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1. Introduction And Definitions 

Let us fix some terminology and notation. 

 

1.1.Definition 1 

Throughout this note, k will be a field. 

By an algebra over k we shall mean ak-vector-space A given with ak-bilinear multiplication  A×A → A, which we do not assume 

associative or unital. 

If A is an algebra, we define its total annihilator ideal to be 

(1)      Z(A)  =   {x ∈ A | xA = Ax = {0}}. 

If  a = (ai)i∈Iis an element of a direct product algebra  A =  Π IAi,  then we define its support 

(2)      supp(a)  =  {i∈ I | ai≠ 0}. 

For  J  any subset of  I,  we shall identify   Πi∈JAi with the  subalgebra of    Πi∈IAi consisting of  elements whose support is 

contained in  J.  We also define the subalgebra 

(3)      Afin=  {a ∈ A | supp(a)  is finite }. 

(4)      ga:k
I
→ Bdefined by    ga((ui)) = f ((uiai))    for all    (ui) ∈k

I
. 

 

1.2.Lemma 1 

(i) If ker(ga)  contains an element  u = (ui)i∈I   whose support is all of  I,  then  f(a) ∈ Z (B). 

(ii) More generally, for any  u ∈ ker (ga),  if we write  a = a′ +a″  ,  where supp(a′ ) ⊆supp(u)  and supp(a″ ) ⊆I − supp(u),  then  f 

(a′ ) ∈ Z(B). 

(iii) Hence, if Ker(ga)  contains an element whose support is cofinite in  I,  then  a  is the sum of an element a′∈ f −1
(Z(B))  and an 

element  a″   ∈ Afin
.. 

 

1.2.1.Proof 

  (i): Given  u  as in (i), and any  b ∈ B,  let us write  b = f (x),where  x = (xi) ∈ A,  and compute 

(5)f (a) b  =  f (a)f (x)  =  f (a x)  =  f ((aixi))  =  f ((uiaiui
−1 xi)) 
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=  f((uiai)) f ((ui
−1 xi))  =  0 f ((ui

−1 xi))  =  0. 

So  f (a)  left-annihilates all elements of  B;  and by the same argument with the order of factors reversed, itright-annihilates all 

elements of  B.  Thus,  f (a) ∈ Z(B),  as claimed. 

(ii):  Let  u′  ∈k
I
be defined  by taking  ui′ = uifor i∈supp(u),  and  ui′  = 1  for  i∉supp(u).  Thus,supp(u′ ) = I;  moreover,  u′ a′ = ua,  

whence  f (u′ a′ ) = f (ua) = 0.  Hence, ker(ga′)  contains the element  uwhose support is  I;  so by (i),  f (a′ ) ∈ Z(B). 

(iii) clearly follows from (ii). 

Motivated by statement (iii) of the lemma, let us look for conditions under which thekernel of a homomorphism on k
I 
must contain 

elements of co-finite support.  Here is an easy one. 

 

1.3.Lemma  2 

Let  I  be  a set  with  card(I)  ≤  card(k),  and  g  : k
I
→ V   ak-linear  map,  for  some finite dimensional k-vector-space  V.  Then 

there exists  u∈ker(g)  such that  I − supp(u)  is finite. 
 

1.3.1.Proof 

By the assumption on card(I), we can choose x = (xi) ∈k
I
whose entries xiare distinct. Regarding k

I
as a k-algebra under component 

wise operations, let us map the polynomial algebra k[t]  into it by the homomorphism sending  t  to this  x.  Composing withg 

:k
I
→ V,  we get ak-linear map k[t] → V. 

Since  V  is finite-dimensional, this map has nonzero kernel, so we may choose  0 = p(t) ∈k[t]  such thatp(x) ∈ker(g).  Since the 

polynomial phas only finitely many roots,  p(xi)  is zero for only finitely many  i,so  p(x)  gives the desired  u. 
Applying Lemma 3 to maps  gaas in Lemmas 2, and calling on statement (iii) of the latter, we get 

 

1.4.Lemma  3 

Let k  be an infinite field, let  (Ai)i∈Ibe a family ofk-algebras such that the  index set has cardinality  ≤ card(k),  let  A =    I Ai,  and 

let  f : A → B  be any surjective algebra homomorphism to a finite-dimensional k-algebra  B. 

