
 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 203

Power Consumption in Networks-on-Chip by Encoding Scheme

1. Introduction
Continuous improvements in semiconductor technology make it possible that a whole computing system comprising processors,
memories, accelerators, peripherals, etc. can now be integrated in a single silicon die. This trend has been favoured thanks to the
definition of new design methods which stress the reuse of pre-designed and pre-verified modules in the form of intellectual properties
(IPs or cores). As the number of IPs used to implement the functionalities demanded by the current systems-on-a-chip (SoCs)
increases, the role played by the on-chip interconnection system becomes more and more important. The International Technology
Roadmap for Semiconductors [1] depicts the on-chip communication issues as the limiting factor, for performance and power
consumption in current and next generation SoCs. Network-on-Chip (NoC) is generally viewed as the ultimate solution for the design
of modular and scalable communication architectures. A NoC-based communication infrastructure promises flexibility in network
topology, the support of advanced routing algorithms, flow-control and switching techniques, and the possibility of guarantying
quality-of-service requirements. These advantages over bus-based architectures comes at the cost of increase in complexity which
pushes the communication system to become one of the main elements of a SoC which strongly impact the cost, power, and
performance figures of the overall system. For instance, in the Intel’s 80-tiles TeraFLOPS processor [2] over 30% of the chip area is
dedicated to the communication system and the communication power accounts for about 28% of the total. At the Massachusetts
Institute of Technology RAW chip [3] the NoC is responsible for the 40% os the system power. In this paper we focus on power
dissipation and energy consumption issues related to the communication system of a NoC-based SoC. We propose the use of data
encoding technique as a viable way to reduce both the power dissipation and energy consumption on the links of a NoC. Several data
encoding schemes previously proposed for bus-based architectures were applied in the NoC context [4]. However, the impact of the
coupling capacitance, which is dominant, especially in deep-sub-micron (DSM) technologies, had not been taken into account.

 ISSN 2278 – 0211 (Online)

A. V. Manoj
Department of ECE, S. V. College of Engineering, Tirupati, India

S. Bhavya Sree
Department of ECE, S. V. College of Engineering, Tirupati, India

K. Yuva Kumar
Department of ECE, S. V. College of Engineering, Tirupati, India

V. Purandhar Reddy
Department of ECE, S. V. College of Engineering, Tirupati, India

Abstract:
Power has become an important design criterion in modern system designs, especially in portable battery-driven applications. A
significant portion of total power dissipation is due to the transitions on the off-chip address buses. This is because of the large
switching capacitances associated with these bus lines. There are many encoding schemes in the literature that achieve a huge
reduction in transition activity on the instruction address bus. However, on data and multiplexed address buses, none of the
existing schemes consistently achieve significant reduction in transition activity. Also, many of the existing techniques add
redundancy in space and/or time. In this paper, novel encoding schemes are proposed that significantly reduce transitions on
these buses without adding redundancy in space or time. Also, for applications with tight delay constraints, configurations with
minimal delay overhead while still achieving significant reduction in transition activity are proposed. Results show that, for
various benchmark programs, these techniques achieve reduction of up to 54% in transition activity on a data address bus. On a
multiplexed address bus, there is a reduction of up to 61% using our techniques. The proposed schemes are then compared with
the existing schemes. It is seen that on an average, the reductions achieved by our techniques are twice those obtained using the
current scheme on a data address bus and 55% more than those for multiplexed address bus.

Key words: Network on Chip; Low power; Data encoding; Coupling capacitance; Power analysis

 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 204

Differently from [5] we propose an end-to-end encoding scheme which exploits the wormhole switching technique and which is
transparent to the NoC (i.e.,it does not require the re-design of routers and links). We assess the proposed encoding scheme and
architecture on a set of representative data streams. We compare the proposed approach with the bus-invert coding [6] and the
coupling driven bus invert coding [7] as they have the highest potential for power saving while still represent a feasible
implementation for on-chip communication. The comparison embraces not only the power/energy figures, but also the implications of
silicon area and delay due to the overhead of the encoder/decoder logic in the network interfaces (NI). We show that the proposed data
encoding scheme outperforms the other proposals allowing to save up to 26% in power dissipation and 9% in energy consumption.

2. Overview of the Proposed Scheme
In this section we give a brief overview of the proposed data encoding scheme and its application in the NoC context. Since the
proposed scheme leverages on the use of wormhole routing as switching technique used in the NoC, in the next subsection we recall
some notions about wormhole routing. Then, we will present the proposed scheme in a sketch.

