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1. Inroduction 
The earth’s climate system and its changes control life on earth and have a substantial influence on the society and economy. Climate 
change can be due to natural and anthropogenic effects. It is very important that these can be separated (Volker and Ingeborg, 2006). 
Today, the entire global community has started suffering from the unfriendly climatic condition, the gradual disappearance of rain 
forest in the tropics, the loss of plant and animal species, changes in rainfall patterns, and global warming resulting from climate 
change. Climate change has the potential to affect all natural systems, thereby becoming a threat to human development and survival 
socially, politically, and economically (Oluwafemi et al, 2011). 
Climate change is in many countries in the world, one of the biggest environmental threats to food production, water availability, 
forest biodiversity and livelihoods (Nury et al, 2012). Moreover, it is widely believed that developing countries in tropical regions of 
the world, e.g. Nigeria, will be impacted more severely than developed ones. The climate of Nigeria is tropical however; there are 
wide climatic variations in different regions of the country. Near coast temperatures rarely exceeds 0 032 C(90 F)  but humidity is very 
high and nights are very hot. In land there are two different seasons. A wet season from April to October with lower monthly 
temperatures and a dry season from November to March with a midday temperatures that rises above 0 038 C(100 F) but relatively 

cool .hts, dropping as low as 0 012 C(54 F) .  
Understanding the nature and scale of possible climate changes in South Eastern Nigeria using the temperature data from 
meteorological unit of National Root Crop Research Institute, (NRCRI) Umudike is of importance to agricultural production and 
human health. For this purpose time series analysis of weather data can be a valuable tool to investigate its variability pattern and, 
maybe, even to predict short and long term changes in the time series.  
Time series analysis and forecasting have become a major tool in numerous hydro-meteorological  applications to study trends and 
variations in variables like rainfall, humidity, temperature stream flow and many other environmental parameters.  
It is therefore important to forecast how quickly the temperatures are going to increase as temperatures in excess of 040 C may 
predispose both human and livestock to heat related diseases (Agrometeorological Bulletin, 2010).  
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Abstract: 
This study examines 1977 – 2012 monthly temperature data for South Eastern Nigeria collected using metrological instrument in 
the NRCRI Umudike at latitude 050, 291N and longitude 070, 331E (122M above sea level). A preliminary check on the time 
series plot of the data showed seasonal variation suggesting that the series was not stationary. The classical Box and Jenking’s 
Time Series methodology with its indicative ACF and PACF identification guide was employed. The SARIMA (0, 0, 2) (2, 1, 1)12 
model was found to be adequate for the series and  monthly forecast from 2013 to 2017 showcased  relatively stable temperature 
values within these years.  Verification of the model using the 2011 – 2012 monthly data shows that the model is parsimoniously 
equitable. At the end, it was recommended that studying and carefully applying mathematical models could help track future rise 
in monthly temperatures. 
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2. Methodology  
 
2.1. The Temperature Data Set 
From 1977 to 2012, monthly minimum and maximum temperature data covering the Umudike district has been collected from the 
NRCRI Umudike Meteorological Department. Temperature data within the district are gathered with the help of meteorological 
instruments in the NRCRI Umudike at latitude 050, 291N and longitude 070, 331E (122M above sea level). 
 

Plot of Umudike MAX.(ºC) Temperature (1977-2012)
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Figure 1: Time Series Plot of Maximum Monthly Temperatures (NRCRI 1977-2012). 

 
An offline descriptive statistics of the data containing the Minimum Eastern region monthly temperature shows that the minimum 
temperature within the region over the time investigated has not been lower than 017 C . This might not be of great concern to 
habitants within the Eastern environment and thus, will not form the focus of this study. However, the maximum monthly 
temperatures in excess of the room temperature might pose a possible climatic hazard to the environment. Consequently, the 
maximum monthly temperature would be considered in this study since it represents the upper extreme climatic factor. The study 
attempts to analyse the trend in the maximum monthly temperatures and the forecast as showcased in Figure 1 after identifying a 
suitable model. A non stationarity situation is observable here as the plot shows a trace of seasonal variation. 
 