Then B = f (Afin
)
+ Z(B).  (Equivalently,  A = Afin  + f −1(Z (B)).) 

Hence B is the sum of  Z(B)  and the (mutually annihilating) images of finitely many of the  Ai. 

 

1.4.1.Proof 

The first assertion follows immediately from the two preceding lemmas.  To get the final assertion, we note that since  B  is finite-

dimensional, its subalgebra  f (Afin)=  iI Af   =  ΣIf(Ai)  must be spanned by the images of finitely many of the  Ai,  and since 

the  Ai,  as subalgebras of  A,  annihilate one another, so do those images. 

In  the next  two  sections  we shall  obtain  three  strengthenings  of Lemma  3,  two  of  which  weaken  the assumption of finite-

dimensionality of  V,  while the third, instead, weakens the restriction on  card(I) 

Our first generalization of Lemma 3 will be obtained by replacing the countable-dimensional polynomial ring k[t]  by a subspace 

of the rational function field k(t)  which has dimension  card(k)  overk.  Rational functions are not, strictly speaking, functions; but 

that will be easy to fudge. 

 
1.5.Lemma 4 

For each  c ∈k,  let p(c)∈k
k
be the function which for every  x ∈k−{c}  has  p(c)(x) = (x−c)−1

, and at  c  has the value  0.  Then any 

nontrivial linear combination of the elements p(c)   has at most finitely many zeroes. 

Hence if  I  is a set of cardinality  ≤ card(k),  and  g  is ak-linear map  of k
I 
to ak-vector-space  V   of dimension  < card(k),  then 

ker(g)  contains an element  u  of cofinite support. 

 
1.5.1.Proof 

 In k(t),  any linear combination of elements  (t − c1)
−1

,. . . ,  (t − cn)
−1   for distinct  c1

,
. . . , cn∈k (n ≥ 1),  such that each of these 

elements has nonzero coefficient, gives a nonzero rational function 

(6)  a1(t − c1)
−1 + · · · + an(t − cn)

−1   =  h(t)/((t − c1). . . (t − cn))    (where  h(t) ∈k[t]). 

Indeed, to see that (6) is nonzero in k(t),  multiply by any  t − cm.  Then we can evaluate both sides at  cm, and we find that the left-

hand side then has a unique nonzero term; so we must have  h(cm) ≠ 0.  Hence  h(t) is a nonzero element of k[t],  so (6) is a 

nonzero element of k(t). 

If we now take the corresponding linear combination of  p(c1)
,. . . , p

(cn)  in k
k
,  the result has the value h(c)/((c − c1). . . (c − cn))at 

each  c ≠ c1
,
. . . , cn.  Hence it is nonzero everywhere except at the finitely many zeroes of  h(t),  and some subset of the finite set  

{c1
,
. . . , cn}. 

We get the final assertion by embedding the set  I  ink,  so that the  p(c)(c ∈k)  induce elements of k
I
. These will form a card(k)-

tuple of functions, any nontrivial linear combination of which is a function with only finitely many zeroes. Under a linear map  g  

from k
I
to a vector space V  of dimension < card(k),  some nontrivial linear combination  u  of these  card(k)  elements must go to  

zero, yielding a  member  of ker(g) with the asserted property. 

(An alternative way to get around the problem that rational functions have poles would be to partition k  into two disjoint subsets 
of equal cardinalities, and use linear combinations of rational functions  1/(t − c) with  c  ranging over one of these sets to get 

functions on the other.) 

For k  countable, the condition on the dimension of  V  in the final statement of the above lemma is no improvement on what we  

got in  Lemma  3  using k[t]  In an  earlier version  of  this note,  we obtained  an improvement on  Lemma  3  for  countable k  by  

a  diagonal  argument,  showing that  if k  and  I  are  both countably infinite, then any maximal subspace  W ⊆k
I 
no nonzero 
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member of which  has infinitely many zero coordinates must be uncountable-dimensional.  Jason Bell communicated to us the 

following stronger result, which not only gives a subspace of continuum, rather than merely uncountable, dimension, but (as is 

made clear in the proof,  though for simplicity we do  not include  it in the statement), also shares with the constructions of 

Lemmas 3  and 5 the property that for every finite-dimensional subspace of  W,  there is  a  uniform  bound  on  the  number  of  

zero coordinates  of  its nonzero  elements,  which  our  earlier result lacked.  (The result below was, in fact, given in response to 

the question we raised of whether a construction 

admitting such uniform bounds was possible.) 