2.1. Characteristics of Sequential Data
Statistics show that typically, in the execution of a program, 15% of the instructions are branches or jumps [10]. This means that, on
the instruction address bus, there will be a change of address sequence 15% of the time and the remaining 85% of the time there will
be sequential accesses. Since addresses on the instruction address bus are sequential most of the time, we first analyze the
characteristics of a completely sequential set of data. Let L be the length of the sequence data and W be the width of the data (AW-1,
AW-2 , ….. A1, A0). A sample sequential address stream of width 4. It can be noticed that: The low-order bit flips almost 100% of the
time, while the probability of a flip drops off geometrically for increasing bit significance. The probability of a flip on bit position i is
2-i (i from 0 to W-1). It can be shown that the ratio of the number of toggles on bit position i to the total number of toggles over the
complete sequence of data L to be ~2-(i+1), irrespective of the length of sequential data.

 It follows that bit lines 0, 1, 2 contribute ~87.5% of the total number of toggles that occur in the sequence data.
 Also, the bit lines have recurring patterns, with the recurring pattern length equal to 2(i+1), for bit position i.

Further analysis of recurring patterns in sequential data shows that the recurring patterns have a characteristic:
Xi+p/2 = complement (Xi) = Xi-p/2 for i > p/2
Where X is the single bit stream and p is the recurring pattern length and Xi denotes i-th data in bit stream X. Now, we propose to
encode functions to reduce the transitions that occur on the instruction address bus.
Encoding functions for the instruction address bus:
Typically, data on an instruction address bus is sequential 85% of the time [10]. Hence the characteristics of the sequential data are
used to define the following encoding functions to reduce the number of transitions on the bus.
As was seen, the bit lines have a recurring pattern when the data on the bus is sequential. For a recurring pattern of length p, it can be
proved that the function, ENC1, of the form Yi = Xi  Xi-1  Xi-2  ...  Xi-p+1 yields the minimum number of toggles. “”
represents an Exclusive-OR function [16]. Note that since the recurring pattern lengths of different bit lines of sequential data are
different, the encoding functions would be different on each bit line. While this encoding eliminates all transitions on the
corresponding bit line if the addresses are sequential, the implementation of this encoding function requires (p-1) storage elements and
(p-1) 2- input XOR gates and the same amount of logic in implementing the decoding function. Also the delay induced in the critical
path of the encoding and decoding functions increases for longer recurring pattern lengths, which may not be desirable. Fortunately,
the recurring patterns are the longest in higher order bit lines of the bus in which the transitions are very few. So this encoding can be
applied only on a few low order bit lines that carry most of the transitions.
ENC2: Yi = Xi  Xi-p/2
Where, p is the recurring pattern length and is even. Since Xi and Xi-p/2 are complements of each other (from 1), this encoding function
will always result in logic ‘1’ given that the incoming bit stream follows the recurring patterns in the sequence data. This encoding
function adds the delay of only one 2-input XOR gate on the critical path irrespective of the length of the recurring pattern. Now we
consider the encoder and decoder implementations of both ENC1 and ENC2 for an example, recurring pattern 0011, with recurring
pattern length p=4.

Figure 1: Implementation Structure of the Encoding Logic (ENC1)

 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 205

Since p=4, ENC1 will be Yi = Xi  Xi-1  Xi-2  Xi–3. The implementation of this encoding function is shown in Figure 1. The
corresponding decoding function will be Xi = Yi  Xi-1  Xi-2  Xi–3, the implementation structure being similar to that of the
encoder. Similarly the encoding function for recurring pattern 0011 using ENC2 will be Yi = Xi  Xi-2 and the implementation is
shown in Figure 3.

Figure 2: Implementation Structure of the Encoding Logic (ENC2)

The bold lines shown in the Figures 1 and 2 indicate the delay overhead in the critical path. The encoder inserts a one-cycle delay
between arrival of address and output of the encoding. As indicated in [5], this extra delay is not an overhead because even if binary
code (without encoding) were used, the flip-flop at the output of the bus would be needed because the address would be generated by a
very complex logic that produces glitches and misaligned transitions. The flip-flops filter out the glitches and align the edges of the
clock, thereby eliminating excessive power dissipation and signal quality deterioration.
Advantages of ENC2 compared to ENC1:

 The delay introduced in the critical path is independent of the length of the recurring pattern
 The delay introduced is very minimal and is just the delay of a 2-input XOR gate.
 If there is a discontinuity in the bit sequence, ENC1 will take p more sequential data inputs to settle down while ENC2 needs

only p/2 sequential data inputs.
Disadvantages of ENC2 compared to ENC1:

 While ENC1 can be applied on any recurring pattern, ENC2 has limited applicability. (ENC2, is most suited for instruction
address buses.)