2.2. The ARIMA Model 
ARIMA is an acronym that stands for Auto-Regressive Integrated Moving Average. This is a known time series model and could be 
defined algebraically by  
 
                             1 1 1t 1 t p p t 1 t q t qy y y e e e                                                  (1)  

at time 1t  , ,n , where   ,1, ,t je j 0 q    are the lagged forecast errors. Usually, the 1p q   unknown 

parameters , 1 , p  and 1 , q  are determined by minimizing the squared residuals (Box and Jenkins, 1976). 

From the ARIMA technique, the dependent variable ty is predicted in the first part of the right hand side of equation (1) above based 
on its values at earlier time periods. This constitutes the autoregressive (AR) part in equation (1) above. In the second part, the 
dependent variable ty  also depends on the values of the residuals at earlier time periods, which may be regarded as prior random 
alarms. This is the moving average (MA) part of equation (1).  
In addition to the AR and MA parameters, ARIMA models may also include a constant. The interpretation of a (statistically 
significant) constant depends on the model that is fit. Two indicative situations are: 

 The situation of no autoregressive parameters in the series. In such case, the expected value of the constant is  , the mean of 
the series;  

 The situation of autoregressive parameters in the series. In such case, the constant represents the intercept. If the series is 
differenced, then the constant represents the mean or intercept of the differenced series. For the non-seasonal scenario, the 
simple ARIMA( , , )p d q  model is used with p  the number of autoregressive terms, d the number of non-seasonal 
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differences, and q  the number of lagged forecast errors in the prediction equation. However, climatic data usually contains 
the seasonal variations. Thus, it is more apt to incorporate the full Seasonal Auto Regressive Integrated Moving Average 
(SARIMA) model  

                             SARIMA( , , )( , , )Sp d q P D Q                          (2) 

With P  the order of the seasonal AR-model; D the order of the seasonal differencing and Q  the order of the seasonal MA-model.  
The subscript s  is the number of periods in the season.  Mathematically, the general form of the model represented in equation (2) 
above can be written in the backshift notation  B  as  

                                 DdS S S
AR SAR t MA SMA tB B 1 B 1 B y B B e                                                 (3) 

where AR  is the non-seasonal  AR parameter, MA  the non-seasonal  MA parameter, SAR , the seasonal AR parameter, and SMA  
the seasonal MA parameter. 
 
2.3. The Stationarity Condition 
Stationarity is an important condition for ARIMA models. In practice, the mean and variance should be constant as a function of time 
before performing the analysis. Otherwise, past effects would accumulate and the values of successive ty ’s would approach infinity 
making the process non-stationary. For a first order non-stationarity, the observations with ARIMA models should be sieved first by 
differencing the observations d  times, using d

ty  instead of ty  as the time series to obtain stationary data. This is usually done 
with the transformation 
     1t t ty y y                    (4) 

The operations of equation (4) will result to the values , , ,...d 0 1 2 for the non-seasonal part and values , , ,...D 0 1 2  for the 
seasonal part and this serves as an indicative guide in eliminating the first order non-stationarity in the model identification process. 
Note that in the situation of a second order non-stationarity, a simple transformation (e.g. the log transformation) could be a 
worthwhile procedure to apply when detected.  
  
3. Applying the Arima Technique 
So far, the above centered on the Box and Jenkins methodology with its benchmark model application procedure on mainly three steps 
(a) identification (b) estimation (c) and the forecasting or diagnostic checking. The identification stage involves the determination of 
tentative values of the , ,p d q and the , ,P D Q  sets using the linear least squares method. In the identification stage, a stationary or a 
weakly stationary situation is obtained by differencing and transformation of the data if needed. Then, the ACF and the PACF plots 
are used to suggest possible models by determining the orders p  and q  in the Seasonal  ARIMA( , , )( , , )Sp d q P D Q  model. The 
goodness of the best models could be evaluated using the Mean Square Error (Residuals) MSE or using the Akaike Information 
Criterion AIC (Tanja, 2010). 
 
