

ISSN: 2278-0211 (Online)

Zero-Free Regions For Complex Polynomials

M. H. Gulzar
Department Of Mathematics, University Of Kashmir, Srinagar, India

Abstract:

In this paper we obtain zero-free regions for polynomials with restricted coefficients. These results generalize many already known results on the subject.
Mathematics Subject Classification: 30C10, 30C15.
Key words: Coefficient, Polynomial, Zero-free region

1.Introduction And Statement Of Results

In the literature there exist a large number of published papers giving the regions containing some or all the zeros of a polynomial. Recently M. H. Gulzar [2] proved the following results:

1.1.Theorem A

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n such that $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$ and

$$
\rho+\alpha_{n} \geq \alpha_{n-1} \geq \ldots \ldots \geq \alpha_{1} \geq \tau \alpha_{0}
$$

for some $\rho, 0<\tau \leq 1$, then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{k}(R>0, K>0)$, does not exceed

$$
\frac{1}{\log k} \log \frac{R^{n+1}\left[|\rho|+\rho+\left|\alpha_{n}\right|+\alpha_{n}-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+2\left|\alpha_{0}\right|+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right]}{\left|a_{0}\right|}
$$

and

$$
\frac{1}{\log k} \log \frac{\left|a_{0}\right|+R\left[|\rho|+\rho+\left|\alpha_{n}\right|+\alpha_{n}-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right]}{\left|a_{0}\right|} \quad \text { for } R \leq 1 .
$$

1.2.Theorem B

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that for some real α, β,

$$
\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1,2, \ldots \ldots, n
$$

and

$$
\left|\rho+a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \ldots \geq\left|a_{1}\right| \geq \tau\left|a_{0}\right|,
$$

for some $\rho \geq 0,0<\tau \leq 1$, then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{k}(R>0, k>0)$, does not exceed

$$
\frac{1}{\log k} \log \frac{\left(\rho+\left|a_{n}\right|\right)(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{j=1}^{n-1}\left|a_{j}\right|-\left|a_{0}\right|(\cos \alpha-\sin \alpha-1)}{\left|a_{0}\right|} .
$$

1.3.Theorem C

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n such that $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$ and

$$
\alpha_{n} \geq \alpha_{n-1} \geq \ldots \ldots \geq \alpha_{\lambda}, k \alpha_{\lambda} \geq \alpha_{\lambda-1} \geq \ldots \ldots . . \geq \alpha_{1} \geq \tau \alpha_{0}
$$

for $k \geq 1,0<\tau \leq 1,0 \leq \lambda \leq n$, then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{k}(R>0, k>0)$ does not exceed

$$
\frac{1}{\log k} \log \frac{R^{n+1}\left[\left|\alpha_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)+2\left|\alpha_{0}\right|-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right.}{\left|a_{0}\right|}
$$

for $R \geq 1$
and

$$
\frac{1}{\log k} \log \frac{\left|a_{0}\right|+R\left[\left|\alpha_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right.}{\operatorname{for} R \leq 1 . \quad\left|a_{0}\right|}
$$

In this paper we prove the following results:

1.4.Theorem 1

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n such that $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$ and

$$
\rho+\alpha_{n} \geq \alpha_{n-1} \geq \ldots \ldots \geq \alpha_{1} \geq \tau \alpha_{0}
$$

for some $\rho, 0<\tau \leq 1$, then $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{1}}$ for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{2}}$ for $R \leq 1$, where

$$
M_{1}=R^{n+1}\left[\left|\alpha_{n}\right|+\alpha_{n}+|\rho|+\rho-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right]
$$

and

$$
M_{2}=R\left[\left|\alpha_{n}\right|+\alpha_{n}+|\rho|+\rho-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] .
$$

Combining Theorem A and Theorem 1, we get the following result:

