
www.ijird.com November, 2012 Vol 1 Issue 9

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 375

 To Improve Register File Immunity Against Soft
Error

B.Ashok Kumar

M.Tech Student, Department of ECE, Prakasam Engineering college

K.Koteswara Rao
Assistant professor,, Department of ECE, Prakasam Engineering college

Abstract:

Gradually shrinking in feature size, increasing power density etc. Increase the

vulnerability Of microprocessors against soft errors even in terrestrial Applications.

The register file is one of the essential Architectural components where soft errors

can occur in regular manner. This errors may rapidly spread from there throughout

the whole system and the output results my get damage. Thus, register files are

recognized as one of the major concerns when it comes to reliability. This paper

introduces Self-Immunity, a technique that improves the integrity of the register file

with respect to soft errors. Based on the observation that a certain number of

register bits are not always used to represent a value stored in a register. This paper

deals with the difficulty to exploit this obvious observation to enhance the register

file integrity against soft errors. We show that our technique can reduce the

vulnerability of the register file considerably while exhibiting smaller overhead in

terms of area and power consumption compared to state-of-the-art in register file

protection .we developed our project by using 64-bits register .

Keywords:ECC(ERROR CORRECTION CODE); FPGA(SPARTAN-3,XC3S400).

ISSN: 2278 – 0211 (Online)

www.ijird.com November, 2012 Vol 1 Issue 9

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 376

1.Introduction

Over the last decade, and in spite of the increasing Complex architectures, and the rapid

growth of new Technologies, the technology scaling has raised soft errors to become one

of the major sources for processor crashing in many systems in the nanotechnology era.

Soft errors caused by charged particles are dangerous primarily in high atmospheric,

where heavy alpha particles are available & high power dissipation However, trends in

today’s nanometer technologies such as aggressive shrinking have made low-energy

particles, which are more superabundant than high-energy particles, cause appropriate

charge to provoke a soft error.

Furthermore, there is a prevailing prediction that soft errors will become a cause of an

inadmissible error rate problem in the near future even in earthbound application

Researchers have mainly and traditionally focused on mitigating soft errors in memory

and cache structures due to their large sizes. On the other hand

relatively work had been Conducted for register files although they are very Susceptible

against soft errors Despite the overall rather Small area footprint of the register file, it is

accessed more frequently than any other architectural component.Thus, corrupted data in

any register, if not taken care of,may propagate rapidly throughout the other parts of

processor, leading to drastic system reliability problems In fact, soft errors in register

files can be the cause of a large number of system failures.& more power consumption

was conventionally a major concern in embedded system due to their conceder effect on

system So in my project we present a technique for improving the immunity of

register file against the software error by sorting ecc (error correction code) in the

unused bits of register file , so that the data may not corrupt. By this process we can

secure our data from hackers also ,instead of using additional circuit to protect the

register file from soft error we introduce error correction code which we can reduce

circuit size & simple processes to develop .my project can also support register file

integrity i.e which reduce space in the memory cells &highly protection scheme.

2.Block Diagram

The block diagram and operation processes writing the code ecc in to .64-bits register

here in this architecture consist of encoder , mux , self-π ®ister

www.ijird.com November, 2012 Vol 1 Issue 9

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 377

 Figure 1:Block diagram represent writing ecc in to register in encoder

2.1.Writing In To Register

The operation how to write ecc code as given below .when ever an instruction writes a

value into a register it checks the upper six bits of that value if they are '0' or not. If they

are (52-bit register value case), the corresponding self-π bit is set to '1' indicating the

existence of Self-Immunity. The ECC value is generated and stored in the upper unused

bits of the register. Hence, the data value and its ECC are stored together in that register.

In the second case (over-52-bit register value), the corresponding self-π bit is set to '0'

and the value is written into the register without encoding shown in Fig. 1

2.2.Reading From Register

In read operations, the self-π bit is used to distinguish between a Self-Immunity case and

a non self-Immunity case. In the first case, the value and the corresponding ECC are

stored together in that register and consequently the read value should be decoded. In the

second case, the stored value is not encoded and as resulte there is no need to decode is

 Figure 3: Micro architecture support to read a register value decoder

www.ijird.com November, 2012 Vol 1 Issue 9

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 378

2.2.1.Goal

The goal of our technique is to reduce the

register file vulnerability with minimum impact on both area and power overhead. Let N

be the total number of registers and V the vulnerability of a register, then the

vulnerability of the register file is (Σi=1 Vi) . Since the power overhead2 mainly stems

from accessing the encoder and decoder, it can approximately be modeled through the

number of accesses Let M is the number of protected register values and A the number of

accesses, then the total power overhead can be estimated as

 2.2.2. Effectiveness Of Our Technique

 in a full protection scheme, an ECC generation is performed with each write operation

and similarly ECC checking is performed witheach read operation. Our technique

decides to protect the value depending if it is valid for Self-Immunity, then it activates the

ECC generator to compute the ECC bits.

