
www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1447

 Test Strategy And Integration Test Plan For
Smart Meter Implementation Program

Anubha Chauhan
Research Scholar ,Suresh Gyan Vihar University,vJaipur,Rajasthan, India

Dr. Naveen Hemrajani
Professor,Suresh Gyan Vihar University,vJaipur,Rajasthan, India

Abstract:

A testing methodology is a tool or method used to test an application. A testing strategy, on

the other hand, is a holistic view to how you will test a product; it's the approach you will

take, the tools (and methodologies) you will use to deliver the highest possible quality at the

end of a project. In software quality, the test strategy consists of a myriad of methodologies,

activities, and staffing solutions. The strategy overall sets the acceptable bar and calls out

how the test team will achieve that bar. It is the sum of all the inputs, in an organized plan.

Testing methodologies are the different approaches you will take to testing. The purpose of

this paper is to define the strategy, procedures, and tools for testing the technology

enablement of the smart meter implementation program. All phases of the testing lifecycle

will be covered, from Unit Testing to User Acceptance Testing. However, the primary focus

is on Integration Testing of System-to-System Interfaces, End-to-End business transactions

and User Acceptance Testing. As such, the scope of integration testing includes

transactions that start or terminate at vendor systems or field-devices. Then described is

approach that provides assurance the release will enable the required integration

interactions between the applications in order to facilitate and support “real-life” business

transactions. This lifecycle starts with the application or system specific tests performed by

application developers and infrastructure engineers (unit / string tests) and does not end

until the business owners have given their approvals after user acceptance testing. The

focus of integration testing is to verify that the applications that are linked together

successfully enable “real-life” business transactions.

Keywords: Testing, Testing strategy, Test Lifecycle, Software testing, Integration Testing

ISSN: 2278 – 0211 (Online)

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1448

1.Introduction

The objective of the test strategy is ensure the business owners have a well-deserved

confidence that the systems can work together to support real-life business transactions.

This strategy is designed to account for the complexity associated with having to

integrate multiple new applications into client's core customer and billing systems.

These applications are being developed by different teams, on different platforms, using

different tools and development approaches. Our strategy covers the complete test

lifecycle. This lifecycle starts with the first, informal tests done by application

programmers (unit tests) and ends when the business owners have given their approvals

after user acceptance testing. However, the strategy’s focus is on integration testing,

where all the applications are linked together to verify they can support real-life business

transactions.

This strategy is designed to account for the complexity associated with having to

integrate multiple new applications into client's core customer and billing systems.

These applications are being developed by different teams, on different platforms, using

different tools and development approaches.

Our strategy covers the complete test lifecycle. This lifecycle starts with the first,

informal tests done by application programmers (unit tests) and ends when the business

owners have given their approvals after user acceptance testing [1]. However, the

strategy’s focus is on integration testing, where all the applications are linked together to

verify they can support real-life business transactions. As such, the scope of integration

testing includes transactions that start or terminate at vendor systems or field-devices.

1.1.Test Lifecycle

Figure1.1 shows a view of the lifecycle and team responsibilities. This diagram outlines

two key aspects of the test strategy. First, it outlines responsibilities of the various teams

and organizations involved in testing. Second, it outlines a comprehensive set of

activities across time. These test activities start with test planning, go through

Application and Integration testing, and end with Scalability, UAT, and Security testing.

At a high-level, here’s the lifecycle of testing covered by this document:

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1449

Figure 1.1: Test Lifecycle

Step 1: Plan the effort

 The individual teams plan how to test their applications and new development

prior to handing off for integration testing.

 Installation and technology vendors set up and validate their test systems to

support transactions that will be sent or received by the systems.

 Client Smart Meter Operations team creates and validates a representative

environment of electric meters and network components for subsequent

integration testing with back office applications.

Step 2: Prep for integration testing

 Application teams develop their applications. Then they thoroughly test them to

ensure their new code within their systems is solid. Application teams in this

case refer to the groups responsible for the Legacy Applications .The Integration

Testing Team develops and finalizes the test cases to verify data exchanges

spanning multiple systems are supported.