1.5.Corollary 1

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n such that $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$ and

$$
\rho+\alpha_{n} \geq \alpha_{n-1} \geq \ldots \ldots \geq \alpha_{1} \geq \tau \alpha_{0}
$$

for some $\rho, 0<\tau \leq 1$, then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{1}} \leq|z| \leq \frac{R}{k}(R>0, K>1)$, does not exceed

$$
\frac{1}{\log k} \log \frac{R^{n+1}\left[|\rho|+\rho+\left|\alpha_{n}\right|+\alpha_{n}-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+2\left|\alpha_{0}\right|+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right]}{\left|a_{0}\right|} \quad \text { for } R \geq 1
$$

and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{2}} \leq|z| \leq \frac{R}{k}(R>0, K>1)$, does not exceed

$$
\frac{1}{\log k} \log \frac{\left|a_{0}\right|+R\left[|\rho|+\rho+\left|\alpha_{n}\right|+\alpha_{n}-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right]}{\left|a_{0}\right|} \quad \text { for } R \leq 1 .
$$

1.6.Theorem 2

Let $P(z)=\sum_{j=0}^{\infty} a_{i} z^{j}$ be a polynomial of degree n such that $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$ and

$$
\alpha_{n} \geq \alpha_{n-1} \geq \ldots \ldots \geq \alpha_{\lambda}, k \alpha_{\lambda} \geq \alpha_{\lambda-1} \geq \ldots \ldots . . \geq \alpha_{1} \geq \tau \alpha_{0}
$$

for $k \geq 1,0<\tau \leq 1,0 \leq \lambda \leq n$, then $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{3}}$ for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{4}}$ for $R \leq 1$, where

$$
M_{3}=R\left[\left|\alpha_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right]
$$

and
$M_{4}=R\left[\left|\alpha_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right]$
Combining Theorem C and Theorem 2, we get the following result:

1.7.Corollary 2

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n such that $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$ and

$$
\alpha_{n} \geq \alpha_{n-1} \geq \ldots \ldots \geq \alpha_{\lambda}, k \alpha_{\lambda} \geq \alpha_{\lambda-1} \geq \ldots \ldots . . \geq \alpha_{1} \geq \tau \alpha_{0}
$$

for $k \geq 1,0<\tau \leq 1,0 \leq \lambda \leq n$, then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{3}} \leq|z| \leq \frac{R}{k}(R>0, k>1)$ does not exceed

$$
\frac{1}{\log k} \log \frac{R^{n+1}\left[\left|\alpha_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)+2\left|\alpha_{0}\right|-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right.}{\left|a_{0}\right| \quad \text { for } R \geq 1}
$$

and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{4}} \leq|z| \leq \frac{R}{k}(R>0, k>1)$ does not exceed

$$
\frac{1}{\log k} \log \frac{\left|a_{0}\right|+R\left[\left|\alpha_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right.}{\left|a_{0}\right|}
$$

1.8.Theorem 3

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that for some real α, β,

$$
\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1,2, \ldots \ldots, n
$$

and

$$
\left|\rho+a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \ldots \geq\left|a_{1}\right| \geq \tau\left|a_{0}\right|
$$

for some $\rho \geq 0,0<\tau \leq 1$, then $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{5}}$ for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{6}}$ for $R \leq 1$, where

$$
\begin{aligned}
M_{5}= & R^{n+1}\left[\left(|\rho|+\left|a_{n}\right|\right)(\cos \alpha+\sin \alpha+1)-\tau\left|a_{0}\right|(\cos \alpha-\sin \alpha+1)\right. \\
& \left.+\left|a_{0}\right|+2 \sin \alpha \sum_{j=1}^{n-1}\left|a_{j}\right|\right]
\end{aligned}
$$

and

$$
\begin{aligned}
M_{6}= & R\left[\left(|\rho|+\left|a_{n}\right|\right)(\cos \alpha+\sin \alpha+1)-\tau\left|a_{0}\right|(\cos \alpha-\sin \alpha+1)\right. \\
& \left.+\left|a_{0}\right|+2 \sin \alpha \sum_{j=1}^{n-1}\left|a_{j}\right|\right] .
\end{aligned}
$$