Otherwise, the ECC generation is skipped. Similarly, on

every register read operation, instead of always checking ECC, our technique checks

whether the ECC is being embedded in the register value, and only if it is, ECC checking

is performed. As is demonstrated in

 Fig. 1, on average 12% of the data will be stored in the register file without protection.

As a result, our technique reduces M and it may lead to reduce the consumed power. As

is shown in Fig. 3, when studying 64-bit architectures, 93% (on average) of the total

vulnerable intervals are vulnerable intervals of valid register values for our technique. In

other words, around 93% of vulnerable intervals will potentially be invulnerable. Thus,

our technique promises to reduce the vulnerability of the

2.2.3.Effectiveness Of Our Technique

 In a full protection scheme, an ECC generation is performed with each write operation

and similarly ECC checking is performed with each read operation. Our technique

decides to protect the value depending if it is valid for Self-Immunity, then it activates the

ECC generator to compute the ECC bits.

Otherwise, the ECC generation is skipped. Similarly, on every register read operation,

instead of always checking ECC, our technique checks whether the ECC is being

embedded in the register value, and only if it is, ECC checking is performed. As is

demonstrated in Fig. 2, on average 12% of the data will be stored in the register file

www.ijird.com November, 2012 Vol 1 Issue 9

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 379

without protection. As a result, our technique reduces M and it may lead to reduce the

consumed power. As is shown in Fig. 3, when studying 32-bit architectures, 93% (on

average) of the total vulnerable intervals are vulnerable intervals of valid register values

for our technique. In other words, around 93% of vulnerable intervals will potentially be

invulnerable. Thus, our technique promises to reduce the vulnerability of the

3.Design

The design process here we are using 64-bits register to store the data and encoder to

encode the ecc code here we also using multiplexer to combine encode value and upper

twelve value .

We used , self-π to check the values in the register file.here , self-π play a major role in

my project .

Here self-π is one we require self –immunity code and ecc is written in register file if

self-π is zero we does not require ecc code it directly given to multiplexer. here in here

in this project we are using fpeg –kit to dump and check the output waveforms and we

used 104 –flip flop to store the value

3.1.Top Level Design Block

 the top level diagram which represent 64-bits input here we are using clock signal &

reset signal to the decoder to control decoder

Figure :3.Block design inside the tope level

3.1.2.Simulation Results

the simulation result of the encoder

www.ijird.com November, 2012 Vol 1 Issue 9

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 380

Figure:4.test wave form for encoder

Figure 5

4.Conclusion

For embedded systems under stringenth cost constraints, where area, performance, power

and reliability cannot be simply compromised, we propose a soft error mitigation

technique for register files.

we developed our project by using 64-bits register file to improve register against soft

error and reduce the hacking technique Our experiments on different embedded system

applications demonstrate that our proposed Self-Immunity technique reduces the register

file vulnerability effectively and achieves high system fault coverage.. It is very highly

secure for both transmit & receive data in communication system Moreover, our

technique is generic as it can be implemented into diverse architectures with minimum

www.ijird.com November, 2012 Vol 1 Issue 9

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 381

5.Reference

1. The Design Warrior’s Guide to FPGAs--Clive “Max” Maxfield

2. FPGA Prototyping by VHDL Examples Xilinx SpartanTM-3V ersion----Pong P.

Chu

3. A VHDL Primer ----Jayaram Bhasker

4. MiBench(http://www.eecs.umich.edu/miben/)

5. Greg Bronevetsky and Bronis R. de Supinski, ”Soft Error Vulnerability of

Iterative Linear Algebra Methods,”

6. g.mimik ,m t kandemir & Ozturk increases register file integrity to transist

error in design of automation and tested in the Europin

