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Abstract: 

Thermosolutal convection in a layer of Rivlin-Ericksen viscoelastic fluid of Veronis 
(1965) type is considered in the presence of uniform vertical rotation in a porous 
medium. Following the linearized stability theory and normal mode analysis, the paper 
through mathematical analysis of the governing equations of Rivlin-Ericksen 
viscoelastic fluid convection in the presence of uniform vertical rotation, for any 
combination of free and rigid boundaries of infinite horizontal extension at the top and 
bottom of the fluid, established that the complex growth rate   of oscillatory 
perturbations, neutral or unstable for all wave numbers, must lie inside right half of the 
a semi-circle 
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in the ir -plane, where sR  is the thermosolutal Rayleigh number, AT  is the Taylor 
number, F is the viscoelasticity parameter, 3p  is the thermosolutal prandtl number,   is 
the porosity and lP  is the medium permeability. This prescribes the bounds to the 
complex growth rate of arbitrary oscillatory motions of growing amplitude in the Rivlin-
Ericksen viscoelastic fluid in Veronis (1965) type configuration in the presence of 
uniform vertical rotation in a porous medium. A similar result is also proved for Stern 
(1960) type of configuration. The result is important since the result hold for any 
arbitrary combinations of dynamically free and rigid boundaries. 
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1.Introduction 

Right from the conceptualizations of turbulence, instability of fluid flows is being 

regarded at its root. The thermal instability of a fluid layer with maintained adverse 

temperature gradient by heating the underside plays an important role in Geophysics, 

interiors of the Earth, Oceanography and Atmospheric Physics, and has been investigated 

by several authors and a detailed account of the theoretical and experimental study of the 

onset of Bénard Convection in Newtonian fluids, under varying assumptions of 

hydrodynamics and hydromagnetics, has been given by Chandrasekhar (1981) in his 

celebrated monograph. The use of Boussinesq approximation has been made throughout, 

which states that the density changes are disregarded in all other terms in the equation of 

motion except the external force term. There is growing importance of non-Newtonian 

fluids in geophysical fluid dynamics, chemical technology and petroleum industry. 

Bhatia and Steiner (1972) have considered the effect of uniform rotation on the thermal 

instability of a viscoelastic (Maxwell) fluid and found that rotation has a destabilizing 

influence in contrast to the stabilizing effect on Newtonian fluid. In another study 

Sharma (1975) has studied the stability of a layer of an electrically conducting Oldroyd 

fluid (1958) in the presence of magnetic field and has found that the magnetic field has a 

stabilizing influence. There are many elastico-viscous fluids that cannot be characterized 

by Maxwell’s constitutive relations or Oldroyd’s (1958) constitutive relations. Two such 

classes of fluids are Rivlin-Ericksen’s and Walter’s (model B’) fluids.  Rivlin-Ericksen 

(1955) has proposed a theoretical model for such one class of elastico-viscous fluids. 

Kumar et al (2006) considered effect of rotation and magnetic field on Rivlin-Ericksen 

elastico-viscous fluid and found that rotation has stabilizing effect; where as magnetic 

field has both stabilizing and destabilizing effects. A layer of such fluid heated from 

below or under the action of magnetic field or rotation or both may find applications in 

geophysics, interior of the Earth, Oceanography, and the atmospheric physics. With the 

growing importance of non-Newtonian fluids in modern technology and industries, the 

investigations on such fluids are desirable. 

In all above studies, the medium has been considered to be non-porous with free 

boundaries only, in general. In recent years, the investigation of flow of fluids through 

porous media has become an important topic due to the recovery of crude oil from the 

pores of reservoir rocks. When a fluid permeates a porous material, the gross effect is 

represented by the Darcy’s law. As a result of this macroscopic law, the usual viscous 

term in the equation of Rivlin-Ericksen fluid motion is replaced by the resistance term
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1  , where   and '  are the viscosity and viscoelasticity of the Rivlin-

Ericksen fluid, 1k  is the medium permeability and q  is the Darcian (filter) velocity of the 

fluid. The problem of thermosolutal convection in fluids in a porous medium is of great 

importance in geophysics, soil sciences, ground water hydrology and astrophysics. 

Generally, it is accepted that comets consist of a dusty ‘snowball’ of a mixture of frozen 

gases which, in the process of their journey, changes from solid to gas and vice-versa. 