 

1.6.Lemma 5 

(sketched by Jason Bell, personal communication).  If the fieldk  is infinite, and  I  is a countably infinite set, then there exists a 

subspace  W ⊆k
I
of continuum dimensionality such that no nonzero member of  W  has infinitely many zeroes. 

Hence any k-linear map g from k
I
to a k-vector-space V of less than continuum dimension has  in its kernel an element  u  of 

cofinite support. 

 

1.6.1.Proof 

It suffices to prove the stated result for  I = ω,  the set of natural numbers. 
Let us first note that if k is either of characteristic  0,  or transcendental over its prime field, then it isalgebraic over a  Unique 

Factorization Domain  R  which is not a field (namely,  Z,  or a polynomial ring over the prime field of k).  This ring R admits a 

discrete valuation, which induces a discrete valuation on the field of fractions of  R. It is easily deduced from [12, Prop. XII.4.2] 

that this extends to a Q-valued valuation v  on the algebraic extension k  of that field, and by rescaling,  v  can be assumed to have 

valuation group containing  Z.  Let us call this situation Case I. 

If we are  not in  Case I, thenk  must be  an infinite algebraic extension of  a finite  field.  Hence  it will contain a countable chain 

of distinct subfields, 

(7)    k0⊂k1⊂  • • •  ⊂ki⊂  • • •  . 

Given any field k  containing such a chain of subfields (regardless of characteristic, or  algebraicity over a prime field), we may 

define a natural-number-valued function  v  (not a valuation) on  U i∈ωki⊆k  by letting v(x)  be  the least  i such that  x ∈ki.  We shall 
call the situation wherek  contains a  chain (7) Case II. (So Cases I and II together cover all infinite fields, with a great deal of 

overlap.) 

In either case, let us choose elements  x0,x1,• • • ∈k  such that 

(8)      v(xi) = i     for all  i∈ ω, and for every real number  α > 1,  let  fα∈kω   be defined by 

(9)      fα(n) = x [αn] (n ∈ ω), 

where[αn]   denotes the largest integer  ≤ αn. 

This gives continuum many elements  fα∈kω.  We shall now complete the proof by showing separately in Cases I and  II  that for 

any  1 < α1< • • • < αd, there exists a  natural number  N  such  that no nontrivial linear combination 

(10)          
        

c1(c1,. . . , cd∈k) 

has more than  N  zero coordinates. 

If we are in Case I, consider any  n  such that the n-th coordinate of (10) is zero. This says that 

(11)           
    

Now if a family of elements ofkwhich are not all zero has zero sum, then at least two nonzero members ofthe family must have 

equal valuation.  Thus, for some i< j  with  ci, cj≠ 0  we have 

(12)                   
                

  

By (8), this says 

(13)                         

From the fact that   [nαi] lies in the interval  (nαi− 1, nαi],  and the corresponding fact for nαj,  we seethat   [nαi] −  [nαj] differs by 

less than  1  from  nαi− nαj,  so (13) implies 

(14)     n(αj− αi)  ∈  (v(ci) − v(cj) − 1,  v(ci) − v(cj) + 1). 
This puts  n  in an open interval of length  2/(αj− αi).  We have shown that whenever the n-th coordinateof (10) is zero, this 

relation holds for some pair  i, j;  so the total number of possibilities for  n  is at most 

(15)     N =Σi<j [2/(αj− αi)] , 

a bound depending only on  α1,. . . , αd(and not on  c1,. . . , cd),  as claimed. 

Next,  suppose  we  are  in  Case  II.  Then  we  claim  that  for  an  element  (10),  there  can  be  at  most  d – 1values of  n  with 

(16)     n  ≥  maxi=1,...,d−1(1/(αi+1 − αi)) 

for which the n-th coordinate of (10) is zero. For suppose, on the contrary, that  n1< • • • <nd all have this property.  This  says  that 

the  nonzero  column  vector  of  coefficients  (c1,. . . , cd)
T is  left  annihilated  by  the d × d  matrix 

(17)              
   

Note  that  the  subscripts   niαj in  (17) are strictly  increasing in  both  i  and  j;  the former because  all αj>  1,  the latter because  

all  ni satisfy (16).   It follows that in the matrix (17), every minor has the property that its lower right-hand entry does not lie in 

the subfield generated by its other entries. From this, it is easy to show by induction that all minors have nonzero determinant, and 

so in particular that (17) is invertible. 