3.1. Preliminary Check and Model Detection 
A SAR (1) estimate of 0.99987, which is closer to one strongly suggests that the model is non-stationary at this stage and might need 
to be differenced at the seasons. The left and right panels of Figure 2 shows the ACF and PACF of the differenced SAR (1) 
preliminary analysis of the maximum temperatures respectively up to lag 36. Observe that the ACF (Left Panel) seems to cut off after 
the first season suggesting a model with Q 1 . The PACF seems not to have significant lags extending the first two or three seasons 
suggesting an initial model gaze with 2P  .  
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Autocorrelation Function
MAX.(ºC): ARIMA (0,0,0)(1,0,0) residuals;

(Standard errors are white-noise estimates)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 36 -.004 .0460
 35 -.007 .0460
 34 -.007 .0461
 33 -.006 .0461
 32 +.005 .0462
 31 +.008 .0462
 30 +.012 .0463
 29 +.010 .0464
 28 +.009 .0464
 27 +.008 .0465
 26 +.002 .0465
 25 -.007 .0466
 24 -.007 .0466
 23 -.002 .0467
 22 -.004 .0468
 21 -.008 .0468
 20 -.014 .0469
 19 -.014 .0469
 18 -.013 .0470
 17 -.008 .0470
 16 -.007 .0471
 15 -.012 .0472
 14 -.014 .0472
 13 -.008 .0473
 12 -.019 .0473
 11 +.078 .0474
 10 +.176 .0474
  9 +.268 .0475
  8 +.345 .0476
  7 +.419 .0476
  6 +.480 .0477
  5 +.542 .0477
  4 +.618 .0478
  3 +.700 .0478
  2 +.796 .0479
  1 +.890 .0479
Lag Corr. S.E.

0
1412. 0.000
1412. 0.000
1412. 0.000
1412. 0.000
1412. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1411. 0.000
1408. 0.000
1394. 0.000
1362. 0.000
1310. 0.000
1233. 0.000
1131. 0.000
1002. 0.000
834.9 0.000
620.5 0.000
344.3 0.000
  Q p

 

Partial Autocorrelation Function
MAX.(ºC): ARIMA (0,0,0)(1,0,0) residuals;
(Standard errors assume AR order of k-1)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 36 -.042 .0481
 35 -.083 .0481
 34 -.053 .0481
 33 -.037 .0481
 32 -.040 .0481
 31 -.011 .0481
 30 +.031 .0481
 29 -.025 .0481
 28 -.000 .0481
 27 +.002 .0481
 26 -.010 .0481
 25 +.308 .0481
 24 -.066 .0481
 23 -.100 .0481
 22 -.108 .0481
 21 -.005 .0481
 20 -.058 .0481
 19 +.005 .0481
 18 +.015 .0481
 17 -.018 .0481
 16 +.041 .0481
 15 -.015 .0481
 14 -.044 .0481
 13 +.436 .0481
 12 -.095 .0481
 11 -.118 .0481
 10 -.127 .0481
  9 -.071 .0481
  8 -.100 .0481
  7 -.032 .0481
  6 +.022 .0481
  5 -.010 .0481
  4 +.005 .0481
  3 -.055 .0481
  2 +.021 .0481
  1 +.890 .0481
Lag Corr. S.E.

 
Figure 2: ACF (Left Panel) and PACF (Right Panel) of SAR (1) Residuals – NRCRI Temp. Data 

 
So far, the study has detected a seasonal effect s , an indicativeQ 1 , 2P   from the ACF and PACF respectively, and a 
parsimonious 1D   from the first seasonal difference. Thus, tentative models obtainable from the ongoing preliminary analysis are 
shown in Table 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table 1: SARIMA Models for the NRCRI Maximum Temperatures (1977-2011) 

 
Based on the MSE of the various indicative Seasonal ARIMA models displayed in Table 1, the SARIMA(0,0,2)(2,1,1)12 using the 
unconditional method (STATISTICA Help Documentations, 2010) could be chosen as the best fitted model for the NRCRI (1977-
2012) maximum temperature dataset.  
 
