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Abstract: 

Virtual Path (VP) bandwidth control improves transmission efficiency in an ATM 

network. An accurate estimate of the bandwidth-demand within a VP leads to efficient 

VP bandwidth control. So far the statistical methods were employed to predict the 

bandwidth-demand. We present a scheme based on the Evolutionary Genetic Approach 

to predict the bandwidth-demand patterns in VPs. The efficiency of this approach, 

quantified in terms of the Degree of Learning (DoL), is evaluated through simulation 

and the results are presented. Simulation studies on the effectiveness of the EGA on an 

ATM network and their results were presented. 
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1.Introduction 

The Virtual Path (VP) concept is considered an effective means to manage an ATM 

network [1,2]. The benefits of using VPs are many: reduced node processing per virtual 

circuit, reduced call setup time, simplified node structure, and proper control over 

routing and bandwidth management. VP bandwidth control improves transmission 

efficiency for a given call blocking probability (and vice versa) [1]. Improvement in 

efficiency is achieved through the multiplexing of the physical link bandwidth among the 

VPs that share the same physical link. The VP bandwidth is dynamically altered in 

accordance to the traffic demand. There are many schemes suggested in the literature for 

VP bandwidth control, some centralized [3–10] and others distributed [11]. For efficient 

management of the VP bandwidth, an accurate estimate of the bandwidth-demand of the 

traffic flowing through the VPs is required. In order to make an accurate estimate of the 

bandwidth-demand, a proper understanding of the behavior of the traffic is required. The 

behavior of the traffic is usually expressed in terms of its past statistical properties. For 

short term (less than one hour) estimate of traffic behavior the statistical properties are 

assumed to vary slowly and hence daily, weekly and seasonal cycles are not considered, 

instead the peak demand during the previous observation period is considered as the 

current demand. Characterizing the traffic by on-line measurement of the large deviation 

rate function (entropy) is studied . In this paper we characterize the traffic using 

bandwidth-demand patterns within a VP. The bandwidth- demand patterns have to be 

learned to predict the future behavior of the traffic.Learning algorithms have been 

suggested for adaptive routing and multicast routing] based on the network load. We 

propose an evolutionary-genetic approach to learn the dynamic behavior of traffic on the 

basis of bandwidth-demand patterns in VPs. We also describe as to how to use the 

bandwidth-demand patterns, in order to make short term bandwidth-demand predictions 

in VPs that is subsequently used for VP bandwidth management. From our studies, it is 

observed that the genetic approach naturally captures the short-term trend and variation 

in bandwidth-demand for both Poisson and Self-Similar call arrivals.The remaining part 

of the paper is divided as follows. Section 2 describes the proposed approach by 

developing the framework for using genetic algorithms in such class of problems. 

Simulation studies and the results are discussed in Section 3. Section 4 concludes the 

paper by exploring the scope for further research. 

 



www.ijird.com                  November, 2012                  Vol 1 Issue 9 
 

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 618 
 

2.The Evolutionary-Genetic Algorithm 

A genetic algorithm is a heuristic approach that applies the natural genetic ideas of 

natural selection, mutation and survival of the fittest. A rigorous mathematical formalism 

was introduced by Holland and his collaborators, and is till date the basis for genetic 

algorithms.The algorithm uses a set of offered solutions called a “population”. Each 

solution called an “individual”, can be any solution in the solution space represented by a 

string called “chromosome”. The solution space is explored in order to find an optimal 

solution that satisfies the constraints posed by the problem. A solution is judged as 

optimal based on a criterion called the “fitness value”. The current population is evolved 

creating a new population with higher fitness. The evolution can be done using the 

following operators: 

 

2.1.Crossover 

Two individuals are mated together in order to exchange genetic information. Crossover 

may take place at one, two or more points. 

 

2.2.Mutation 

Mutation is a random change in the chromosome. This enables a search in new avenues 

of the solution space.The next generation of the population is evolved from the current 

population using the above operators. The fitness of each individual of the new 

population is evaluated. If an optimal individual is found then the process is terminated, 

else the next generation of individuals is evolved. The same process continues until a 

solution is found. 

 

3.Applying The Genetic Algorithm To Bandwidth-Demand Prediction 

 

3.1.Coding 

In nature, an allele1 is encoded in an alphabet composed of four symbols. In the case of 

ATM networks, bandwidth-demands within a VP can be mapped to discrete ranges. 