The physical properties of the comets, meteorites and interplanetary dust strongly 

suggest the importance of non-Newtonian fluids in chemical technology, industry and 

geophysical fluid dynamics. Thermal convection in porous medium is also of interest in 

geophysical system, electrochemistry and metallurgy. A comprehensive review of the 

literature concerning thermal convection in a fluid-saturated porous medium may be 

found in the book by Nield and Bejan (1992). Sharma et al (2001) studied the 

thermosolutal convection in Rivlin-Ericksen rotating fluid in porous medium in 

hydromagnetics with free boundaries only.Pellow and Southwell (1940) proved the 

validity of PES for the classical Rayleigh-Bénard convection problem. Banerjee et al 

(1981) gave a new scheme for combining the governing equations of thermohaline 

convection, which is shown to lead to the bounds for the complex growth rate of the 

arbitrary oscillatory perturbations, neutral or unstable for all combinations of 

dynamically rigid or free boundaries and, Banerjee and Banerjee (1984) established a 

criterion on characterization of non-oscillatory motions in hydrodynamics which was 

further extended by Gupta et al. (1986). However no such result existed for non-

Newtonian fluid configurations in general and in particular, for Rivlin-Ericksen 

viscoelastic fluid configurations. Banyal (2012) have characterized the oscillatory 

motions in Rivlin-Ericksen viscoelastic fluid in the presence of rotation.                          

Keeping in mind the importance of non-Newtonian fluids, as stated above, the present 

paper is an attempt to prescribe the bounds to the complex growth rate of arbitrary 

oscillatory motions of growing amplitude, in a thermosolutal convection of a layer of 

incompressible Rivlin-Ericksen fluid configuration of Veronis (1965) type in the 

presence of uniform vertical rotation in a porous medium, when the bounding surfaces  

are of infinite horizontal extension, at the top and bottom of the fluid and are with any 

arbitrary combination of dynamically free and rigid boundaries. A similar result is also 
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proved for Stern (1960) type of configuration. The result is important since the result 

hold for any arbitrary combinations of dynamically free and rigid boundaries. 

 

2.Formulation Of The Problem And Perturbation Equations 

Here we Consider an infinite, horizontal, incompressible Rivlin-Ericksen viscoelastic  

fluid layer, of thickness d, heated from below so that, the temperature, density and solute 

concentrations at the bottom surface z = 0  are 0T , 0 and 0C  at the upper surface z = d 

are dT , d and dC  respectively, and that a uniform adverse temperature gradient
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dC' is maintained. The gravity field
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,0,0  and uniform vertical rotation  


,0,0  pervade on the system. This fluid 

layer is assumed to be flowing through an isotropic and homogeneous porous medium of 

porosity  and medium permeability 1k . Let  p ,  , T, C , , ' , g and  wvuq ,,


 denote 

respectively the fluid pressure, fluid density temperature, solute concentration, thermal 

coefficient of expansion, an analogous solvent coefficient of expansion, gravitational 

acceleration and filter velocity of the fluid.  Then the momentum balance, mass balance, 

and energy balance equation governing the flow of Rivlin-Ericksen fluid in the presence 

of uniform vertical vertical rotation (Rivlin and Ericksen (1955); Chandrasekhar (1981) 

and Sharma et al (2001)) are given by 
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d  , stands for the convective derivatives. Here  
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 , is a constant and 'E is a constant analogous to E  but 

corresponding to solute rather than heat, while s ,  sc and 0 , ic , stands for the 

density and heat capacity of the solid (porous matrix) material and the fluid, respectively,  

  is the medium porosity and ),,( zyxr


.                                                                                                                            

The equation of state is 

  )(1 0
'

00 CCTT   ,                                                                                 (5) 

Where the suffix zero refer to the values at the reference level z = 0. In writing the 

equation (1), we made use of the Boussinesq approximation, which states that the density 

variations are ignored in all terms in the equation of motion except the external force 

term. The kinematic viscosity  , kinematic viscoelasticity ' , thermal diffusivity , the 

solute diffusivity '  and the coefficient of thermal expansion   are all assumed to be 

constants.The steady state solution is 
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Here we use the linearized stability theory and the normal mode analysis method. 

Consider a small perturbations on the steady state solution, and let , p ,  ,   and

 wvuq ,,


  denote respectively the perturbations in density  , pressure p, temperature T, 

solute concentration C and velocity )0,0,0(
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3.Normal Mode Analysis                                

Analyzing the disturbances into two-dimensional waves, and considering disturbances 

characterized by a particular wave number, we assume that the Perturbation quantities 

are of the form 
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Where yx kk ,  are the wave numbers along the x- and y-directions, respectively,
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Where we have introduced new coordinates  ',',' zyx  = (x/d, y/d, z/d) in new units of 

length d and '/ dzdD  . For convenience, the dashes are dropped hereafter. Also we 
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Rayleigh number; and  22
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 is the Taylor number. Also we have 
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dropped    for convenience. 