But this contradicts the assumption that (17) annihilates  (c1,. . . , cd)
T. Hence there are, as claimed, at most  d − 1  values  of  n   

satisfying (16) such that  the n-th entry of (10) is zero; so the total number of zero entries of (10) is bounded by 

(18)     N  =  maxi=1,...,d−1   [1/(αi+1  − αi)]  + d, 
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which again depends only on the  αi. 

The final assertion of the lemma clearly follows. 

Remark:  In Case I of the above proof, in place of condition (8) we could equally well have used  x i with v(xi) = −i. Similarly, the 

proof in Case II can be adapted to fields k having a descending chain of subfields k = k0 ⊃ k1 ⊃ • • • ⊃ki⊃ • • •  :  in  this  situation, 

we define  v on k −  ∩i∈ωki to  take each  x  to  the largest i  such that  x ∈ki,  and consider upper left-hand corners of minors 

instead of lower right-hand corners.  We know of no use for these observations at present; but they might be of value in proving 

some variants of the above lemma. 

For our third generalization of Lemma 2, we return to the hypothesis that v  is finite-dimensional, and prove that in that situation, 

the statement that every linear map  g :kI→ v  has elements of cofinite support in fact holds for sets  I  of cardinality much greater 
than  card(k). 

We can no longer get this conclusion by finding an infinite-dimensional subspace W ⊆kI whose nonzero members each have only 

finitely many zeroes.  On the contrary, when  card(I) > card(k)  (with the former infinite) there can be no subspace  W  ⊆kI of 

dimension  > 1  whose nonzero members all have only finitely many zeroes.  For if  (x i)  and  (yi)  are linearly independent 

elements of  W,  and we look at the subspacesofk2generated  by  the  pairs  (xi, yi)  as  i  runs  over  I,  then  if  card(I)  >  card(k),  

at  least  one  of  these 

subspaces must occur at  card(I) many values of  i,  but cannot occur at all  i;  hence some linear combination of  (x i)  and  (yi)  

will have  card(I)  zeroes, but not itself be  zero.  So we must construct our  elements of cofinite support in a different way, paying 

attention to the particular map  g. 
Surprisingly,  our  proof  will  again  use  the polynomial  trick  of  Lemma  3;  though  this  time  only  after considerable 

preparation.  (We could use rational functions in  place of these  polynomials  as in  Lemma 5,or  functions like the  fα   of  

Lemma 6, but  so  far  as  we can  see,  this would  not  improve our result, since finite-dimensionality of  v  is required by other 

parts of the argument.) 

The case of Theorem 9 below that we will deduce from the result of this section is actually slightly weaker than the corresponding 

result proved by different methods in [3].  Hence the reader who is only interested in consequences for algebra homomorphisms 

ΠI  Ai→ B  may prefer to skip the lengthy and intricate argument of this section. On the other hand, insofar as our general 

technique makes the question, “For what k,  I  and V  can we say that the kernel of every k-linear map kI→ v  must contain an 

element of cofinite support?” 

itself of interest, the result of this section creates a powerful complement to those of the preceding section. 

We will assume here familiarity with the definitions of ultrafilter and ultraproduct (given in most books on universal algebra or 
model theory,  and summarized in [3, §14]), and of κ-completeness of an ultrafilter (developed, for example, in [7] or [8], and 

briefly summarized in the part of [3, §15] preceding Theorem 47). 

In the lemma below, we do not yet restrict card(I)  at all.  As a result, we will get functions with zero-sets characterized in terms of 

finitely many card(k)+-complete ultrafilters, rather than finitely many points.  Inthe corollary to the lemma, we add a  cardinality 

restriction which forces such  ultrafilters to be  principal, and so get elements with only finitely many zeroes.  The lemma also 

allows k  to be finite, necessitating aproviso (19) that its cardinality not be too small relative to  dimk(V ); this, too, will go away in 

the corollary, 

where, for other reasons, we will have to require k  to be infinite. 

