
www.ijird.com                                 August, 2013                                 Vol 2 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 265 
 

 

 

Algorithm For Stack With Random Operations 
(Stack Using Random Array Operations) 

 
 

 

 

 

 

 

1.Introduction 
As we all know a stack has only one end (top)  for performing all operations,but using this technique /algorithm one can perform 
operations on stack with random locations .We can make the top random by implementation of arrays using this algorithm . 
For getting this approach of stack with operations at random locations we need two things : 

 A first set of one dimensional  array – that works as stack 
 A second set of one dimensional array – that keep the tracks of all locations of the stack , it works as a confirmation table for 

first set of arrays (stack). 
What ever the operation you perform on the element of the stack , the location of that element will be kept on the confirmation table 
(i.e. a second set of array ) for further confirmation and matching used in operations . 
 
2.Proposed Algorithm 
In this algorithm we are going to perform three basic operations on a stack . 
Operations : 

 Add 
 Delete 
 Show 

 
1.   Algorithm add(item,location) 
2.  { 
//push a element/item into the stack at provided location 
//save that location in confirmation table to keep the track of stack locations  
3.  if(stack[location] not equal to  null ) then 
4.  { 
5.   stack[location]=item; 
6.   table_location=table_location+1; 
7.   } 
8.   else 
9.   { 
10.  write(“false”); 
11.  return false; 
12.  } 

ISSN:  2278 – 0211 (Online) 

Suchait Gaurav 
Department Of Computer Science & Engineering 

ShriRam College Of Engineering & Management, Gwalior, India 
 

Abstract : 
A stack is an ordered collection of items for which we can only add or remove items from one end (the top of the stack). The 
stack is another container class, much like a list, but with a much more limited set of operations: push, pop and size . 
The proposed work presents a fundamental algorithm to perform add,delete and size operations on random locations in stack 
.Array based implementation of this algorithm can perform operation at any random location in stack (not limited with top 
only).The total algorithm works on two basic set of arrays in which one works as stack (for storing elements) and other works 
as confirmation table for stack (for storing and matching locations). 
 
Key words: Stack Algorithm , One dimensional array , data structure  



www.ijird.com                                 August, 2013                                 Vol 2 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 266 
 

13.  stack_table[table_location]=location; 
14. return true; 
15. } 
 
1.   Algorithm  remove(item,location) 
2.  { 
//setting the item at given location to null 
//and remove the location from confirmation table too 
3.   for i:=1 to MAX do 
4.   { 
5.   if (stack[i] equals  to item)  then 
6.   { 
7.   stack[i]=null; 
8.    } 
9.    } 
10.   for j:=1 to MAX do 
11.   { 
12.   if (stack_table[j] equals location ) then 
13.   { 
14.   stack_table[j]=null; 
15.   } 
16.   } 
17.    } 
 
1.   Algorithm show() 
2.  { 
3.  for k:=table_location to >= 1 do 
4.  { 
5.  if(stack_table[k] not equals to null) then 
6.  { 
7.  value=stack_table[k]; 
8.  write(stack[value]); 
//it prints the value of stack at a given location and show the whole stack  
9.  } 
10.  } 
11.  } 
 
 
3.Explanation Of Algorithm And Operations 
Our basic aim is to make the top of stack random , so that we can put the element into the stack at anywhere without having any 
condition of top. 
So, for this we have two array memories now , as described above  
Stack and confirmation table 
So everytime when you add the element in the stack at a specific location it checks in the confirmation table , for confirming that is 
any element/item existing at that location or not . 
For example if we have stack[5] and stack_table[5] (both must be of same index) then 
 
 

stack[5] 

stack[4] 

stack[3] 

stack[2] 

stack[1] 
Stack 

 
 



www.ijird.com                                 August, 2013                                 Vol 2 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 267 
 

stack_table[5] 

stack_table[4] 

stack_table[3] 

stack_table[2] 

stack_table[1] 
Stack table 

 
4.Add Operation 
When you add a element into the stack at any random value then the location of that element will be automatically inserted into the 
stack_table using FILO phenomenon it means locations int stack_table will be inserted in incrementing order. 
For example if you insert the value 5 at stack[3] ,then in stack table location of element i..e 3 will be automatically inserted into in 
stack table at stack_table[1]=3 . 
 
  

Stack[5] 

Stack[4] 

Stack[3] = 5 

Stack[2] 

Stack[1] 
 

stack_table[5] 

stack_table[4] 

stack_table[3] 

stack_table[2] 

stack_table[1] = 3 
 
Now when you insert the 8  in the stack suppose at location stack[1] ,then in stack table location of element i..e 1 will be automatically 
inserted into in stack table at stack_table[2]=1 . 
What ever the operation you performed at any stack location ,the second confirmation table will automatically store that location into 
it . 
 

Stack[5] 

Stack[4] 

Stack[3] = 5 

Stack[2] 

Stack[1] = 8 
Stack 

 
stack_table[5] 

stack_table[4] 

stack_table[3] 

stack_table[2] = 1 

stack_table[1] = 3 
Stack table 

 
 
 



www.ijird.com                                 August, 2013                                 Vol 2 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 268 
 

 
5.Delete Operation 
For implementing a delete operation into the stack ,we set the memory to null state .Suppose if i want to delete to stack[1] , then For 
this we use a for loop to move all over the stack array . 