We now consider the cases where the boundaries are rigid-rigid or rigid-free or free-rigid 

or free-free at z = 0 and z = 1 respectively, as the case may be, and are maintained at 

constant temperature and solute concentration. Then the perturbations in the temperature 

and solute concentration are zero at the boundaries. The appropriate boundary conditions 

with respect to which equations (13)--(16), must possess a solution are 

W = 0 =  ,on both the horizontal boundaries,                                                        

 DW = 0=Z, on a rigid boundary,                                                                                

DZWD  02 ,               

on a dynamically free boundary,                                                                                    (17)                                              

Equations (13)--(16), along with boundary conditions (17), pose an eigenvalue problem 

for   and we wish to characterize i , when 0r . 

 

4.Mathematical Analysis 

We prove the following Lemma’s: 

 

4.1.Lemma 1 
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4.1.1.Proof  

Further, multiplying equation (16) and its complex conjugate, and integrating by parts 

each term on right hand side of the resulting equation for an appropriate number of times 
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Since 0r  therefore the equation (18) gives, 
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This completes the proof of lemma. 

 

4.2.Lemma 2 

For any arbitrary oscillatory perturbation, neutral or unstable 
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Since 0r  therefore the equation (20) gives, 
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This completes the proof of lemma. 

 

4.3.Lemma 3 

For any arbitrary oscillatory perturbation, neutral or unstable  
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Further, multiplying equation (14) with its complex conjugate, and integrating by parts 

each term on both sides of the resulting equation for an appropriate number of times and 

making use of appropriate boundary conditions (17), we get 
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 This completes the proof of lemma.  

We prove the following theorem: 

 

4.4.Theorem 1 
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4.4.1.Proof  

Multiplying equation (13) by  W  (the complex conjugate of W) throughout and 

integrating the resulting equation over the vertical range of z, we get 
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Taking complex conjugate on both sides of equation (15), we get 
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Therefore, using (25), we get  
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Taking complex conjugate on both sides of equation (16), we get 
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Therefore, using (27), we get  
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Therefore, using (29), we get  
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Substituting (36), (38) and (30), in the right hand side of equation (24), we get 
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Integrating the terms on both sides of equation (31) for an appropriate number of times 

and making use of the appropriate boundary conditions (17), we get  
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Now equating imaginary parts on both sides of equation (32), and cancelling )0(i , we 

get 
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Now R   0, 0  and AT  0, utilizing the inequalities (19) and (23), the equation (33) 

gives,  
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                                                                                                                                        (34)                                                                

Therefore, we must have 
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Hence,if 0r and 0i , then 



















































FP

P
pE

R
FP

PTMaximumof
l

ls

l

l
A 







3
'

2
2 ,                            

              (36) 

And this completes the proof of the theorem. 

 

4.5.Theorem2 

If  R  0 , 0sR , F  0, 0lP , 01 p , 03 p , 0r  and 0i  then the necessary condition 

for the existence of non-trivial solution    ,,, ZW  of  equations  (17) – (20), together 

with boundary conditions (21)  is that 
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4.5.1.Proof 

Replacing R and sR  by  R   and  sR  , respectively in equations (13) – (16) and 

proceeding exactly as in Theorem 1 and utilizing the inequality (21), we get the desired 

result.   

 

5.Conclusion 

The inequality (36) for 0r  and 0i , can be written as 




















































FP

P
pE

R
FP

PTMaximumof
l

ls

l

l
Air 







3
'

2
22 ,  , 

The essential content of the theorem, from the point of view of linear stability theory is 

that for the thermosolutal Veronis (1965) type configuration of Rivlin-Ericksen 

viscoelastic fluid in the presence of uniform vertical rotation in a porous medium, having 

top and bottom bounding surfaces of infinite horizontal extension, with any arbitrary 

combination of dynamically free and rigid boundaries in a porous medium, the complex 

growth rate of an arbitrary oscillatory motions of growing amplitude, lies inside a semi-

circle in the right half of the r i  - plane whose centre is at the origin and radius is 

equal to 
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, where sR  is the 

thermosolutal Rayleigh number, AT  is the Taylor number, F is the viscoelasticity 
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parameter, 3p  is the thermosolutal prandtl number,   is the porosity and lP  is the 

medium permeability. The result is important since it hold for any arbitrary combinations 

of dynamically free and rigid boundaries. The similar conclusions are drawn for the 

thermosolutal configuration of Stern (1960) type of Rivlin-Ericksen viscoelastic fluid of 

infinite horizontal extension in the presence of uniform vertical magnetic field in a 

porous medium, for any arbitrary combination of free and rigid boundaries at the top and 

bottom of the fluid from Theorem 2. 
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