
www.ijird.com July, 2013 Vol 2 Issue 7

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 220

Path Based Development Of Connectivity Algorithms

1.Strong Components Of A Directed Graph
In this paper, G = (V, E) is a directed graph.

1.1.Definitions

 For two vertices a and v , a u v - p a t h is a path starting at a and ending at v .

 A directed graph G = (V, E) is strongly connected if for every two distinct vertices a and v, there is a uv-path and

a vu-path.

 In general, a directed graph will not be strongly connected. But the vertices can be partitioned into blocks that

are strongly connected, according to this definition: two vertices u v are in the same strong component (SC) if

and only if they can reach each other, i.e., there is a uv-path and a vu-path. This defines a partition of V since it

is an equivalence relation.

 For any directed graph G, contracting each SC to a vertex gives the strong component graph or condensation of G.

 A tournament is a directed graph G such that each pair of vertices is joined by exactly one edge. This models a

round robin tournament, where edge (x, y) represents the inference that player x beat player y.

1.2.Inference

 Let C be a cycle in a graph G. All vertices of C are in the same SC. Contracting the vertices of cycle C to a

single vertex yields a graph with the same SC graph as G.

 The SC graph is always a Directed Acyclic Graph.

 A topological numbering of the SC graph of a tournament gives a ranking of the player s. To see why, note that if

player x is in an SC with lower topological number than y, then the tournament contains the edge (x, y) not (y, x).

Thus SC number I contains the players that are unequivocally in the top tier they all beat all other players. SC

number 2 contains the 2nd tier players they all beat all other players except those in tier 1, etc.

 All the vertices on a cycle belong to the same SC. In inference the SC graph is formed by repeatedly contracting

cycles, until no cycle remains.

 A sink s is a vertex of the SC graph. In inference the SC's are {s} and the SC's of G s.

 A high-level algorithm for finding the SC graph is given below. It repeatedly contracts a cycle or deletes a sink.

 Next we present a linear-time depth-first search algorithm for finding the strong components and the SC graph of

a given directed graph.

Dr. G. Srinivasu
Dept. Of Mathematics, R.S.R. Engineering College Kadanuthala

SPSR Nellore Dist., A.P., India

B.V.V. Prasad
Dept. Of Mathematics , M.B.P.S .Govt., Polytechnic College

Nallapadu , Guntur Dist., A.P., India

Abstract:
This paper presents notions of 1- and 2-connectivity. It starts with 1-connectivity of directed graphs, and it then

examines 2-connectivity of undirected graphs. Depth-first search is the method of choice to calculate low order

connectivity information. The algorithms which are designed for connectivity properties are originally due to

Tarjan [1]. This paper follows the path-based development of [2], which simplifies the algorithms to eliminate the

depth-first spanning tree.

Key words: connectivity, Strong Component, directed graph.

ISSN: 2278 – 0211 (Online)

www.ijird.com July, 2013 Vol 2 Issue 7

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 221

Algorithm1: Strong Components

Input: directed graph G = (V, E) ;Output: strong components of G

 repeat until G has no vertices:

 grow a dfs path P until a sink or a cycle is found

 sink s: mark {s} as an SC & delete s from P & G

cycle c:contract the vertices of C

 Each iteration grows P by starting with the previous P and extending it, if possible.

 The algorithm has a low-level implementation that finds the SC graph in linear time [11]. Sinks are deleted and
Cycles are contracted using a stack to represent P and another stack to give the boundaries of contracted vertices

in P.

 The algorithm discovers each SC as a sink of the SC graph. So the SC's can be numbered in topological order by

the method of topological order Algorithm.

 The first linear-time algorithm for strong components is due to Tarjan [1]. It computes a value called

lowpoint(v) for each vertex v. lowpoint(v) is the lowest-numbered vertex (in preorder) in v's SC that is

reachable from v by a path of (0 or more) tree edges followed by a back or cross edge (lowpoint(v) equals v if

no smaller numbered vertex can be reached). The vertices with lowpoint(v) = v are the "roots" of the strong

components.