1. for(int i=1;i<=MAX;i++) 
Now is start moving from stack[1] to stack[5] 
 

Stack[5] 

Stack[4] 

Stack[3] = 5 

Stack[2] 

Stack[1] = 8 
 
Loop is moving upward for finding the given element in the stack array. 
2. if(stack[i] equals to item) then  

set stack[1]=null; 
 

Stack[5] 

Stack[4] 

Stack[3] = 5 

Stack[2] 

Stack[1] = null 
 

3. Now we have to set null to the location in confirmation table also.for implementing this we again use for loop for moving in 
the stack_table array . 

 for(int q=1;q<=MAX;q++) 
 

stack_table[5] 

stack_table[4] 

stack_table[3] 

stack_table[2] = 1 

stack_table[1] = 3 
 
Loop is moving upward for finding the given element in the stack_table array. 

4. if(stack_table[q] equals to location) then 
 set stack_table[q]=null; 
 

stack_table[5] 

stack_table[4] 

stack_table[3] 

stack_table[2] = null 

stack_table[1] = 3 
 
Now the delete operation at location stack[1] is done completely . 
 
6.Show Operation 
Now we have performed both operations on a stack ( add and delete) now we wants to display the elements in stack array . There are 
two basic steps for displaying these elements from the stack . 

 Take the locations from confirmation table that are starting from stack_table[1] . 
 Match these locations in to stack array to get the elements at that location and display them . 



www.ijird.com                                 August, 2013                                 Vol 2 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 269 
 

Steps : 
1. for (int y=table_location; y>=1; --y) 

2. now check if(stack_table[y] not equals not null) then 
3. suppose int h= stack_table[y] ,we get the location here from confirmation table 
4. now use this location for getting value from stack . 
5. Display stack[h] 
6. end . 

Now in our stack[5] and stack_tables arrays we have only one value left after deleting the 8 from location stack[1] . 
 
 
   

stack_table[5] 

stack_table[4] 

stack_table[3] 

stack_table[2] 

stack_table[1] = 3 
Current stack_table array 

       
Stack[5] 

Stack[4] 

Stack[3] = 5 

Stack[2] 

Stack[1] 
Current stack array 

 
And it will display the elements from stack array . 
 
7.Experimental Implementation 
The above algorithm can be easily implemented using c++.A small piece of code is provided for implementing this algorithm . 
#include<iostream>  
using namespace std;  
#define MAX 5  
class stack{  
public :  
int st[MAX],st_table[MAX];  
int table_location;  
stack(); //constructor to set the default value of table_location variable  
void add(int item,int location); //function for pushing values into the stack  
int remove(int item,int location); //function for removing the values from the stack  
void show();   //function for displaying the values in the stack  
};  
stack::stack()  
{  
table_location=0;  
}  
void stack::add(int item,int location)  
{  
if(st[location]!=’\0’)  
{  
st[location]=item;  
table_location++;  //incrementing table_location by 1  
}  
else  
{  
cout<<endl<<"Problem"<<endl;  

 Loop 



www.ijird.com                                 August, 2013                                 Vol 2 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 270 
 

}  
//checking process begins from here  
st_table[table_location]=location; //putting value in another array that working as a table for confirmation  
} //ending push function here  
int stack::remove(int item,int location)  
{  
for(int d=1;d<=MAX;d++)  
{  
if(st[d]==item)  
{  
st[d]='\0';   
}  
}  
for(int v=1;v<=MAX;v++)  
{  
if(st_table[v]==location)  
{  
st_table[v]='\0';  
}  
}  
}//ending remove function here  
void stack::show()  
{  
cout<<endl;  
cout<<"Elements in stack"<<endl;  
for (int y=table_location; y>=1; --y)  
{  
if(st_table[y]!=0)  
{  
int h=st_table[y];  
cout<<endl;  
cout<<st[h];  
cout<<endl;  
}  
}  
}  
int main()  
{  
stack s;  
s.add(12,2);  
s.add(21,5);  
s.add(675,3);  
s.add(7,4);  
s.remove(21,5);  
s.remove(12,2);  
s.show();  
return 0;  
}  
 
8.Experimental Result And Conclusion 
By performing this experiment a proper accurate output given as the size of stack that displays the elements left in the stack . 

 
 
 
 
 
 
 
 



www.ijird.com                                 August, 2013                                 Vol 2 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 271 
 

 
Now 7 and 675 are the final elements left in stack after performing all operations ,that shows the size of the stack , it shows that we 
can store elements in stack at random locations using a implementation of confirmation table . 
 
9.Acknowledgment 
The principle author's acknowledgment is due to Sh.R.S.Sharma,chairman,ShriRam Group of Colleges(SRGOC) for the inspiration 
and dedication to carry the research . 
 
10.References  

1) Fundamentals of Computer Algorithms, Second Edition, by E.Horowitz,S.Sahni and Sanguthevar Rajasekaran 
2) Fundamentals of Data Structures in C++, Second Edition, by E.Horowitz,S.Sahni and D.Mehta,Silicon Press,2007 
3) Data Structures,Algorithms,and Applications in C++ , by S.Sahni,Second Edition ,Silicon Press,2005 
4) Algorithms ,by Robert Sedgewick and Kevin Wayne ,Fourth Edition ,2011 
5) M. Herlihy. Wait-free synchronization. ACM Transactions On Programming Languages and Systems,  
        13(1):123–149, Jan. 1991. 
6) T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition. 
7) C. C. McGeoch. Toward an experimental method for algorithm simulation. IN- 
8) FORMS Journal on Computing, 1(1):1—15, Winter 1996. 

 
 