 Interfaces between the applications (once the source & target systems and the

integration between them are individually tested and ready) are string tested. This

is a combined effort between the application teams. This is similar to unit testing

of the interface, but is designed to validate two applications exchange data across

the integration layer. Mock data may be used to test transfer of transactions from

source to target systems.

 2.1

<<Prog
ram>>

- Testing
Lifecycle Post

Integration

Test
Plannin

Test
Prep

.

Integr
ation

/

Execut
e App

.

Te
st

Execute
Integration

&

Scala
bility

Integr
ation

/

Scala
bility Test

Plannin

Applicati
on Test Plan

ning

UAT
Plannin

Plan
Build Validat
e Test Environme

nt for AMI Network
and Applic

ations

Integration
Test Script Develo

pment

Full
Application

Security
Test

Validate Test
Systems and Environm

ents AMI Infrastruc
ture and Integratio
n Testing

Integration
Test Data Develo

pment

Sys
tem

-t
o
-Sys
tem Integr

ation

End to End
Business Transa

ctions

Security
Testing

User
AcceptanTes

ting

Scala
bility

/

Perfor
mance Tes

ting

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1450

Step 3: Integration and Scalability Testing

As applications and integrations are developed, they are brought together for a full

range of tests

 Here the Integration Testing Team validates that applications can send data back

and forth. However, unlike string testing, integration testing is formal, rigorous,

and extensive. Integration testing starts by testing system-to-system data

exchanges. Once enough interfaces are delivered to support an end-to-end

business transaction, the integration test team verifies that a full range of business

transactions can flow correctly and without interruption from a source system to

its end points. These end-to-end transactions often flow across many systems,

and each step of the way is monitored and verified.

 Once the code passes agreed upon acceptance criteria, scalability tests are

executed. The ability of systems and interfaces to handle real-life loads together

is verified. Test loads are simulated and transactions simulating end-to-end

business flows are executed.

Step 4: Post Integration Testing

The final testing includes:

User Acceptance Testing (UAT), where business owners and their representatives run a

series of tests to independently verify that the systems will handle real world transaction.

A sub-set of the end-to-end business transactions may be used for this.

Both aspects of the test lifecycle – test activities and test team responsibilities are

described below.

1.1.1 Test Teams Responsibilities

Meter Technology / AMI Network Teams Creates and administers a test-environment of

meters and networking infrastructure upon which String (Interface unit), Integration,

UAT, and Security testing can be conducted. This lab environment simulates the types

of meters that will be deployed in the field. Application Teams (MDMS, ADCS,

Customer Information System, Billing System Teams Application teams) need to

rigorously and fully test their applications through their normal lifecycle before releasing

the applications for string testing. Developers of an interface or interaction between

systems must unit-test their code or configuration [2]. This team also conducts string

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1451

testing to verify application-to-application communication before handing the

integrations off to the integration test team. Integration Test Team Organizes and

executes formal testing of system-to-system interfaces and end-to-end business

transactions across applications. They coordinate the execution of the integration testing

and end-to-end transaction by working with the business. Performance / Scalability Test

Team Part of the integration test team, this team verifies the overall integrated solution

can handle real life loads and meet business-defined performance standards under the

highest-expected transaction volumes. User Acceptance Testing Team Integration Test

Team with support from client’s Business Process team will execute a set of tests to

demonstrate that the systems can handle the full range of data transactions seen during

daily operations. Independent of the integration test team, the UAT team represents and

reports to the business owners. The UAT team will be tightly integrated with the

“Integration Test Team”. Security Test Team The Security Team verifies that systems

and the infrastructure are protected from unauthorized access to the applications and

sensitive data.

1.1.2 Test Phases And Activities Within Phase

The testing lifecycle identifies four major phases, each with its own test activities

1.1.2.1.Test Planning

Test planning includes two key deliverables: test strategy and test plans. The Integration

Test Strategy, which is this document. More detailed than the test strategies, test plans

describe the tactical aspects of testing. Each test plan lists specific functions to be tested

and describes how these tests will be organized. It also outlines required data for each set

of tests.