These ranges in turn can be mapped to symbols of an alphabet. Thus the characteristics 

of the VP bandwidthdemand pattern can be encoded as a string composed of the symbols 

of the alphabet. The bandwidth-demand sampled after regular time intervals can be 

mapped to a string of symbols that characterizes the bandwidth-demand pattern for the 

sum of those intervals of time. We call such a string a loadgene. The bandwidth-demand 
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pattern prediction problem then boils down to predicting the next loadgene given the 

previous few loadgenes. The methodology adopted is to generate a population of sample 

loadgenes, each obeying the distribution of symbols in the previous loadgene. The next 

loadgene is then predicted by evolving this population using a suitable fitness criterion. 

 

3.2.Fitness Criterion 

The fitness of a living organism corresponds to its ability to survive the stress factors in 

its environment. In natural selection, the best or the fittest organism is selected to live 

and propagate further. We seek to model such a scenario in our bandwidth-demand 

pattern prediction problem. The aim of our problem is to learn from the relationship 

among previous loadgenes and predict the future loadgene. The range of difference in 

information content between k successive loadgenes is observed and set as a parameter 

for prediction. The difference in information content between the predicted loadgene and 

the current loadgene should lie within this observed range. The difference in information 

content of a possible pattern and the current loadgene when compared with the limits of 

the observed range (of differences over k previous loadgenes) provides us with a measure 

of fitness for the candidate loadgene. Candidates with high fitness values are 

preferentially chosen to propagate and reproduce further. Thus natural selection is 

incorporated. 

 

3.3.Information Content In Loadgene 

The important questions to be answered in our model are: 

What is the metric for the evaluation of loadgenes? The answer is guided by the ultimate 

aim of the approach, i.e. managing VP bandwidth effectively. Effective management is 

achieved if we are able to predict drastic changes in bandwidth-demand beforehand. 

Given two loadgenes, if the number of drastic changes in demand in both the loadgenes 

are close to each other, then the two loadgenes are similar to each other. Thus, the 

number of such drastic changes in a loadgene is a metric for comparison.What is the 

concept and cognizance of a drastic change? We formalize the concept of a “drastic 

change in demand” by defining a dynamically changing threshold value for the 

difference between two successive samplings of bandwidth demands. If the difference is 

greater than the current value of the threshold, then the change in demand is deemed 

serious enough to warrant a contribution to the information content of the loadgene. The 

threshold value is dynamically changed by observing the minimum and maximum 
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differences in successive symbols present in the previously arrived loadgene. The 

threshold is then set as the product of the sum of the minimum and maximum differences 

with a factor a. 

 

4.The fitness criterion and DoL 

The information content in a string can be captured in the form of a real valued number 

in the range 0–1.0. This number is called the r-value of the string. The first step in 

computing the r-value is to decide what is the information content within the string that 

we want to quantify. The information content are the patterns of interest which appear as 

substrings within a string. In an ATM context, the patterns of interest are the bandwidth-

demand patterns. These patterns are coded as substrings of length 2, such that the 

difference in the values of the symbols contained in the substring is greater than the 

threshold value described. 

 

 
Figure1:Fitness criteria 

 

in Section 2.1. The steps involved in the computation of the r-value of a string are as 

follows: 

Count all occurrences of all the substrings of length 2 in the given string S. Store the 

count in a matrix. For instance, occurrence of “ab” in the string S will result in entry 

[a,b] of the matrix getting incremented. 

Treat the matrix as a one-dimensional vector and normalize it. 

Compute the square root of the sum of squares of the entries of the matrix. This is taken 

as the r-value. 

The absolute difference in the r-values of two loadgenes: S1 and S2 is denoted by 

rd(S1,S2). If Sk,Sk21,…,S1 represent the k previous loadgenes that have been sampled, 

and m and M represent the minimum and maximum respectively, of rd(Sk,Sk21), 

rd(Sk21,Sk22),…,rd(S2,S1) then the fitness value, F, of candidate loadgene S can be 
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formally defined as in Fig. 1.Clearly, a candidate with higher fitness is one which lies 

close to the permissible range. The entire algorithm hinges on the fact that the next 

loadgene will share a relationship with the current loadgene, which is very similar to the 

relationship that existed among the previous k loadgenes. We introduce the term Degree 

of Learning (DoL) which represents the similarity between the r-values of the actual 

loadgene and the predicted loadgene. The DoL of the algorithm is defined as follows: 

 
Thus, if the rd value of the predicted loadgene is small, then the DoL is near 1.0. A high 

value of DoL signifies that the predicted loadgene has information content very similar 

to that of the actual loadgene that arrives. In the current context, a high DoL indicates 

that the number of high fluctuations in the bandwidth-demand is similar for the actual 

and the predicted loadgenes. If the genetic algorithm has a high DoL then the bandwidth-

demand pattern estimates for the next interval will be accurate, thus making bandwidth 

management schemes more efficient. It must be noted here that it is impractical to 

assume that one can predict deterministically the exact instance when there will be a high 

fluctuation in demand. The best one can do is to predict the statistical behavior in a given 

time interval. We illustrate the proposed scheme using simulations. 