Combining Theorem B and Theorem 3, we get the following result:

1.9.Corollary 3

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that for some real α, β,

$$
\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1,2, \ldots \ldots, n
$$

and

$$
\left|\rho+a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \ldots \geq\left|a_{1}\right| \geq \tau\left|a_{0}\right|,
$$

for some $\rho \geq 0,0<\tau \leq 1$, then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{5}} \leq|z| \leq \frac{R}{k}(R>0, k>1)$, does not exceed

$$
\frac{1}{\log k} \log \frac{\left(\rho+\left|a_{n}\right|\right)(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{j=1}^{n-1}\left|a_{j}\right|-\left|a_{0}\right|(\cos \alpha-\sin \alpha-1)}{\left|a_{0}\right|}
$$

2.Lemma

For the proof of Theorem 3, we need the following lemma:

2.1.Lemma

Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial o f degree n with complex coefficients such that for some real α, β, $\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, 0 \leq j \leq n$, and any $\mathrm{t}>0,\left|t a_{j}\right| \geq\left|a_{j-1}\right|, 0 \leq j \leq n$, then, $\left|t a_{j}-a_{j-1}\right| \leq\left(t\left|a_{j}\right|-\left|a_{j-1}\right|\right) \cos \alpha+\left(t\left|a_{j}\right|+\left|a_{j-1}\right|\right) \sin \alpha . \mathrm{s}$
Lemma 3 is due to Govil and Rahman [2].

3.Proofs Of Theorems

$$
\begin{aligned}
& \text { 3.1.Proof Of Theorem 1: Consider The Polynomial } \\
& \qquad \begin{aligned}
\mathrm{F}(\mathrm{z})= & (1-\mathrm{z}) \mathrm{P}(\mathrm{z}) \\
= & (1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}\right) \\
= & -a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -a_{n} z^{n+1}+a_{0}-\rho z^{n}+\left(\rho+\alpha_{n}-\alpha_{n-1}\right) z^{n}+\ldots \ldots+\left(\alpha_{2}-\alpha_{1}\right) z^{2} \\
& +\left[\left(\alpha_{1}-\tau \alpha_{0}\right)+\left(\tau \alpha_{0}-\alpha_{0}\right)\right] z+i \sum_{j=0}^{n}\left(\beta_{j}-\beta_{j-1}\right) z^{j} \\
= & a_{0}+G(z), \text { where } \\
G(z)= & -a_{n} z^{n+1}{ }_{0}-\rho z^{n}+\left(\rho+\alpha_{n}-\alpha_{n-1}\right) z^{n}+\ldots \ldots+\left(\alpha_{2}-\alpha_{1}\right) z^{2} \\
& +\left[\left(\alpha_{1}-\tau \alpha_{0}\right)+\left(\tau \alpha_{0}-\alpha_{0}\right)\right] z+i \sum_{j=0}^{n}\left(\beta_{j}-\beta_{j-1}\right) z^{j} .
\end{aligned}
\end{aligned}
$$

For $|z|=R$, we have by using the hypothesis,

$$
\begin{aligned}
& \qquad \begin{array}{l}
|G(z)| \leq \\
\quad\left|a_{n}\right| R^{n+1}+|\rho| R^{n}+\left|\rho+\alpha_{n}-\alpha_{n-1}\right| R^{n}+\ldots \ldots+\left|\alpha_{2}-\alpha_{1}\right| R^{2}+\left|\alpha_{1}-\tau \alpha_{0}\right| R \\
\\
\quad+(1-\tau)\left|\alpha_{0}\right| R+\sum_{j=0}^{n}\left(\left|\beta_{j}\right|+\left|\beta_{j-1}\right|\right) R^{j} \\
\leq
\end{array} \quad R^{n+1}\left[\left|\alpha_{n}\right|+|\rho|+\rho+\alpha_{n}-\alpha_{n-1}+\ldots \ldots+\alpha_{2}-\alpha_{1}+\alpha_{1}-\tau \alpha_{0}\right. \\
& \left.\quad+(1-\tau)\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] \\
& = \\
& \quad
\end{aligned}
$$

