jones, “A Comparison of Multiprocessor Scheduling

Heuristics,” Proceedings of International Conference on Parallel Processing, vol. II, Aug.

1994, pp. 243-250.

9. I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, Evaluation, and Comparison of Algorithms

for Scheduling Task Graphs on Parallel Processors,“ International Symposium on Parallel

Architectures, Algorithms, and Networks, Beijing, China, pp. 207-213, Jun. 1996.

10. Yu-Kwong Kwok, “Benchmarking and Comparison of the Task Graph Scheduling

Algorithms”, Journal of Parallel and Distributed Computing 59, pp. 381-422, 1999.

11. T. Hagras, J.Janecek, “Static vs. Dynamic List Scheduling Performance Comparison”, Acta

Polytechnica, Vol. 43, No. 6, 2003.

