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1.Introduction 

OFDM (Orthogonal Frequency Division Multiplexing)and MIMO (Multiple-Input Multiple-Output) have beenwidely considered 

as key enabling technologies for achievingthe next generation broadband wireless communications. Inparticular, OFDM supports 

multi-channels using orthogonalsub-carriers in frequency domain [1], and the single-carrierMIMO broadcast channel can be 

equivalently parallelized intomulti-channels using SVD (Singular Value Decomposition)[2].Under a given total transmit power 

constraint, power allocationis a critical task for maximizing the system capacity inthose multi-channel wireless systems. In 

discrete time wirelesscommunication systems, power allocation needs to be carriedout in each time slot to match the time-varying 

nature ofthe wireless channels. Therefore, it is important to have anagile power allocation algorithm, which can respond fast to 

the changing environment with low complexity.It is well known that Water-Filling (WF) [3-6] is the fundamentalpower allocation 

mechanism that can maximize systemcapacity over multi-channels. Conventional WF algorithmsneed to search for a water-level 

[3-5], which dominates thecomputational complexity. Besides, they do not consider anupper-bound on the allocated power in each 
sub-channel,which is generally necessary in engineering practice. In this letter, we propose simple and fast algorithms tocompute 

optimal WF solutions. Both scenarios, with andwithout an upper-bound on the allocated powers in the subchannels,are considered. 

Our algorithms require much lesscomputations than the existing ones by removing the waterlevelsearching process. They can 

converge to the optimalsolutions multiple times faster. 

 

2.Preliminaries 

 

2.1.Water-Filling Formulation And Optimal Solution 

Consider a multi-channel system with Nindependent subchannelsN = {1, 2, ・・・,N} and a bandwidth B for each.Let γn be the 

SNR (Signal to Noise Ratio) of sub-channeln ∈N, and PT be the total transmit power. The optimalpower allocation p = {pn | n 

∈N} for maximizing the systemcapacity can be obtained by solving the following Water-Filling (WF)problem. 
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where[•]0 = max(•, 0) and μ is a positive Lagrange multiplier(or water-level). If there is an upper-bound Pmax on thepower 

allocated to each sub-channel, we can replace constraint(3) using the following constraint (5). 

 

 
 

In this case, the optimal solution iswhere the function [•]Pmax0 confines the range of pn as per (5).In either one of the above two 

scenarios, μ is the solution to 

 
 

2.2.Brief Summary Of Existing Algorithms 

The existing works [3-5] solve the problem in (1)-(3) bysearching for a proper water-level μ before p = {|∀n ∈N} can be calculated 

in (4). To this end, the iterative binarysearching technique in [6] can be used. In each iteration, thepossible range of μ is halved, 
and the half that can possiblycontain the value of μ is identified by checking the halvingpoint according to the total transmit power 

constraint (7).When the algorithm converges, the value of μ can be obtained.Another iterative μ searching process [4] uses the 

following(8)-(9) to find μ, where (8) defines the starting point of μ and(9) is used to update μ in the subsequent iterations. 

 

 

 
 

In (9), σ is a predefined step size for μ searching, and Nondenotes the set of Non = |Non| sub-channels in the currentiteration that 

have positive powers as per (4). With a similaridea as in [4], the algorithm in [5] sequentially discardssub-channels with small γn 

to determine Non in the finalsolution, based on which μ and the optimal solution can becalculated. The difference is that the 

water-level is estimatedby sequentially discarding sub-channels instead of using (9). 

 

3.The Proposed Fast Wf Algorithms 

We first focus on the classicWF problem in (1)-(3), and thenextend the result to the more general scenario where constraint(3) is 

replaced by (5). A. Observations on WFFor a given positive Δ (assume that PT ≥ NΔ), let p ={pn | ∀n ∈N} = WF(PT ) and p_ = 

p_n | ∀n ∈N=WF(PT −NΔ) be two WF solutions under the total transmitpowers PT and PT −NΔ, respectively. We have the 

following 

Lemma 1. 

Lemma 1: If pn ≥ Δ for ∀n ∈N , then p_ 

n = pn − Δ for∀n ∈N. 
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Figure 1 

 

Proof: Since pn ≥ Δ for ∀n ∈N, from (4) we haveFrom (12)-(13), we have p_n = pn − Δ for ∀n ∈N.Lemma 1 shows that if the 

total transmit power PT isdecreased by NΔ, then the transmit power in each sub-channelwill decrease by the same amount of 

Δ.However, Lemma 1 is only for a special case where pn ≥ Δis assumed for ∀n ∈N, which cannot be ensured in the 

general case with a given Δ. Fig. 1 shows an example. Thehorizontal axis denotes the sub-channel index and the verticalaxis 

denotes the allocated power in each sub-channel. Letp=WF(PT ) be denoted by the solid curve in Fig. 1. Withoutloss of generality, 

we assume that the power values allocatedto the sub-channels are decreasingly ordered as n increases.If the total transmit power is 

decreased from PT to PT −NΔ,without considering the infeasibility of negative powers insome sub-channels, Lemma 1 can be 

extended such that thepower value in each sub-channel will be decreased by thesame amount of Δ (see the dashed curve in Fig. 1). 