1.1.2.2.Preparation For Integration Testing

During this phase, applications and integrations are developed and tested individually.

The following describes the basic activities performed during this phase. Unit testing is

at the lowest level and the least formal of testing phases. Unit testing will be performed

by programmers to validate code before handing the code off for rigorous, independent

testing [5]. Application testing a full set of tests to verify an application meets its

business requirements and is ready to integrate with other applications to support end-to-

end business transactions. Script Development of sets of steps and expected results by

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1452

an independent tester to validate that integration between systems meets the business

requirements. Test scripts are also developed to validate a set of applications and

integrations can support an end-to-end business transaction. Test scripts include step-by-

step instructions and expected results. Test Data Development This task includes the

design, creation and set-up of test data that will be used for the execution of test scripts.

1.1.2.3.Integration Testing And Security Testing

During this phase, we verify applications and integration-layer code can work together to

support end-to-end transactions. In addition, during this phase security specialists run

exhaustive security tests. Testing efforts that make up this phase are: String Testing to

verify that one application can communicate with another application: similar to unit

testing but specific to a system-to-system interaction. Integration Testing is the point at

which applications and integration code are brought together for testing by independent

testers. Integration testing is rigorous, comprehensive, and formal. For the program,

integration testing has two components System to System Integration Testing these tests

are started as soon as the three pieces of the equation are completed and string tested –

the source application, the integration, and the target application. Tests are based on the

business requirements provided for the system to system interaction .End-to-end business

transactions across applications End-to-end testing is conducted when enough interfaces

are delivered and validated to support an end-to-end business transaction. A test of a

business transaction is meant to validate the applications can work together to support a

real-life business process. Often these data transactions will start or terminate at either a

meter or a vendor system. An example of a business transaction is the initiation of a DR

event. This business transaction starts when the DR event is called in the Demand

Response System and completes when the event information is propagated to the

MDMS, DR Customer Notification System and Customer Information System.

1.1.2.4.Post Integration Testing

When Integration Testing Exit Criteria have been met to instill high confidence in an

interface or a business transaction, the final test activities will begin. These tests are

completed in an environment designed to simulate the final production environment.

Scalability Testing This phase of testing focuses on the ability of an interface to handle a

high volume of data transactions. Test scripts for this phase are designed to simulate the

heaviest transaction volume that could be expected across an interface. The objective is

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1453

to verify that the interface can handle the highest expected data loads. User Acceptance

Testing UAT is the final functional test. It is a set of tests selected and executed by

client to validate that the applications and the integration can all work together to support

real-world business transactions. Often UAT consists of a subset of end-to-end

integration tests. UAT data and scenarios are selected by representatives of the business

owners to give business owners high-confidence that the systems will be able to support

their core business transactions.

2.Test Strategy Fundamentals

Our test strategy is based on these working principles and assumptions. The application

teams may use whatever test tools and procedures they prefer, as long as the test cases

and execution results are documented and are available for review in a centralized

location. Network traffic validation and sizing will be performed as part of network

testing. The application and technology vendor teams will plan for and test their own

applications. In addition, they will participate in System-to-System, End-to-End

Integration, User Acceptance and Production Readiness testing with client. A schedule

will be provided for planning the effort as part of the detailed integration test plan. End-

to-end testing is not limited to client back-office systems. It also includes transactions

that start at the meter and include, but are not limited to, the applications. Each

application team will provide resources to assist with planning and executing integration

(system-to-system and end-to-end) and user acceptance testing. Operational Readiness

Review activities are owned by client with inputs from Application and Testing Teams.

Appropriately-configured application and infrastructure environments will be available

for the exclusive use of the Integration Testing Team. Data creation and management:

The individual application team will provide the Integration Testing team with the data

required to execute testing events (System-to-System Interface, End-to-End and User

Acceptance). It is assumed that the data requirements for testing will be as well

consolidated as possible, to minimize the amount of duplicate work needed from the

Application teams.

