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1.Introduction  

The concept of 2-metric space has been investigated by Gahler [2] to generalize the 

concept of metric i.e. distance function. A 2 metric space is one which finds its wide 

range of applications in the fields of military, medicine and economics. Employing 

various contractive conditions Iseki [4] set out the tradition of proving fixed point 

theorems in 2-metric spaces. Later on, Naidu and Prasad [5] contributed few fixed point 

theorems in 2-metric space introducing the concept of weak commutative. Cho et al. [1] 

introduced the notion of semi-compatible maps in d-topological space. Various authors 

like Saliga [7], Sharma et al. [8] and Popa [6] proved some interesting fixed point results 

using implicit real functions and semi-compatibility in d-complete topological spaces. 

Recently, B. Singh and S. Jain [9, 10, 11, 12] introduced the concept of semi-

compatibility in fuzzy metric spaces, D-metric spaces, 2 metric space and proved fixed 

point results using implicit relations in these spaces. 

The main objective of this paper is to obtain some fixed point theorems in the setting 

of 2-metric spaces using weak compatibility, semi-compatibility without considering the 

completeness  of the space X and continuity of maps. The relationship between 

compatible, weak - compatible and semi-compatible maps have also been established. 

Fisher and Murty (see [3]) proved the following result on metric space: 

 

2.Preliminaries 

 Definition2.1 A space X with a non-negative real valued function d on X ×X × X 

is said to be      2-metric space if it satisfies the following axioms: 

d(x, y, z) = 0 when at least two of x, y, z are equal, 

d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z in X and 

d(x, y, z) ≤ d(x, y, w) + d(x, w, z) + d(w, y, z) for all x, y, z, w in X  

when d is a 2-metric on X, the ordered pair (X, d) is called a 2-metric space. 

 Definition 2.2 A sequence {xn} is said to be convergent to a point x ∈ X, if lim 

n→∞ d(xn, x, a) = 0. 

 Definition 2.3 A sequence {xn} is said to be Cauchy sequence, if  lim n→∞ d(xn, 

xm, a) = 0 

for all a ∈ X. 
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 Definition 2.4 A 2-metric space (X, d) is said to be complete if every Cauchy 

sequence in X 

converges to a point of  X. 

 Definition2.5 Two self mapping A and S of a 2-metric space(X, d) are said to be 

compatible if  

lim n→∞ d(ASxn, SAxn, a) = 0 for  all a ∈ X, where {xn}  is a sequence in X such 

that if 

lim n→∞ Axn  = lim n→∞ Sxn = x for some x in X. 

 Definition2.6 Two self mapping A and S of a 2-metric space(X, d) are said to be 

weakly compatible if they commute at their coincidence points i.e., if Ax = Sx , 

then  ASx = SAx. 

 Definition2.7 Two self mapping A and S of a 2-metric space(X, d)  are said to be 

semi-compatible if lim n→∞ d(ASxn, Sxn, a) = 0 for  all a ∈ X, where {xn}  is a 

sequence in X such that if  lim n→∞ A xn  = lim n→∞ S xn = x for some x in X. 

 Lemma2.1 Let P, Q, S and T be mappings from a metric space (X, d) into itself 

satisfying the conditions (3.1.1) and (3.1.2). Then the sequence {yn} defined by 

(1.1) is a Cauchy sequence in X. 

 

3.Main Result 

 Theorem3.1:  Let P, Q, S and T be mappings from a complete 2-metric space (X, 

d) into itself satisfying the Conditions 

3.1.1)  S(X) ⊂ Q(X), T(X) ⊂ P(X) 

3.1.2) d(Sx, Ty, a) ≤ α ( ,    ,   ] [ ( ,    ,   )]
[ ( ,   ,   )] [ ( ,   ,   )]

 + β d(Px, Qy, a) 

             for all x, y ∈ X, where α,  β ≥  0 and α + β < 1. 

3.1.3)  one of P, Q, S and T is continuous . 

3.1.4) The pair (S, P) are semi-compatible and (T, Q) are weak compatible 

on X.                         