$$
\begin{aligned}
& |G(z)| \leq R\left[\left|\alpha_{n}\right|+\alpha_{n}+|\rho|+\rho-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] \\
& \quad=M_{2}
\end{aligned}
$$

Since $\mathrm{G}(\mathrm{z})$ is analytic for $|z| \leq R, \mathrm{G}(0)=0$, it follows, by Schwarz Lemma that $|G(z)| \leq M_{1}|z|$ for $|z| \leq R, R \geq 1$ and $|G(z)| \leq M_{2}|z|$ for $|z| \leq R, R \leq 1$.
Therefore, for $|z| \leq R, R \geq 1$,

$$
\begin{aligned}
|F(z)| & =\left|a_{0}+G(z)\right| \\
& \geq\left|a_{0}\right|-|G(z)| \\
& \geq\left|a_{0}\right|-M_{1}|z| \\
& >0 \\
\text { if } \quad|z| & <\frac{\left|a_{0}\right|}{M_{1}},
\end{aligned}
$$

and for $|z| \leq R, R \leq 1,|F(z)|>0$ if $|z|<\frac{\left|a_{0}\right|}{M_{2}}$.
This shows that $\mathrm{F}(z)$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{1}}$ for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{2}}$ for $R \leq 1$.
Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, the theorem follows.

3.2.Proof Of Theorem 2: Consider The Polynomial

$$
\begin{aligned}
\mathrm{F}(\mathrm{z})= & (1-\mathrm{z}) \mathrm{P}(\mathrm{z}) \\
= & (1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}\right) \\
= & -a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots \ldots .+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -a_{n} z^{n+1}+a_{0}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\ldots \ldots+\left(\alpha_{\lambda+1}-\alpha_{\lambda}\right) z^{\lambda+1} \\
& +\left[\left(k \alpha_{\lambda}-\alpha_{\lambda-1}\right)-(k-1) \alpha_{\lambda}\right] z^{\lambda}+\left(\alpha_{\lambda-1}-\alpha_{\lambda-2}\right) z^{\lambda-1}+\ldots \ldots . \\
& +\left[\left(\alpha_{1}-\tau \alpha_{0}\right)+\left(\tau \alpha_{0}-\alpha_{0}\right)\right] z+i \sum_{j=1}^{n}\left(\beta_{j}-\beta_{j-1}\right) z^{j} \\
= & a_{0}+G(z), \text { where } \\
G(z)= & -a_{n} z^{n+1}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\ldots \ldots+\left(\alpha_{\lambda+1}-\alpha_{\lambda}\right) z^{\lambda+1} \\
& +\left[\left(k \alpha_{\lambda}-\alpha_{\lambda-1}\right)-(k-1) \alpha_{\lambda}\right] z^{\lambda}+\left(\alpha_{\lambda-1}-\alpha_{\lambda-2}\right) z^{\lambda-1}+\ldots \ldots . \\
& +\left[\left(\alpha_{1}-\tau \alpha_{0}\right)+\left(\tau \alpha_{0}-\alpha_{0}\right)\right] z+i \sum_{j=1}^{n}\left(\beta_{j}-\beta_{j-1}\right) z^{j}
\end{aligned}
$$