In reading  the lemma  and  its proof,  the reader  might bear  in  mind  that  the property  (21) makes  J0“good” for our purposes, 

while  J1,. . . , Jn embody the complications that we must overcome.  The case of property  (21) that we will  want  in the  end is  

for the element  0 ∈ g(kJ0);  but in  the  course  of the  proof it will be important to consider that property for arbitrary elements of 
that subspace. 

 

1.7.Lemma 6 

Let   I  be a set,  V  a finite-dimensional k-vector space such that 

(19)     card (k)  ≥  dimk(V ) + 2, 

and  g :kI→ V  a k-linear map. 

Then  I  may be decomposed into finitely many disjoint subsets, 

(20)     I  =  J0∪ J1∪ . . . ∪Jn 

(n ≥ 0),  such that 

(21)     every element of  g(kJ0)  is the image under  g  of an element having support precisely  J0, and such that each set  Jm for  m 
= 1, . . . , n  has on it a card(k)+-complete ultrafilter Um  such that, letting ψ  denote the factor-map  V  → V/g(kJ0),  the composite  

ψg :k
I→ V/g(kJ0)  can be factored 

(22)   kI=kJ0  ×kJ1  × • • • ×kJn→kJ1/ U1× • • • ×k
Jn/ Un →  V/g(kJ0), 

Where kJm/ Um denotes the ultrapower of k with respect to the ultrafilterUm,  the first arrow of  (22) is theproduct of the natural 

projections, and the last arrow is an embedding. 

 

1.7.1.Proof 

If  card(k) = 2,  then (19) makes  V  = {0},  and the lemma is trivially true (with  J0= I  and  n = 0);so below we may assume  

card(k) > 2. 

There exist subsets  J0⊆ I  satisfying (21); for instance, the empty subset. Since V is finite-dimensional,we may choose a  

J0satisfying (21) such that 

(23)     Among subsets of  I  satisfying (21),  J0maximizes the subspace  g(kJ0) ⊆ V, 

i.e., such that no subset  J0′  satisfying (21) has  g(kJ′0)  properly larger than  g(kJ0). 

Given this  J0,we now consider subsets  J ⊆ I − J0such that 
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(24)     g(kJ)⊈ g(kJ0),  and  J  minimizes the subspace  g(kJ0) + g(kJ)  subject to this 

condition, in the sense that every subset  J′⊆ J  satisfies either 

(25)     g(kJ′)  ⊆  g(kJ0) 

or 

(26)     g(kJ0) + g(kJ)  =  g(kJ0) + g(kJ). 

It is not hard to see from the finite-dimensionality of  V,  and the fact that inclusions of sets  J  imply the 

corresponding inclusions among the subspaces  g(kJ0) + g(kJ), that such minimizing subsets  J  will  exist if  g(kJ0) ≠ g(kI).  If,  

rather,  g(kJ0) = g(kI),  then the collection of such  subsets that we develop in the arguments below will be empty, but that will not 
be a problem. 

Let  us,  for  the next  few  paragraphs,  fix  such  a  J.  Thus,  every  J′⊆  J  satisfies  either  (25) or  (26).However,  we claim that  

there  cannot  be  many pair wise  disjoint subsets  J′⊆ J  satisfying  (26).  Precisely, letting 

(27)     e  = dimk((g(kJ0 ) + g(kJ))/g(kJ0 )), 

we claim that there cannot be  2e  such pair wise disjoint subsets. 

For suppose we had pair wise disjoint sets J′α,d⊆ J   (α ∈ {0, 1},  d ∈ {1, . . . , e})  each satisfying (26). Let 

(28)     h1,. . . , he∈  g(kJ0) + g(kJ) 

be a minimal family spanning  g(kJ0) + g(kJ)  over  g(kJ0) .  For each  α ∈ {0, 1}  and  d ∈ {1, . . . , e},  condition (26) on  J′α,d  

allows us to choose an element  x(α,d)∈kJ′α,d   such that 

(29)     g(x(α,d))≡  hd(mod g(kJ0)). 

Some of the  x(α,d)  may have support strictly smaller than the corresponding set  J′α,d;  if this happens, let us cure  it by replacing  

J′α,d   by  supp(x(α,d)):  these  are still pair wise disjoint subsets of  J,  and  will  stillsatisfy (26) rather than (25), since after this 

modification, the subspace  g(kJ′α,d )  still contains  g(x(α,d))∉g(kJ0). 