Transaction Validation: The individual business process and application teams will make

available resources to help with validation of transactions that are processed by the

application as part of integration testing. Process Design Team will be available to

support end-to-end testing based on the testing resource plan. Individual applications will

be responsible for transfer of data (files, messages etc) across to other applications.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1454

System to system integration testing of interfaces being built or modified to support

the program will be the responsibility of the integration test team. End-to-End

business transaction testing will be the responsibility of the integration testing team

“End-to-end” refers to taking a data transaction from its initiating event until it is fully

processed. Included are: Transactions that may initiate or terminate at meters, such as

data reads or meter alarms and events, when client systems are part of the transaction

processing [6]. Transactions that initiate or terminate at vendor systems, such as a

Demand Response Event initiation that may be triggered in the Demand Response

System and propagated to the MDMS via the Customer Information System. Testing

of vendor systems (Ex: MDMS, ADCS, Meter Inventory etc.), will be conducted by

the vendors and the test results will be presented to client. Security testing will be

addressed in its own separate test plan. Testing of meters and the AMI network will

be performed by the Meter and Network teams. Outside of the meter and network

testing, the integration test team will execute test cases test that support business

transactions defined during process workshops.

Testing of data transactions between the ADCS and meters or intermediate systems

when client backend systems are not involved in the transactions will be tested by

vendor. From an end-to-end perspective - the vendor systems will be delivered as a

fully integrated solution and will be treated as a “black box”. Testing of hardware,

operating systems, middleware, and other infrastructure components will be

performed by the individual application teams.

Operational Readiness Review will be performed by client, using the existing

operational readiness review process. Testing of manual procedures that have been

developed within client as part of the program will not be tested as part of end-to-end

integration testing. Disaster / Recovery Testing – will be performed by client.

Existing applications that currently have a DR plan may use the existing plan making

edits if necessary. New application being introduced to client will have to develop a

new Disaster / recovery plan.

Final Regression and Dry-Run testing will be performed if deemed necessary, by

client with support from the integration test team [7]. Testing of existing interfaces

developed by client- primarily legacy–to–legacy applications that have been altered

by this project will be tested by the integration test team and will be included in end-

to-end testing as well.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1455

Service continuity testing will be performed by client if necessary, using existing and

newly developed and documented procedures where applicable.

2.1.Testing Timelines

Each phase of testing will be executed for both releases within program, with the

exception of Meter and Network Testing. Given the tight timeline schedules of the

program, test phase will need to overlap with other phases to effectively utilize the

overall testing duration. The figure below depicts how test phases may overlap as part

of testing a release. The diagram is to be used as a reference of possible overlaps only

and is not to be scaled

Figure 2: Release Testing Phase Timelines Structure

2.2 Organization Structure And Responsibilities

This section on the organization of the program testing team describes the hierarchy of

the team structure. The responsibilities of the individual teams that make up the overall

program testing team are also described in detail. The combination of the roles and

responsibilities along with the testing approach convey how teams will work together to

complete the execution of scenarios. The different teams will draw from their different

areas of expertise in order to facilitate successful execution of all test cases.

Release Testing Start Release Testing End

AMI Network Test

Full Application Test

Final UAT

System-to-System Integration Test

End-to-End Business Transaction Test

AMI Meter Test

Security Test

Perf / Scalability Test

Go-Live

Build PhaseDesign Phase Test Phase

App. UAT

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1456

Figure 3: Program Testing Team Organization

3.Defect Management

The key measure related to software quality is defects. Defects discovered during testing

need to be managed effectively to ensure software quality [3]. This task entails

definition and implementation of a robust process that is communicated and followed.

The overview section on defect management mentioned four activities of defect

management:

 Identifying a defect during formal testing

 Ensuring a difference between actual and expected results are true defects, rather

than a bad test

 Ensuring defects are clearly documented, prioritized, and handed off to the right

team to fix

 Monitoring that defects are fixed in a timely manner and that the fix is turned

over to configuration control, are retested, and ultimately closed

3.1 Defect Tracking

Defects will be tracked using test tool.