 A third linear-time strong component algorithm is due to Sharir [3] and Kosaraju (unpublished; see also [4]). It

does a depth-first search, followed by a second depth-first search on the reverse graph. This makes good sense
the first search discovers which vertices can reach which others, and the second search discovers which vertices

can be reached by which others.

1.3.Examples

Figure 1 shows a directed graph, its three strong components, and its SC graph. Each strong component is strongly connected.

Figure 1 : Strong Components Of A Directed Graph.

An elementary misperception is that a strongly connected graph has a Hamiltonian cycle. The component {2, 4, 5, 6 }

illustrates that this is not always true.

 Each vertex is labeled by its preorder number followed by its low point value.

Figure 2: Execution Of Strong Component Algorithm.

 EX 1: Suppose we number the vertices of an arbitrary directed graph by topologically numbering the SC graph,
and then listing first the vertices in SC number 1, then the vertices in SC number 2, etc. The adjacency matrix of

the graph with new vertex numbers is upper block triangular. This is because no edge goes from a higher numbered

SC to a lower numbered SC It is upper triangular except for the block corresponding to SC {b, d, e}.

www.ijird.com July, 2013 Vol 2 Issue 7

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 222

Figure 3: Upper Block Triangular Adjacency Matrix

 EX 2: Example 1 shows how the SC graph is used to speed up operations on sparse matrices like Gaussian

elimination, matrix inversion, finding eigenvalues, etc. The given matrix M is interpreted as a directed graph, with

mzj corresponding to edge (i,j). The adjacency matrix of Example1 is constructed, and the 1 for each edge (i,j) is

replaced by the value m2j . The resulting block upper triangular matrix has less fill-in for Gaussian elimination

and nice properties for other matrix operations [7].

 Figure 4 below illustrates the execution of the algorithm on the graph.

Figure 4: Execution Of Strong Component Algorithm

 Figure 5 below shows a tournament and its SC graph. Player a is first, players b, d, e are in the 2nd tier, and

player c is last.

 A Markov chain is irreducible if the graph of its (nonzero) transition probabilities is strongly connected.

1.4.Observation

 The algorithm is very simple to code and is covered in many textbooks. It can be appreciably slower than the
other two algorithms, because it makes two passes over the graph and has larger memory requirement.

Figure 5: Tournament And Its SC Graph

2.Bridges And Cut Points Of An Undirected Graph
In this paper G = (V, E) is a connected undirected graph.

2.1.Definitions

 A vertex v is an cutpoint or articulation point, if G - v is not connected. A graph is biconnected if it has no cutpoint.

 A biconnected component is a maximal subgraph that has no cutpoint.

 An edge e is a bridge if G - e is not connected. An edge is a bridge if and only if it's not in any cycle.

A graph is bridgeless if it has no bridges.

www.ijird.com July, 2013 Vol 2 Issue 7

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 223

 Let B be the set of all bridges of G. The bridge components (BCs) of G are the connected components of G - B.

Equivalently a BC is the induced subgraph on a maximal set of vertices, any of which can reach any other without

crossing a bridge.

 Contracting each BC to a vertex gives a tree, the bridge tree.

 An orientation of an undirected graph assigns a unique direction to each edge.

 A perfect matching of an undirected graph G is a spanning subgraph in which every vertex has degree exactly 1.

2.2.Examples

 Figure 6 shows a graph with 3 bridges, 6 cut points, and 7 biconnected components. It illustrates that an end of a bridge is a

cut point unless it has degree one. However, a cut point need not be the end of a bridge.

Figure 6: Undirected Graph With Bridges And Cutpoints

 If a communications network (e.g., Internet) has a bridge, that link's failure disables communication, i.e., there

are sites that cannot send messages to each other. If the network has an articulation point, that site's fa ilure also

disables communication.