We now claim that the set 

(30)        
    ∪      

 
  ∈             ∈           

contradicts the maximality condition (23) on     Clearly      
 
                 is strictly larger than       . To show that    

  

satisfies the analog of (21), consider any   ∈      
   =               , and let us write it, using the relative spanning set (28), as 

(31)                                          
                  

Since card( ) > 2, we can now choose for each             an element   
     which is neither 0 nor    

and form the element 

(32)      
              

           
              

             
              

           

By our choice of   
   ,  

 , none of the coefficients    
          

  is zero, so supp        
 . Applying  to (32), we see from (29) 

that      is congruent modulo                          , hence, by (31),congruent to  . By (21), we can find an element 

  ∈      with support precisely    that makes up the difference, so that               . The element     has support exactly 

   
 ; and since we have obtained an arbitrary    ∈      

    as the image under   of this element, we have shown that    
  satisfies the 

analog of (21), giving the desired contradiction. 

Thus, we have a finite upper bound (namely,     ) on the number of pairwise disjoint subsets   that   can contain which satisfy 

(26). So starting with  , let us, if it is the union of two disjoint subsets with that property, split one off and rename the other  , and 

repeat this process as many times as we can. Then in finitely many steps, we must get a   which cannot be further decomposed. 

Summarizing what we know about this  , we have 

(33)     ⊈       , every subset   ⊆   satisfies either      ⊆                                               and no two 

disjoint subsets of   satisfy the latter equality. 

Let us call any subset   ⊆        satisfying (33) a nugget. From the above development, we see that 

(34) Every subset   ⊆       such that      ⊈       , contains a nugget. 

The rest of this proof will analyze the properties of an arbitrary nugget  , and finally show (after apossible adjustment of    that 

      can be decomposed into finitely many nuggets   ∪   ∪   , andthat these will have the properties in the statement of the 

proposition. 

We begin by showing that 

(35) If   is a nugget, then the set        ⊆                                     is an ultrafilter on  . 
To see this, note that by (33), the complement of   within the set of subsets of   is also the set ofcomplements relative to   of 

members of  , and is, furthermore, the set of all   ⊆    such that       ⊆       . The latter set is clearly closed under unions and 

passing to smaller subsets, hence  , inversely, is closed under intersections and passing to larger subsets of  ; i.e.,   is a filter. 

Since   ∉    , while the complement of any subset of   not in  does belong to  ,   is an ultrafilter. 

Let us show next that any nugget   has properties that come perilously close to making   ∪  acounterexample to the maximality 

condition (23) on   . By assumption,      ∪   is strictly larger than       . Now consider any   ∈      ∪  . We may write 

(36)                     Where ∈           
Suppose first that 

(37)  ∉         
From (36) and (37) we see that     ∉       , so supp   ∈   . Now take any element   ∈    which agreeswith   on supp     
and has (arbitrary) nonzero values on all points of   −supp( ). The element by whichwe have modified   to get  has support in   – 

supp     which is ∈  / because supp   ∈ ; hence                           hence by (36),                         Hence 

by (21), we can find   ∈    with support exactly  such that               . Thus,    is an element with support   ∪   
whoseimage under  is  . 
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This is just what would be needed to make   ∪   satisfy (21), if we had proved it for all   ∈      ∪  ;but we have only proved it 

for   satisfying (37) (which we needed to argue that supp    belonged to  ).We now claim that if there were any   ∈     with 

supp    ∈   satisfying     ∈        , then wewould be able to complete our argument contradicting (23). For modifying such an 

x by any element with complementary support in  , we would get an element with support exactly   whose image under   would 

still lie in       . Adding to this element the images under g of all elements of     with support equal to   , we would get images 

under   of certain elements with support exactly   ∪  . Moreover, since    satisfies (21), these sums would comprise all   ∈
      ,i.e., just those values that were excluded by (37).In view of the resulting contradiction to (23), we have proved 

(38) If   is a nugget, then every   ∈     with supp   ∈    satisfies      ∉       . 
We shall now use the “polynomial functions” trick to show that (38) can only hold if the ultrafilter   is card    -complete. If   is 

finite, card( )+-completeness is vacuous, so assume for the remainder of this paragraph that   is infinite. If   is not card( )+-

complete, we can find pair wise disjoint subsets   ⊆      ∈     with   ∉      , whose union is all of  . Given these subsets, let 

  ∈    be the element having, for each   ∈   , the value       at all   ∈    . Taking powers of   under componentwise 

multiplication,we get elements               ∈    . Since V is finite-dimensional, some nontrivial linear combination     of these 

must be in the kernel of  . But as a nonzero polynomial,   has only finitely many roots in , say          . Thus supp        
         ∪   ∪    ). Since   ∈    and          ∉  , we get supp       ∈   ; but since      ∈          we have             ∈

      ), contradicting (38). Hence 

(39) For every nugget  , the ultrafilter of (35) is card    -complete. 