For $|z| \leq R$, we have by using the hypothesis

$$
\begin{aligned}
|G(z)| \leq & \left|a_{n}\right| R^{n+1}+\left|\alpha_{n}-\alpha_{n-1}\right| R^{n}+\ldots \ldots+\left|\alpha_{\lambda+1}-\alpha_{\lambda}\right| R^{\lambda+1}+\left|k \alpha_{\lambda}-\alpha_{\lambda-1}\right| R^{\lambda} \\
& +(k-1)\left|\alpha_{\lambda}\right| R^{\lambda}+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right| R^{\lambda-1}+\ldots \ldots+\left|\alpha_{1}-\tau \alpha_{0}\right| R+(1-\tau)\left|\alpha_{0}\right| R \\
& +\sum_{j=1}^{n}\left(\left|\beta_{j}\right|+\left|\beta_{j-1}\right|\right) R^{j}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left|a_{n}\right| R^{n+1}+R^{n}\left[\alpha_{n}-\alpha_{n-1}+\ldots . .+\alpha_{\lambda+1}-\alpha_{\lambda}+k \alpha_{\lambda}-\alpha_{\lambda-1}\right. \\
& \quad+(k-1)\left|\alpha_{\lambda}\right|+\alpha_{\lambda-1}-\alpha_{\lambda-2}+\ldots \ldots+\alpha_{1}-\tau \alpha_{0}+(1-\tau)\left|\alpha_{0}\right| \\
& \left.\quad+\left|\beta_{0}\right|+\left|\beta_{n}\right|+2 \sum_{j=1}^{n-1}\left|\beta_{j}\right|\right] \\
& \leq R^{n+1}\left[\left|a_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right. \\
& \left.\quad+2 \sum_{j=1}^{n-1}\left|\beta_{j}\right|\right] \\
& \leq R^{n+1}\left[\left|\alpha_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] \\
& =M_{3} \quad \text { for } R \geq 1 .
\end{aligned}
$$

and

$$
\begin{aligned}
& |G(z)| \leq R\left[\left|\alpha_{n}\right|+\alpha_{n}+(k-1)\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)-\tau\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] \\
& \quad=M_{4} \text { for } R \leq 1
\end{aligned}
$$

Since $\mathrm{G}(\mathrm{z})$ is analytic for $|z| \leq R, \mathrm{G}(0)=0$, it follows, by Schwarz Lemma that $|G(z)| \leq M_{3}|z|$ for $|z| \leq R, R \geq 1$ and $|G(z)| \leq M_{4}|z|$ for $|z| \leq R, R \leq 1$.
Therefore, for $|z| \leq R, R \geq 1$,

$$
\begin{aligned}
|F(z)| & =\left|a_{0}+G(z)\right| \\
& \geq\left|a_{0}\right|-|G(z)| \\
& \geq\left|a_{0}\right|-M_{3}|z| \\
& >0 \\
\text { if } \quad|z| & <\frac{\left|a_{0}\right|}{M_{3}},
\end{aligned}
$$

and for $|z| \leq R, R \leq 1,|F(z)|>0$ if $|z|<\frac{\left|a_{0}\right|}{M_{4}}$.
This shows that $\mathrm{F}(z)$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{3}}$ for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{4}}$ for $R \leq 1$.
Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, the theorem follows.

$$
\begin{aligned}
& \text { 3.3.Proof Of Theorem 3: Consider The Polynomial } \\
& \begin{aligned}
\mathrm{F}(\mathrm{z})= & (1-\mathrm{z}) \mathrm{P}(\mathrm{z}) \\
= & (1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots . .+a_{1} z+a_{0}\right) \\
= & -a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -a_{n} z^{n+1}+a_{0}-\rho z^{n}+\left(\rho+a_{n}-a_{n-1}\right) z^{n}+\ldots . .+\left(a_{2}-a_{1}\right) z^{2} \\
& +\left[\left(a_{1}-\tau a_{0}\right)+\left(\tau a_{0}-a_{0}\right)\right] z \\
= & a_{0}+G(z) \text {, where } \\
G(z)= & -a_{n} z^{n+1}-\rho z^{n}+\left(\rho+a_{n}-a_{n-1}\right) z^{n}+\ldots \ldots+\left(a_{2}-a_{1}\right) z^{2} \\
& +\left[\left(a_{1}-\tau a_{0}\right)+\left(\tau a_{0}-a_{0}\right)\right] z .
\end{aligned}
\end{aligned}
$$