Then P, Q, S and T have a unique common fixed point in X.                                                  

Proof: Let x0 be any point in X, then by condition (3.1.1) there exist x1, x2 ∈ X such that            

Sx0 = Qx1, Tx1 = Sx2,  Inductively, we can construct sequences {xn} and {yn} in X such 

that   

y2n= Sx2n = Qx2n+1,  y2n+1 = Tx2n+1 = Px2n+2,        n=1, 2, 3, ... . (1.1)                                                                                 
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By lemma 1.2, {yn} is a Cauchy sequence and hence converges to some point u in X. 

Consequently, the subsequences {Sx2n}, {Px2n+2}, {Tx2n + 1} and {Qx2n + 1} of sequence 

{yn} also converges to u. 

 {Qx2n+1} → u   and   {Tx2n+1} → u    (1.2) 

{Px2n+2} → u   and   {Sx2n} → u.     (1.3) 

 Case l. Since P is continuous and (S, P) is semi-compatible pair, we have                            

PSx2n→ Pu, P2x2n→ Pu  and SPx2n→ Pu. Now we have to show that  Pu = u. 

Put   x = Px2n, y = x2n+1   in (3.1.2), we get                                                                              

d(SPx2n, Tx2n+1, a) ≤ α  [ (  ,   ,   )] [ (   ,    ,   )]
[ ( ,   ,   )] [ (  ,    ,   )]

 +βd(PPx2n, Qx2n+1 , a) 

Letting n→∞, d(Pu, u, a) ≤ α  [ ( ,   ,   )] [ (  ,    ,    )] 
[ ( ,   ,   )] [ ( ,   ,   )]

 +βd(Pu, u, a) 

d(Pu, u, a) ≤ α [d(Pu, Pu, a)] + [d(u , u , a)] + βd(Pu, u, a) 

(1 - β) d(Pu, u, a) ≤ 0. So Pu = u. 

Putting   x = u and y = x2n+1   in (3.1.2), we get 

d(Su, Tx2n+1   ,a) ≤ α  [ ( ,   ,   )] [ (   ,    ,   )]
[ ( ,   ,   )] [ (  ,   ,   )]

 +βd(Pu, Qx2n+1, a) 

Letting   n→∞, d(Su, u, a) ≤ α  [ ( ,   ,   )] [ (   , ,   )]
[ ( ,   ,   )] [ (  ,   ,   )]

 + β d(u, u, a)                                       

d(Su, u, a) ≤ α [d(u, Su, a)+d(u, u, a)] + β d(u, u, a) 

(1- α) d(Su, u, a) ≤ 0. So Su = u and then Pu = Su = u. 

As S(X) ⊂ Q(X), their exists v ∈ X such that Pu = u = Qv, 

Put x = u   and y = v   in (3.1.2), we get 

d(Su, Tv, a) ≤ α  [ ( ,   ,   ] [ (   ,  ,   )]
[ ( ,   ,   )] [ (  ,    )]

 + β d(Pu, Qv , a)                                                        

d(u, Tv, a) ≤ α  [ ( ,   ,   ] [ (  ,   ,   )]
[ ( ,   ,   )] [ ( ,   ,   )]

 + β d(u, u, a)                                                                              

d(u, Tv , a) ≤ α  d(u, Tv , a)                                                                                                                 

(1 - α) d(Tv, u, a) ≤ 0. So u = Tv. Then Qv = u =Tv.  

Since (T, Q) are weak compatible, therefore, we have TQv = QTv So Tu = Qu. 

Put x = x2n and y = u, in (3.1.2), we get 

d(Sx2n, Tu, a) ≤ α [ ( ,   ,   ] [ ( ,   ,   )]
[ ( ,   ,   )] [ ( ,   ,   )]

 + β d(Px2n, Qu, a)                                          

d(u, Tu, a) ≤ α  [ ( ,   ,   ] [ ( ,   ,   )]  
[ ( ,   ,   )] [ ( ,   ,   )]

 + β d(u, Tu, a) 

d(u, Tu, a) ≤ β d(u, Tu, a)  

(1 - β) d(Tu, u, a) ≤ 0. So that Tu = u, which implies Tu = Qu = u. 



www.ijird.com                 May, 2013                 Vol 2 Issue 5 
 

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 806 
 

Therefore u, is common fixed point of P, Q, S and T.                                                             