3.1.1.Performed By

 Tester: Responsible for executing test scripts. Identifies and logs defects,

provides supporting information, and validates the fix in the product once it is

available.

 Developer: Analyzes and fixes defects; Performs unit testing and migrates code

to source control.

Integra
Ma

Integ
Te

Scal
Te

Securi
Te

Proce
(U

Technolo

Proces

Appli
Le

,
)

App.
Teams

(MDMS,

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1457

 Business Process Analyst: Manages the defect across the testing effort. Reviews

defects for completeness and validity. Meets with stakeholders to agree on the

priority and action for defects. Assigns defects to developers for analysis and

resolution. This person is also responsible for rejecting and deferring defects with

<<CLIENT>> consent and producing a test closure memo at the end of test stage.

 Stakeholders: Meets with the business analyst to review defects, confirm priority

and determine the action to be taken—placed in scope, deferred, or rejected.

Typically includes the project manager, the test lead, and business

representatives.

 Build Team: Builds fixes into the product and migrates the product to the testing

environment for validation of the fixes.

3.1.2 Fields Captured For Each Defect

In this section of the test strategy, we now focus on three more important aspects of

defect management – defect tracking, defect prioritization, and escalation of defects.

Status Description

New Defect has been detected and logged in Quality Center

Open
Defect has been assigned to the Developer / Business

Analyst (in case of requirement defect)

Rejected

The defect logged is invalid. Developer / Business

Analyst change the status to Rejected and assigns back to

Tester.

Deferred

The defect is valid, but cannot be implemented in current

release. Decision is made by Stakeholders to fix later.

Assigned back to Tester.

Fixed
The defect is valid, and fixed in current build. Defect is

then assigned back to Tester to re-test.

Closed
Final status that all defects need to be set to after going

through the life cycle.

Table 1: Status Indicators of Defects

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1458

3.1.3 .Tracking Defects Through Lifecycle

The following process will be followed in moving a defect through its lifecycle, from

when it is first detected until it is re-tested and closed [4].

Figure 4: Defects shown through Lifecycle

3.2 Severity Levels

Every defect will be assigned a severity level to indicate its impact on the testing process

and schedule. Severity levels defined are for the <<PROGRAM>> program and not for

the individual applications of the <<PROGRAM>> program. However, the defects

severity levels are consistent with the individual severity levels that are defined for the

individual applications, from <<VENDORS>>.

Severity levels to be used are:

 Severity 1 – Critical (Fatal Severity / Catastrophic)

The application, component, or functionality under test is required functionality and

there is no work-around available. Defect causes sudden or system wide disaster,

operational outage or complete failure and occurs every time a test script is run.

Examples are:

 A key transaction cannot be processed

 Defect hangs/crashes the program

 Defect makes it impossible to use the program

 Cannot perform major function

 Defect corrupts stored data

 Incorrect or missing data

 Defect conflicts with legal or regulatory requirements

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1459

 Defects that conflict with a high-priority (must-have) requirement

 Help files missing completely

Expected Response from Development Team:

Resolve Immediately. This halts testing in that area or module. This must be resolved to

complete testing of the build and it must be closed or deferred before exiting the current

test level. The expected turnaround for this defect is “ASAP” (a separate build may be

required to fix this), or not more than 1 day.

 Severity 2 – High (High severity)

The application, component, or function under test is required functionality and a

temporary work-around exists. Defect causes harm, productivity delays, impairs

workflow and impacts multiple test scenarios. Examples are:

 A transaction can be processed, but only for certain input parameters

 There are issues causing intermittent crashes, loss of data, severe performance

problems

 Defect seriously compromises the ease of use of the product

 Serious incorrect behavior

 Defect compromises corporate standards or security

 Defect conflicts with a medium priority requirement

Expected Response from Development Team:

Give High Attention. This requires a work-around before testing can continue in that

area or module. The expected turnaround for this defect is <<X>> days.