 

5.Simulation Experiments 

In this section we verify the effectiveness of the proposed bandwidth-demand predictor 

through simulation. First we describe the simulation environment and then explain the 

various experiments conducted and the inferences derived. 

 

5.1.Description Of The Simulator 

A call level ATM simulator was developed in C language 

for the purpose of simulating the call level traffic in a typical ATM network. Two 

physical network topologies were considered for the simulation. One network contains 

four nodes as shown in Fig. 2 (left) and the other contains 11 nodes as shown in Fig. 2 

(right). In this simulation study we 
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        Figure 2:The Networks Used In The Simulation 
 
 

Call type   Bandwidth-demand             Mean call    Call  blocking 
                    per call in 64 kbps units      duration      prob.  acceptable 

_________________________________________________________ 
   

      A               1                               3 min                  0.03 
       

      B                2                              30 min                 0.03 
     

     C                        4                              15 s                       0.03 

__________________________________________________________ 
Table 1 :Call Characteristics Used In The Simulation 

 

consider both Poisson and Self-Similar call arrivals. For generating Poisson traffic, the 

call inter-arrival time and call holding times were drawn from an exponential 

distribution. For generating self-similar traffic, the call inter-arrival times and call 

holding times were drawn from a Pareto distribution. The value of the shape parameter b 

is chosen as 0.9, which is the typical value observed for various applications such as 

web, FTP data, NNTP, SMTP, and telnet . The calls are assumed to be of three types 

based on their bandwidth demand and duration of calls, the details of which are given in 

Table 1. The proportion of calls of type A, B and C generated are 90%, 9%, and 1%, 

respectively. The traffic from any node to any other node in the network is uniformly 

distributed. The traffic in the VPs named vp1-2, vp1-3 of the 4-node network and vp1-2, 

vp1-11 of the 11-node network were monitored. The physical links which these VPs 

share are shown in thick line in Fig. 2. The bandwidth-demand in these VPs was sampled 

at intervals of one second and oneday’s worth of data was simulated and used for the 

analysis. The nodes are logically connected through a full mesh VP network. VP network 

was considered fully meshed since this is the worst case by which the physical links can 

be shared by the VPs. All the VPs are assumed to be unidirectional.The bandwidth-
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demand is quantized in terms of multiples of 64 kbps. Every symbol of alphabet 

represents a multiple of 64 kbps. We consider T1 (1.5 Mbps) type of physical links for 

the 4-node network, and hence the cardinality of the alphabet set for the 4- node network 

is 24. For the 11-node network we consider four numbers of T1 links per physical link 

between any two nodes, so the net bandwidth available between the two nodes is  

 
       Figure 3: The EGA Algorithm 

 

 
       Figure 4:Degree Of Learning Of EGA With Loadgene Length . 600 And A . 0.5 (Left)   

          First Method, (Right) Second Method. 
 

6 Mbps. Hence the cardinality of the alphabet set for the 11-node network is 92. We 

assume higher bandwidth for the 11-node network since in a fully mesh connected VP 

network there will be 11 VPs sharing a physical link and if there was only one T1 link 

per physical link, then each VP will hardly get three quantized bandwidth units per VP. 

The VP bandwidth management is part of every ATM switch and hence it is a distributed 

scheme. This scheme exploits the advantages of a distributed system such as fault 

tolerance and fault  isolation (local problems do not affect the global network). Further, 
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this implementation could coexist with heterogenous switches and is application 

independent. 