We claim next that (39) implies that for any nugget  , 
(40)     ((g(    )+g(  ))/g(   )) = 1. 

Indeed,      ∈    with support  , and consider any   ∈    . If we classify the elements   ∈    according to the value of      ∈     
this gives card( ) sets, so by card    -completeness, one of them, say                (for some   ∈   ) lies in  . Hence         

has support ∉    , so            ∈        , i.e., modulo         the element      is a scalar multiple of       So      spans 

             modulo         
Let us now choose for each nugget   an element    with support  . Thus, by the above observations,      spans              

modulo       . We claim that 

(41) For any disjoint nuggets          , the elements                   ∈ V are linearly 

independent modulo       . 
For suppose, by way of contradiction, that we had some relation 

(42)          
 
         , with not all   zero. 

If              then there must be a linear relation in V among ≤              of the       ∈   , so in that situation we may 

(in working toward our contradiction) replace the set of nuggets assumed to satisfy a relation (42) by a subset also satisfying 

(43)                 
and (42) by a relation which they satisfy. Also, by dropping from our list of nuggets in (42) any    such that     , we may 

assume those coefficients all nonzero. 

We now invoke for the third (and last) time the maximality assumption (23), arguing that in the above situation,   ∪   ∪   ∪
  would be a counterexample to that maximality. 
For consider any 

(44)   ∈       ∪   ∪   ∪   . 
By (40) and our choice of          ,   can be written as the sum of an element of        and an element            with 

          ∈   . By (19) and (43), card    ≥               , hence we can choose an element   ∈    distinct from each of 

                (for the    of (42)), i.e., such that                             Thus,               , which by (42) has 

the same image in           as our given element  , is a linear combination of           with nonzero coefficients, hence has 

support exactly  ∪   ∪   . As before, we can now use (21) to adjust this by an element with support exactly     so thatthe image 

under   of the resulting element   is  . Since   has support exactly   ∪   ∪   ∪   , we have the desired contradiction to (23). 

It follows from (41) that there cannot be more than          disjoint nuggets; so a maximal family of pairwise disjoint nuggets 

will be finite. Let         be such a maximal family. 

In view of (34), the set          ∪   ∪   ∪      must satisfy      ⊆       , hence we can enlarge    by adjoining to it that set 

 , without changing         , and hence without losing (21). We then have (20). 

For            , let    be the ultrafilter on    described in (35). To verify the final statement of the proposition, that there exists 

a factorization (22), note that any element of    can be written                              with     ∈                    hence 

its image under   will be congruent modulo         to                          Now the image of each         modulo        is a 

function only of theequivalence class of      with respect to the ultrafilter     (since two elements in the same equivalence class 

will disagree on a subset of   that is ∉  , so that their difference is mapped by   into        ). Hence the value of      modulo 

        is determined by the images of a in the spaces       This gives the factorization (22). The one-one-ness of the factoring 
map follows from (41). 

To get from this a result with a simpler statement, recall that a set   admits a nonprincipal card    - complete ultrafilter only if its 

cardinality is greater than or equal to a measurable cardinal > card    [7,Proposition 4.2.7]. (We follow [7] in counting ℵ0 as a 
measurable cardinal. Thus, we write“uncountable measurable cardinal” for what many authors, e.g., [8, p.177], simply call a 

“measurable cardinal”.) 

Now uncountable measurable cardinals, if they exist at all, must be enormously large (cf. [8, Chapter 6,Corollary 1.8]). Hence for 

  infinite, it is a weak restriction to assume that   is smaller than all card    -complete cardinals. Under that assumption, the 

card    -complete ultrafilters    of Lemma 7 must be principal, determined by elements   ∈   ; so each nugget    contains a 
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minimal nugget, the singleton{  }, and we may use these minimal nuggets in our decomposition (20). The statement of Lemma 7 

then simplifies to the next result. (No such simplification is possible if   is finite, since then every ultrafilter is card    -complete, 

and the only restriction we could put on card    that would force all card    -complete ultrafilters to be principal would be 

finiteness; an uninteresting situation. So we now exclude the case offinite .) 