This maylead to negative powers in some sub-channels, as illustratedby those after the kth sub-channel in Fig. 1. In practice,those 
negative transmit powers (denoted by the shadowed areaA1) should be set to zero according to (4). Meanwhile, thosepositive 

transmit powers on the dashed curve should be furtherdecreased accordingly as a compensation to keep the totaltransmit power PT 

− NΔ unchanged. We define this processas cross-zero adjustment.Lemma 2: If pn ≥ Δ+Δ_ for n ∈ {1, ・ ・ ・ , k} and pn <Δfor n 

∈ {k + 1, ・・・,N}, then p_ 

n = pn − Δ − Δ_ for n ∈{1, ・・・, k} and p_n = 0 for n ∈ {k + 1, ・・・,N}.Proof : If [•]0 = max(•, 0) in (4) is not considered, 

equation(4) is equivalent to (10). When the total transmit power is decreased from PT to PT − NΔ, with similar analysis as in 
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Lemma 1, we can see that p_ n = pn − Δ should hold (in a pure mathematical sense) for ∀n ∈N, though 

 
Figure 2 

 

  

 
 

p_k+1, p_k+2, ・・・, p_Nare negative by assuming pn <Δ forn ∈  {k + 1, ・・・,N}.If [•]0 = max(•, 0) in (4) is considered, the 

set of negativepowers  p_k+1, p_k+2, ・・・, p_Nshould be set to zero. To keepthe total transmit power PT − NΔ unchanged, 

those positivepowers  p_1, p_2, ・・・, p_kmust be decreased for a total amountof Nn=k+1(Δ − pn) as a compensation. 

From Lemma 1,each p_n, n ∈  {1, ・・・, k} should be decreased further for anamount of Δ_ as formulated in (14). 

Consequently, we havep_n = pn − Δ − Δ_ ≥ 0 for n ∈  {1, ・・・, k} and p_n = 0 forn ∈  {k + 1, ・・・,N}.Since we assume pn ≥ 

Δ + Δ _ for n ∈  {1, ・・・, k} inLemma 2, we have p_n = pn−Δ−Δ_ ≥ 0 for n ∈  {1, ・・・, k} after the cross-zero adjustment. 

Generally, this may not bethe case, and some p_n, n ∈  {1, ・・・, k} may become negativewhen Δis subtracted. So, the cross-

zero adjustment shouldbe an iterative process until all allocated powers becomenonnegative. 

 

B. Fast WF Algorithms Without μ Searching 

 
Based on the above analysis, we can propose a fast waterfillingalgorithm without μ searching for solving the WFproblem in (1)-

(3), as in Fig. 2. Fig. 3 gives another algorithmwhich replaces constraint (3) using (5) to impose an upper- bound Pmaxon the 

allocated power in each sub-channel. Thealgorithm in Fig. 3 is a direct extension of that in Fig. 2. 
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Figure 3 

 

 

4.Numerical Results 

Simulations are run in MATLAB 7.11 on a 2.66 GHzcomputer with 4 GB memory. γnsare i.i.d chi-square randomvariables with a 

degree of freedom of one. Definespectrum efficiency as the capacity in unit bandwidth. Fig.4 shows that the WF in Fig. 2 achieves 

the same spectrumefficiency as those in [4-6]. For the WF∗in Fig. 3, similarresults can be obtained.Figs. 5-6 compare the running 

time of our water-fillingalgorithms with others, where PT is set to 2N for each N.Fig. 5 shows that the WF in Fig. 2 runs 4-5 times 

faster than[4], 3-22 times faster than [5] and 5-7 times faster than WFwith binary μ searching [6]. Since the upper-bound 

considered in [4-5], in Fig. 6 our proposed WF∗in Fig. 3 isonly compared with the binary μ searching based algorithm,where it 

runs about 6 times faster.considered in [4-5], in Fig. 6 our proposed WF∗in Fig. 3 is only compared with the binary μ searching 

based algorithm, where it runs about 6 times faster. 
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Figure 4 & Figure  5 

 

5.Conclusion 

We proposed simple and fast Water-Filling algorithms tofind the optimal power allocation for capacity maximization inmulti-

channel wireless communications. Both scenarios, withand without an upper-bound on the allocated power in eachsub-channel, 

are considered. Our algorithms remove the needof Lagrange multiplier or water-level searching. They can runmultiple times faster 
than the existing ones and converge tothe optimal solutions in a few linear calculations. 

 

 
Figure 6 
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