3.2. Model Adequacy 
The identified ARIMA model must be diagnostically checked for its appropriateness or adequacy. The Box and Jenkings prescribed 
approach to this entails looking at the ACF and PACF of the model’s residuals.  These are shown for the monthly maximum 

MODEL MSE 
Conditional Method Unconditional Method 

SARIMA(0,1,1)(1,0,0)12 1.12270 1.10060 

SARIMA(1,1,0)(1,1,0)12 1.03510 1.02660 

SARIMA(2,1,0)(1,0,0)12 1.13760 1.11850 

SARIMA(1,0,2)(1,1,0)12 0.78134 0.77491 

SARIMA(0,0,1)(1,1,0)12 0.78900 0.78302 

SARIMA(0,0,1)(2,1,1)12 0.62063 0.56184 

SARIMA(0,0,2)(2,1,1)12 0.61157 0.55127 

SARIMA(0,1,2)(1,1,0)12 0.84553 0.79193 
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temperatures at the NRCRI station in Figure 3. Observe that the spikes at the ACF (left panel) and the PACF (right panel)  up to lag 36 
are within the 95% statistical confidence bounds respectively. This suggests that the SARIMA(0,0,2)(2,1,1)12  is adequate for the 
NRCRI (1977-2012) maximum temperature time series dataset.   
The results obtained from the ACF and PACF of Figure 3 is supported by the residual series plotted in Figure 4 as the values centers 
randomly around the zero value. This is readily observable in Figure 4 when traced from the Right Y-axis. 
 

Autocorrelation Function
MAX.(ºC): ARIMA (0,0,2)(2,1,1) residuals;

(Standard errors are white-noise estimates)

 Conf. Limit-1.0
-0.5

0.0
0.5

1.0
0

 36 -.030 .0454
 35 +.035 .0454
 34 -.010 .0455
 33 +.034 .0456
 32 +.016 .0456
 31 -.013 .0457
 30 +.045 .0457
 29 +.062 .0458
 28 +.106 .0458
 27 +.022 .0459
 26 +.003 .0459
 25 +.040 .0460
 24 -.031 .0461
 23 +.018 .0461
 22 +.040 .0462
 21 -.040 .0462
 20 +.061 .0463
 19 -.026 .0463
 18 -.031 .0464
 17 -.063 .0464
 16 +.053 .0465
 15 +.033 .0465
 14 +.015 .0466
 13 +.011 .0467
 12 -.015 .0467
 11 -.010 .0468
 10 -.070 .0468
  9 +.024 .0469
  8 +.015 .0469
  7 +.043 .0470
  6 +.007 .0470
  5 -.005 .0471
  4 +.001 .0471
  3 +.032 .0472
  2 +.002 .0472
  1 -.007 .0473
Lag Corr. S.E.

0
23.49 .9463
23.04 .9398
22.46 .9352
22.40 .9181
21.85 .9112
21.74 .8911
21.65 .8664
20.66 .8711
18.84 .9028
13.52 .9855
13.29 .9812
13.28 .9728
12.54 .9732
12.08 .9693
11.93 .9588
11.19 .9588
10.46 .9590
 8.71 .9779
 8.41 .9719
 7.95 .9677
 6.09 .9871
 4.77 .9939
 4.28 .9936
 4.17 .9892
 4.11 .9813
 4.01 .9695
 3.97 .9488
 1.74 .9950
 1.48 .9930
 1.38 .9862
  .53 .9974
  .51 .9918
  .50 .9737
  .50 .9195
  .02 .9882
  .02 .8832
  Q p

  

Partial Autocorrelation Function
MAX.(ºC): ARIMA (0,0,2)(2,1,1) residuals;
(Standard errors assume AR order of k-1)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 36 -.052 .0475
 35 +.027 .0475
 34 -.015 .0475
 33 +.041 .0475
 32 +.017 .0475
 31 -.027 .0475
 30 +.052 .0475
 29 +.051 .0475
 28 +.102 .0475
 27 +.016 .0475
 26 +.015 .0475
 25 +.046 .0475
 24 -.024 .0475
 23 +.010 .0475
 22 +.034 .0475
 21 -.039 .0475
 20 +.061 .0475
 19 -.025 .0475
 18 -.033 .0475
 17 -.059 .0475
 16 +.052 .0475
 15 +.032 .0475
 14 +.015 .0475
 13 +.016 .0475
 12 -.016 .0475
 11 -.012 .0475
 10 -.073 .0475
  9 +.023 .0475
  8 +.016 .0475
  7 +.043 .0475
  6 +.006 .0475
  5 -.005 .0475
  4 +.001 .0475
  3 +.033 .0475
  2 +.002 .0475
  1 -.007 .0475
Lag Corr. S.E.