Corollary 8. Let   be an infinite field,   a set of cardinality less than every measurable cardinal > card   (if any exist), V a finite-

dimensional  -vector space, and          a k-linear map. Then there existelements           ∈    such that, writing        
              we have 

(45) Every element of         is the image under g of an element having support precisely   . 

In particular, applying this to   ∈        , 
(46) There exists some         ∈       such that       for only finitely many   (namely          ). 

Since we have excluded the case where   is finite, the above corollary did not need condition (19), thatcard   ≥           . 
We end this section with a quick example showing that Lemma 7 does need that condition. 

Let   be any finite field, and   a subset of       consisting of one nonzero element from each of thecard( ) + 1 one-dimensional 

subspaces of that two-dimensional space (i.e.,   is a set of representatives of the points of the projective line over  ). Let   ⊆     

be the two-dimensional subspace consisting of the restrictions to   of all  -linear functionals on      . Since    is (card( )+1)-

dimensional,   can be expressed as the kernel of a linear map   from    to a (card(k)−1)-dimensional vector space V. By choice of 

 , every element of   = ker( ) has a zero somewhere on  , so   ∈        is not the imageunder g of an element having all of   for 

support. Hence (21) cannot hold with      . If Lemma 7 were applicable, this would force the existence of a nonzero number of 

nuggets   . Since   is finite, the associated ultrafilters would be principal, corresponding to elements    such that all members of 

           were zero at    (by the one-one-ness of the last map of (22)). But this does not happen either: for every   ∈   , there 

are clearly elements of   nonzero at  . 
Hence the conclusion of Lemma 7 does not hold for this  . Note that since     (V ) = card( )−1, thecondition card( ) ≥     (V ) 

+ 2 fails by just 1. 

On the other hand, fixing   and an infinite set  , and looking at how large   can be allowed to be, we see that for     ℵ , 

projection of    to a countable subproduct gives a map       whose kernel has no elements of finite support; so we cannot allow 

        to reach       
ℵ  . By the Erd˝os-Kaplansky Theorem [11, Theorem IX.2, p.246], this equals card    ℵ  . Now if 

card( ) has the form  ℵ  for some  , then card(  ℵ   card( ); so in that case, Lemma 5 gives the weakest possible hypothesis on 

       . Likewise, the hypothesis on         in Lemma 6 is optimal for countable  . But we don’t know whether for general 

uncountable  , we can weaken the hypothesis        < card    of Lemma 5 all or part of the way to        < card    ℵ . 

Turning to our results on algebras over fields, let us mention that , Theorem  combines the very weak hypothesis on card( ) in 

Theorem 9(iii) of this note with the hypothesis         ≤ ℵ0, weaker than that of Theorem 9(iii), but imposes the additional 

condition that as an algebra,   satisfy “chain condition on almost direct factors” (defined there). That condition is automatic for 
finite-dimensional algebras, hence that result subsumes part (iii) of our present theorem. We do not know whether that chain 

condition can be dropped from the result of 

Incidentally, most of the results of  do not exclude the case where card( ) is ≥ a measurable cardinal > card( ), but instead give, in 

that case, a conclusion in which factorization of              throug  finitely many of the    is replaced by factorization through 

finitely many ultraproducts of the    with respect to card    -complete ultrafilters. Though similar factorizations for a linear map 

         appear in Lemma 7 of this note, an apparent obstruction to carrying these over to results on algebra homomorphisms 

is that our proof of the latter applies the results of §§2-3 not just to a single linear map     
   , but to one such map for each 

  ∈         ; and different maps yield different families of ultrafilters. However, one can get around this by choosing finitely 

many elements        ∈  whose images under f span  , regarding them as together determining a map         
      , 

applying Lemma 7 to that map, and then showing that the image under   of any element in the kernels of all the resulting 

ultraproduct maps has zero product with the images of        ∈ , hence lies in       For the sake of brevity we have not set 
down formally a generalization of Theorem 9(iii) based on this argument. For other results on cardinality and factorization of 

maps on products, but of a somewhat different flavor 
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