2.3.Inference

 All vertices on a cycle are in the same BC. In inference the bridge tree is formed by repeatedly contracting

cycles.

 A vertex x of degree < 1 is a vertex of the bridge tree. In inference the BC's are {x} an d the BC's of G - x.

 The following is a high level algorithm for finding the bridges and bridge tree. It has a linear -time

implementation almost identical to the strong component algorithm. We call the last vertex x of a dfs path a

dead end if x has degree < 1.

Algorithm3: Bridges

Input: connected undirected graph G = (V, E)

Output: bridge components and bridges of G

repeat until G has no vertices:

grow a dfs path P until a cycle is found or a dead end is reached cycle C:

contract the vertices of C

dead end x: mark {x} as a BC

if x has degree 1, then mark its edge as a bridge of G

 A similar linear-time algorithm finds the cutpoints and biconnected components of an undirected graph [2].

 The original linear-time dfs algorithm of Hopcroft and Tarjan for cutpoints and biconnected components [1] is

based on the idea of lowpoints .

Start with a dfs tree T. Assume that the vertices are numbered in discovery order and that each vertex is identified with

its discovery number. Define

lowpoint(v) = min{v} U {w : some back edge goes from a descendant of v to w} Hopcroft and Tarjan proved that G is
biconnected if and only if

vertex 1 has exactly one child (which must be vertex 2);

lowpoint(2) = 1;

each vertex w > 2 has lowpoint(w) < v, where v is the parent of w.

The cutpoints have a similar characterization.

Lowpoint is easy to compute in a bottom-up pass over T, since

lowpoint(v) = min{v} U {lowpoint(w) : w a child of v} U {w : (v, w) a back edge}

2.4.More Examples

Figure 7 below illustrates the execution of the Bridges algorithm on the graph

www.ijird.com July, 2013 Vol 2 Issue 7

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 224

Figure 7: Execution Of Bridge Algorithm

 Figure 8 below illustrates Robbins's Theorem that a connected undirected graph has a strongly connected orientation if and

only if it is bridgeless [5]. If one of the horizontal edges is deleted, making the other a bridge, then the graph has no strongly

connected orientation.

Figure 8: Undirected Graph And Strongly Connected Orientation

EX: Kotzig's Theorem states that a unique perfect matching must contain a bridge of G. Figure 9 shows a graph with a unique

perfect matching matched edges are drawn heavy. Note that deleting the bridge of the matching gives another graph with a unique
perfect matching. This idea can be used to efficiently find a unique perfect matching or show it does not exist .

Figure 9: Graph With A Unique Perfect Matching

 Whitney's Flipping Theorem asserts that a graph is planar if and only if each biconnected component is planar [6].

3.References
1. R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972), 146-160.
2. H. N. Gabow, Path-based depth-first search for strong and biconnected components, Inf. Proc. Letters 74 (2000),

107-114.

3. M. Sharir, A strong-connectivity algorithm and its application in data flow analysis, Comp. and Math. with

Applications 7 (1981), 67-72.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition, McGraw-

Hill, 2001.

5. H. E. Robbins, A theorem on graphs, with an application to a problem in traffic control, Amer. Math. Monthly 46

(1939), 281-283.

6. H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932), 339-362.

7. F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969.

8. A. V. Aho, R. Sethi, and J. D[39] M. Sharir, A strong-connectivity algorithm and its application in data flow anal-
ysis, Comp. and Math. with Applications 7 (1981), 67-72.

9. S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup, Dominators in linear time, SIAM J. Comput. 28 (1999),

2117-2132.

10. L. Auslander and S. V. Parter, On imbedding graphs in the plane, J. Math. and Mech. 10 (1961), 517-523.

11. H. N. Gabow, An ear decomposition approach to approximating the smallest 3-edge connected spanning subgraph

of a multigraph, Proc. 13th Annual ACM-SIAM Symp. on Disc. Algorithms (2002), 84-93.