 

5.2.Experiments On Performance Of EGA 

The Evolutionary-Genetic Approach (EGA) was used to predict the bandwidthdemands 

based on the data generated by the simulator. The algorithm used for the EGA is given in 

Fig. 3. The data from the simulator was treated as a set of loadgenes, arriving over a 

period of time. The EGA predicted the next loadgene on the basis of the previous three 

loadgenes. The predicted loadgene was compared with the actual loadgene from the 

simulator and the DoL was plotted. The results are shown in Fig. 4 (left) for a loadgene 

length of 600. The actual bandwidth-demands and the predicted demands are plotted 

over a small time interval in Fig. 5. We set the value of k . 3 which means that the limits 

within which rd(Spredicted, Scurrent) should lie, is determined on the basis ofthe current 

loadgene and the previous two loadgenes. This in effect means that half-an-hour’s worth 

of data influences the prediction for the next 10 min. As is seen from the plot even the 

worst DoL is above 0.8, i.e. rd(Spredicted,Sactual) is less than 0.2. 

 

5.3.A Scheme For Actual Implementation 

The EGA takes a finite amount of time to evolve the next loadgene. This presents a 

problem because the idea behind the whole exercise is to predict the next loadgene 

before it arrives. We illustrate the problem and a possible solution to it with an example. 

Consider the successive loadgenes X, Y and Z where Z is the loadgene, which represents 

the bandwidth samplings in the last n minutes. The EGA has to predict 

 

 

Figure 5:Actual Bandwidth-Demand And Predicted Bandwidth-Demand 
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       Figure 6:Threshold Value Versus Data Index (Left)Dol With Loadgene (Right) 

Size.10 
 

the loadgene L that represents the bandwidth samplings of the next n minutes. Clearly if 

the EGA takes as parameters X, Y and Z, some portion (may be all) of L will already 

have been sampled before the EGA is able to make a prediction. To overcome this 

problem, we passed as parameters to the EGA the loadgenes X, Y and Zpredicted. This 

execution of the EGA was called even before the sampling of Zactual. The results using 

such a scheme (called the second method) are presented in Fig. 4 (right) which clearly 

indicates that there is no difference in DoL compared to Fig. 4 (left) called the first 

method.Thus, if we consider Z to be starting at time t0, the EGA uses the bandwidth 

samplings of the duration (t0 2 2n) to t0 and the predicted bandwidth samplings for the 

duration t0 to t0 1 n to predict the bandwidth samplings for the period t0 1 n to t0 1 2n. 

The EGA is called at time t0 and if one carefully chooses the length of the loadgenes, i.e. 

the duration of sampling for one loadgene, one can ensure that the EGA predicts well 

before the actual event occurs at time t0 1 n. 

 

5.4.The Threshold Value And A 

The DoL of the EGA depends on the threshold value described in Section 2.1. To 

illustrate how the threshold value dynamically changes with respect to time we have 

plotted the threshold value against time in Fig. 6 (left). The threshold value is influenced 

by the factor a, the relationship of which is as follows: 

 
where T is the threshold value, d min the minimum difference between successive 

bandwidth-demands d max the maximum difference between successive bandwidth-

demands. 
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55.Loadgene Length 

The length of the loadgene is an important parameter in implementing an efficient VP 

bandwidth manager. The selection of an optimum loadgene length is influenced by the 

following factors: the DoL and the time taken to predict. It has been found that DoL is 

erratic for smaller values of loadgene length as shown in Fig. 6 (right) which leads to 

instability in network operation. For larger values of the loadgene length the time taken 

to predict is large which would make the VP manager less sensitive to rapid changes in 

demand.In order to select an optimal value for loadgene length and a we plotted the 

statistical characteristics of DoL when using different values of loadgene length and a as 

shown in Fig. 7 (right). As is seen from Fig. 7 (right) the DoL of the EGA is very 

consistent except for very small values of the loadgene length. This lends credence to our 

contention that the EGA predicts the statistical behavior of the bandwidthdemand with 

marginal standard deviation. However for 

 
Figure 7: Prediction Time Versus Loadgenesize (Left) Dol  As Performance Versus 

Loadgene Length (Right) For A . 0.5. 
 

 
Figure 8:Bandwidth Allocation Estimation Algorithm 

 

implementation purposes we need to optimize the loadgene length based on the time 

taken for prediction. The time taken for prediction is directly proportional to the number 

of times the random function is called in our EGA simulator. Fig. 7 (left) illustrates the 
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relationship between the time taken for prediction and the loadgene length. On the basis 

of our simulations, we suggest that the optimal loadgene length for the current context is 

600. However, this figure is implementation specific and should be tuned after installing 

the EGA. 