Casell. Since S is continuous   and (S, P) is semi-compatible pair, we have                              

SPx2n→ Su, S2x2n→Su and PSx2n → Su. Now we have to show that   Su = u,                                                                                     

Put x = Sx2n and y = x2n+1   in (3.1.2), we get                                                                             

d(SSx2n, Tx2n+1, a) ≤ α  [ ( ,   ,   )] [ (   ,    ,   )]
[ ( ,   ,   )] [ (  ,   ,   )]

 + β d(PSx2n, Qx2n+1 , a)               

Letting n→∞, d(Su, u, a) ≤ α  [ ( ,   ,   ] [ ( ,   ,   )]
[ ( ,   ,   )] [ ( ,   ,   )]

 +βd(Su, u, a)                                       

d(Su, u, a) ≤ α [d(Su, Su, a] + [d(u, u, a)] + βd(Su, u, a)                                                                 

(1 - β) d(Su, u, a) ≤ 0. Then Su = u. 

S(X) ⊂ Q(X), their exists a point w ∈ X such that u = Su = Qw  

Putting x =Sx2n and y =w in (3.1.2), we get  

d(SSx2n, Tw, a) ≤ α  [ ( ,   ,   )] [ (  , ,   )]
[ ( ,   ,   )] [ ( ,      )]

 +βd(PSx2n, Qw, a) 

Letting n→∞, d(u, Tw, a) ≤ α  [ ( ,   ,   )] [ (   , ,   )]
[ ( ,   ,   )] [ (  ,   ,   )]

 +βd(u, u, a)                                      

d(Tw, u, a) ≤ α d(u, Tw, a) 

(1-α) d(Tw, u, a) ≤ 0. So that Tw = u. i,e., Su = Tw = u. 

Put x = x2n   and   y = w   in (3.1.2), we get 

d(Sx2n, Tw, a) ≤ α  [ ( ,   ,   )] [ (  ,   ,   )]
[ ( ,   ,   )] [ (  ,      )]

 +βd(Px2n, Qw , a) 

Letting   n→∞, d(u, Tw, a) ≤ α  [ ( ,   ,   )] [ (  , , )]
[ ( ,   ,   )] [ ( ,   ,   )]

 +βd(u, u, a) 

d(u, Tw, a) ≤ α  [d(u, u, a) +d(u, Tw, a)] 

(1 - α ) d(u, Tw ,a) ≤ 0. So that Tw = u. i,e., Tw = u =  Qw. 

Since (T, Q) are weak compatible, therefore, we have TQw = QTw so that Tu = Qu . 

Put x = x2n and y = u, in (3.1.2), we get 

d(Sx2n, Tu, a) ≤ α [ ( ,    ,   )] [ ( ,    ,    )]
[ ( ,   ,   )] [ ( ,   ,   )]

 +  βd(Px2n, Qu, a)                                     

Letting  n→∞, d(u, Tu, a) ≤ α  [ ( ,   ,   )] [ (  ,   ,   )]
[ ( ,   ,   )] [ ( ,   ,   )]

 + β d(u, Tu, a)                                     

d(u, Tu, a) ≤ β d(u, Tu, a)  

(1 - β) d(Tu, u, a) ≤ 0. So that Tu = u, which implies Tu = Qu = u.Therefore u, is 

common fixed point of P, Q, S and T. 

Uniqueness   Let z be another common fixed point of P, Q, S and T. So Pz = Qz = Sz = 

Tz = z. 

Put x= u and y = z in (3.1.2), we get  
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d(Su, Tz , a) ≤ α [ ( ,   ,   )] [ (  ,   ,   )]
[ ( ,   ,   )] [ ( ,   ,   )]

   + β d(Pu, Tz, a)                                                         

d(u, z, a) ≤ α  [  ( ,   ,   )] [ (  ,   ,   )]
[ ( ,   ,   )] [ ( ,   ,   )]

 + β d(u, z, a)                                                                                

d(u, z, a) ≤ α [d(u, u, a)+d(z, z, a)] + β d(u, z, a)                                                                                   

(1 – β) d(u, z ,a) ≤  0, which is a contradiction, Hence u = z. Therefore u, is a unique 

common fixed point of P, Q, S and T.  
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