 
Figure 3: ACF(Left Panel) and PACF(Right Panel) of SARIMA(0,0,2)(2,1,1)12 – NRCRI Temp. Data 

 

Plot of MAX.(ºC) & Model Residual (series)
Cases: 1 through 432
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Figure 4: Original Series (Left Y-axis) and SARIMA (0, 0, 2) (2, 1, 1)12 Residual Series (Right Y-axs) 
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3.3. Forecasting 
A final and another useful step in the Box and Jenkin’s approach is the application of the identified model in forecasting one or more 
future time steps ahead. Using the identified model’s parameters, Figure 5 shows the one-month-ahead predictions with their 95% 
confidence limits for the monthly maximum temperatures for the next five years (2013 – 2017) at the NRCRI station.  The years 2011-
2012 was used to verify the predictability of the model as exhibited in Figure 6.   
 

Forecasts; Model:(0,0,2)(2,1,1) Seasonal lag: 12
Input: MAX.(ºC)

Start of origin: 1        End of origin: 432

Ja
n-

19
77

Fe
b-

19
79

M
ar

-1
98

1

A
pr

-1
98

3

M
ay

-1
98

5

Ju
n-

19
87

Ju
l-1

98
9

A
ug

-1
99

1

S
ep

-1
99

3

O
ct

-1
99

5

N
ov

-1
99

7

D
ec

-1
99

9

Ja
n-

20
02

Fe
b-

20
04

M
ar

-2
00

6

A
pr

-2
00

8

M
ay

-2
01

0

Ju
n-

20
12

Ju
l-2

01
4

A
ug

-2
01

6

 Observed   Forecast   ± 95.0000%

26

28

30

32

34

36

38

26

28

30

32

34

36

38

 
Figure 5: Original Plot with five Years Forecast at 95% Confidence Interval 

 

Plot of 2011-2012 Umudike Temp. & Forecast
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Figure 6:  2011-2012 Original Data and Predicted Data 

 
4. Conclusion 
The Box-Jenkins ARIMA methodology has proved to be a useful technique that can help decision makers to establish better strategies 
and to set up priorities for equipping themselves against upcoming weather changes. The maximum temperature time series fitted by 
this procedure for the NRCRI station shows that it is possible to predict the evolution of the maximum temperature of Eastern Nigeria 
based on the data collected for the past 36 years. Based on the best suited model, the maximum temperature for the next five years 
seems to be slightly stable from that of the reference period 1977-2012, with maximum values not exceeding the period’s maximum. 
Of course, this approach has shown dependable results and a general recommendation is that careful understudy of various 
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mathematical models like the ARIMA could help track future rise in monthly temperature although for a relatively short time 
intervals. Indeed as we advance in time, the uncertainty about the predictions grows, so the results might become indecisive. 
 
5. References 

1. BOX, G.E.P. & JENKINS, G.M. (1976), Time Series Analysis: Forecasting and Control. Revised Edition, Holden-Day: San 
Francisco, CA. 

2. NIGERIA METEOROLOGICAL AGENCY (2010), Agrometeorological Bulletin, NIMET Meteorological Agency Abuja-
Nigeria. 

3. NURY, A.H., KOCH, M. & ALAM, M. J. B. (2013), Time Series Analysis and Forecasting of Temperatures in Sylhet 
Division of Bangladesh, 4th International Conference on Environmental Aspects of Bangladesh (ICEAB), August 24-26. 

4. OLUWAFEMI, S.O., FEMI, J.A. & OLUWATOSI, T.D. (2010), Time Series Analysis of Rainfall and Temperature in South 
West Nigeria, the Pacific Journal of Science and Technology, Vol.11 No.2 pp 552-564. 

5. STATSOFT, INC (2010), STATISTICA Version 9.1 Help Documentations, URL http://www.statsoft.com/. 
6. TANJA VAN HECKE, (2010), Time Series Analysis to Forecast Temperature Change, Ghent University Academic 

Bibliography 35(2). P.63-69. 
7. VOLKER, W. & INGEBORG, H. (2006), The Climate Station of the University of Hohenheim: Analyses of Air Temperature 

and Precipitation Time Series since 1878; International Journal of Climatology, Vol.26, pp 113-138 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 