 

5.6.Bandwidth Allocation Estimation 

After generating the predicted loadgene, the next step is to estimate the bandwidth to be 

allocated for the VP. The bandwidth to be allocated is estimated from the statistical 

properties of the predicted loadgene. The mean and standard deviation of the negative 

and positive changes in the predicted loadgene is computed. The peak demand during the 

previous measurement period is also recorded. The algorithm to compute the allocated 

bandwidth is given in Fig. 8. The allocated bandwidth with respect to time for Poisson 

arrival of calls is shown in Figs. 9 and 10. For a self-similar call arrival, the bandwidth 

allocation with respect to time is shown in Figs. 11 and 12. The allocation smoothly 

varies with respect to the traffic needs for a 4-node network for both Poisson and self-

similar traffic. For the 11-node network the allocation is not able to follow the demand as 

in the case of the 4-node network because, more VPs share the physical links in the 11-

node network. Hence in the competition for getting the allocated bandwidth, the chance 

of getting the requested allocation by the VPs is lesser for a 11-node network than the 4-

node network.In order to study the performance of adaptive allocation through the EGA 

method we compare its performance with the fixed allocation method. Call blocking 

probability is used as the metric for comparing the performance of the fixed and the 

adaptive allocation methods. In the 4-node network there are four VPs that share a 

physical link (maximum capacity of 24 bandwidth units), hence the bandwidth allocated 

per VP in the case of fixed allocation is assumed to be six units each. In the 11-node 

network there are 11 VPs that share a physical link (maximum capacity of 92 bandwidth 

units), hence the bandwidth allocated per VP in thecase of fixed allocation is assumed to 

be eight units each. The performance of the two methods is shown in Table 2, 
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         Figure 9:Bandwidth Allocation For A 4-Node Network Through EGA For 

PoissonCall Arrival 
 

__________________________________________ 
Traffic                        Poisson     Self-similar 

  Type 
                     ________________________           _______________________ 

Network      4-Node               1-Node                4-Node    11-Node   
(traffic)       (20 Erlangs)       (250 Erlangs)        (20 Erlangs)          (250 Erlangs) 

________________________________________________________________ 
 

Adapt. alloc.   0.04                       0.032                       0.07                     0.072 
 

Fixed. alloc.     0.09                      0.091                      0.09                     0.091 

________________________________________________________________ 
Table 2:Call Blocking Probability For Fixed And Adaptive Bandwidth Allocation 

Methods 
 

 
    Figure 10:Bandwidth Allocation For A 11-Nodenetwork Through EGA For Poisson 

Call Arrival 
 

 
Figure 11:Bandwidth Allocation For A 4-Node Network Through EGA For Self-Similar 

Call Arrival 
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Figure 12:Bandwidth Allocation For A 11-Nodenetwork Through EGA For Self-Similar 

Call Arrival 

where the adaptive allocation method consistently exhibits a lower call blocking 

probability than the fixed allocation method. When comparing the performance under 

different traffic types in Table 2, it is found that the adaptive allocation shows at least 

50% lesser call blocking probability than the fixed allocation method for Poisson call 

arrivals. In the case of self-similar call ar privals, the adaptive allocation though is 

showing higher call blocking probability than the Poisson arrivals, yet it is 20% lesser 

than fixed allocation method. Hence, the adaptive VP bandwidth allocation using the 

EGA method is found to utilize the physical bandwidth efficiently by adapting to the 

traffic situations for small and large networks with both Poisson and self-similar call 

arrivals. 

 

6.Conclusion 

Virtual Path (VP) bandwidth control improves transmission efficiency in an ATM 

network. An accurate estimate of the bandwidth-demand within a VP leads to efficient 

VP bandwidth control. So far the statistical methods were employed to predict the 

bandwidth-demand. In this paper we have presented an Evolutionary-Genetic Approach 

(EGA) to predict bandwidth-demand patterns within a VP. We have quantified the 

efficiency of this scheme in terms of the Degree of Learning. Factors affecting the 

implementation of the EGA were discussed and a methodology for identifying the 

optimal parameters was illustrated. Our simulation results show the effectiveness of the 

EGA on an ATM network . From our observations, it was shown that the EGA captures 

the trend and variation in bandwidth-demand for both Poisson and self-similar call 

arrivals. The adaptive allocation through the EGA shows 50% lesser call blocking 

probability than the fixed allocation method for Poisson arrivals and 20% lesser for 
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selfsimilar arrivals. It would be interesting to implement the EGA in actual hardware and 

test it in a real environment. 
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