 Severity 3 – Medium (medium / hindering)

The application, component, or function under test is required functionality and an

acceptable work-around exists. Defect hampers, impedes, causes delay in the workflow,

but does not significantly impact execution schedule. Examples are:

 A transaction can be processed with a logic error, but a work around exists

 Defect makes the software hard to use but would not prevent a customer from

using the product

 Defect conflicts with a low priority requirement

 System does not report information that would be helpful to the user but

otherwise the defect does not affect the functionality

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1460

 System temporarily displays incorrect information but does not mislead the user

into causing damage

 Help topic not available

Expected Response from Development Team:

Resolve as part of the normal work queue. Testing continues to occur and the defect

may be carried over to subsequent test levels. The expected turnaround for this defect

is <<X>> days. If a defect is deferred, a workaround will be documented and

delivered.

 Severity 4 – Low (Low / Annoying)

The application, component, or function under test is optional functionality and an

acceptable work-around exists. Defect impacts a low number of test scenarios and

execution can continue with minimal rescheduling. Examples are:

 Spelling error or a cosmetic issue on the GUI

 Unfriendly behavior that is annoying to the user

Expected Response from Development Team:

Testing continues to occur and the defect may be carried over to subsequent test levels.

However, the expected turnaround for this defect is 1 week. If a defect is deferred, a

workaround will be documented and delivered.

4.Result And Discussion

It shows an approach that provides assurance the release will enable the required

integration interactions between the applications in order to facilitate and support “real-

life” business transactions. This lifecycle starts with the application or system specific

tests performed by application developers and infrastructure engineers (unit / string tests)

and does not end until the business owners have given their approvals after user

acceptance testing. The focus of integration testing is to verify that the applications that

are linked together successfully enable “real-life” business transactions. As such, the

scope of integration testing includes transactions that start at the Customer Information

System and terminate at the MDMS or Legacy Interval Meter Data Management System.

Integration testing is the point at which applications and their integrations are brought

together for testing by independent testers. This type of testing is rigorous,

comprehensive, and formal. These tests are started as soon as the applications are

application tested, integrated and string tested. Tests are based on the business

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1461

requirements provided in the REQUIREMENT MATRIX and the transactions that are

supported by the interfaces. End-to-End businesses transactions are tested as well during

this test phase were scenarios that span multiple applications are executed and the

integrated solution is validated so as to support real-life business transaction.

Our strategy covers the complete test lifecycle. This lifecycle starts with the first,

informal tests done by application programmers (unit tests) and ends when the business

owners have given their approvals after user acceptance testing. However, the strategy’s

focus is on integration testing, where all the applications are linked together to verify

they can support real-life business transactions. As such, the scope of integration testing

includes transactions that start or terminate at vendor systems or field-devices. User

Acceptance Testing (UAT), where business owners and their representatives run a series

of tests to independently verify that the systems will handle real world transaction. A

sub-set of the end-to-end business transactions may be used for this testing phase. End-

to-end testing is conducted when enough interfaces are delivered and validated to

support an end-to-end business transaction. A test of a business transaction is meant to

validate the applications can work together to support a real-life business process. Often

these data transactions will start or terminate at either a meter or a vendor system. An

example of a business transaction is the initiation of a DR event. This business

transaction starts when the DR event is called in the Demand Response System and

completes when the event information is propagated to the MDMS, DR Customer

Notification System and Customer Information System.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1462

5.Reference

1. ANSI/IEEE 829-1983 IEEE Standard for Software Test Documentation

2. Craig, Rick David; Stefan P. Jaskiel (2002). Systematic Software Testing. Artech

House. p. 7.

3. Itkonen, Juha; Mika V. Mäntylä and Casper Lassenius (2007). "Defect Detection

Efficiency: Test Case Based vs. Exploratory Testing"

4. Kolawa, Adam; Huizinga, Dorota (2007). “Automated Defect Prevention: Best

Practices in Software Management”

5. Xie, Tao. "Towards a Framework for Differential Unit Testing of Object-

Oriented Programs"

6. http://en.wikipedia.org/

7. http://www.guru99.com/