For $|z| \leq R$, we have by using the hypothesis and Lemma 3

$$
\begin{aligned}
|G(z)| \leq & \left|a_{n}\right| \\
& \quad R^{n+1}+|\rho| R^{n}+\left|\rho+a_{n}-a_{n-1}\right| R^{n}+\ldots \ldots+\left|a_{2}-a_{1}\right| R^{2}+\left|a_{1}-\tau a_{0}\right| R \\
& \quad|(1-\tau)| a_{0} \mid R \\
& \left.+\ldots R^{n+1}+|\rho| R^{n}+\left[\left(\left|\rho+a_{n}\right|-\left|a_{n-1}\right|\right) \cos \alpha+\left(\left|\left|a_{2}\right|-\left|a_{1}\right|\right) \cos \alpha+\left(\left|a_{2}\right|+\left|a_{1}\right|\right) \sin \alpha\right] R^{2}+(1-\tau)\left|a_{n-1}\right|\right) \sin \alpha\right] R^{n} \\
& +\left[\left(\left|a_{1}\right|-\tau\left|a_{0}\right|\right) \cos \alpha+\left(\left|a_{1}\right|+\tau\left|a_{0}\right|\right) \sin \alpha\right] R \\
\leq & R^{n+1}\left[\left(|\rho|+\left|a_{n}\right|\right)(\cos \alpha+\sin \alpha+1)-\tau\left|a_{0}\right|(\cos \alpha-\sin \alpha+1)\right. \\
& \left.\quad+\left|a_{0}\right|+2 \sin \alpha \sum_{j=1}^{n-1}\left|a_{j}\right|\right] \\
= & M_{5} \quad \text { for } R \geq 1
\end{aligned}
$$

and

$$
\begin{aligned}
|G(z)| \leq & R\left[\left(|\rho|+\left|a_{n}\right|\right)(\cos \alpha+\sin \alpha+1)-\tau\left|a_{0}\right|(\cos \alpha-\sin \alpha+1)\right. \\
& \left.+\left|a_{0}\right|+2 \sin \alpha \sum_{j=1}^{n-1}\left|a_{j}\right|\right] \\
= & M_{6} \quad \text { for } R \leq 1 .
\end{aligned}
$$

Since $\mathrm{G}(\mathrm{z})$ is analytic for $|z| \leq R, \mathrm{G}(0)=0$, it follows, by Schwarz Lemma that $|G(z)| \leq M_{5}|z|$ for $|z| \leq R, R \geq 1$ and $|G(z)| \leq M_{6}|z|$ for $|z| \leq R, R \leq 1$.
Therefore, for $|z| \leq R, R \geq 1$,
$|F(z)|=\left|a_{0}+G(z)\right|$
$\geq\left|a_{0}\right|-|G(z)|$
$\geq\left|a_{0}\right|-M_{5}|z|$
>0
if $|z|<\frac{\left|a_{0}\right|}{M_{5}}$,
and for $|z| \leq R, R \leq 1,|F(z)|>0$ if $|z|<\frac{\left|a_{0}\right|}{M_{6}}$.
This shows that $\mathrm{F}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{5}}$ for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{6}}$ for $R \leq 1$.
Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, the theorem follows.

4.References

1. N. K. Govil and Q. I. Rahman, On the Enestrom- Kakeya Theorem, Tohoku Math. J. 20(1968),126-136.
2. M. H. Gulzar, Number of Zeros of a polynomial in a Given Circle, International Journal of Engineering Sciences, Vol. Issue 2013.