In the following sections we propose some adaptive encoding techniques based on some heuristics for reducing the transitions on
address buses.

3. Adaptive Encoding for Instruction Address Buses
In our adaptive encoding technique, all possible input symbols are assigned codes. For every input symbol, the corresponding
encoding is transmitted and the codes are adapted (updated) based on the current input symbol and current encodings.

3.1. Swap Based Adaptive Encoding
On instruction address buses, since the addresses are mostly sequential, we use a heuristic to send the same code when the addresses
are sequential by swapping the code of the current address with the code of the next address in sequence. That is, for every address to
be transmitted the corresponding code is put on the bus and the code for this address is swapped with the code of the next address in
sequence. So if the addresses are sequential the same code is transmitted, thereby eliminating the transitions on the bus. We illustrate
this with an example for a 2-bit address bus.
Let the initial encoding for the possible addresses 0, 1, 2, and 3 be 0, 1, 2, and 3 respectively. Let the actual address sequence be: 0 1
2 3 3 2 3 0 2 3 0. The first incoming symbol is 0. Since the code for 0 in the encoding array is 00 initially, the code transmitted for
symbol 0 is 00. Then the codes for symbols in the incoming array are adapted based on the current incoming symbol. Since the next
symbol that could come is more likely to be 1 (symbol sequential to 0), the code for 0 is swapped with code for 1 so that if the next
incoming symbol happens to be 1, the same code for 0 previously is transmitted thereby reducing the transitions. This is repeated over
all the incoming symbols. Note that the code that is transmitted differs from the previous transmitted code only if there is a
discontinuity in the incoming symbol sequence. Also, the symbols could be decoded at the receiving end by having a similar encoding
array at the other end with the same initialization as the one at the transmitting end. The only difference being that the encoding array
at the receiving end is updated based on the symbol that is decoded from the incoming code.
The structure of the implementation of SWAP based adaptive encoding for 2-bit address bus is shown in Figure 3.All the signal lines
in the Figure 4 are 2-bit lines. C00, C01, C10, and C11 are the current codes for addresses 00, 01, 10, and 11 respectively. N00, N01, N10,
and N11 are the adapted next encodings that depend on the current input X0X1 and current codes C00, C01, C10, and C11. As can be seen
the new code for given address is either the same code or is swapped with the neighboring address. Consider the MUX4 in Figure 4. If
the inputs are 00 or 01, the code for 11 holds the value (N11 = C11) since the next address in sequence of neither of these addresses is
11. When the input is 10, the sequential address of 10 is 11, so the code for 11 is swapped with the code for 10. i.e, N11 = C10 and N10
= C11. Similarly, when the input is 11, since the next address in sequence for 11 is 00, the code for 00 is swapped with the code for 11
i.e., N00 = C11 and N11 = C00. The decoder for the SWAP based adaptive encoding will have a similar structure as the encoder in Figure

 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 206

4, the only difference being that the select signal to the SEL-MUX will be the encoded address Y0Y1 and the output of this SEL-MUX
gives the actual address, X0X1. Also, the delay element after the SEL-MUX will be absent for the decoder. The delay induced in the
critical path in both encoder and the decoder, is simply the delay of the 4-1 multiplexer for 2-bit address bus.
Note that the number of ENC-MUX’s, storage elements and the size SEL-MUX increases exponentially with the number of address
bits. Also the delay induced in the critical path increases with the number of address bits because of the increasing size of the SEL-
MUX. But as we noted earlier, in sequential addresses, the maximum number of transitions occur in the least significant bits. So this
encoding could be done only on the last few address bits with significant reduction in the total number of transitions. Our results in
Section 7 are presented for SWAP based adaptive encoding on a 32-bit address bus with encoding on least significant 2-bits, 3-bits
and 4-bits. Note that all the encoding schemes suggested for the instruction address bus are applied only on the last few address bits.
Next we propose heuristics for adaptive encoding on data address buses.

3.2. Adaptive Encoding For Data Address Bus
Unlike the instruction address bus, the addresses on the data address bus are non-sequential most of the time. But still the data
addresses follow the spatial and temporal locality principles [10]. That is, it is more likely that there will be an access to a location
near the currently accessed location (spatial locality) and it is more likely that the currently accessed location will be accessed again in
the near future (temporal locality).

Figure 3: Implementation of Encoder for SWAP based adaptive encoding

In this section we define adaptive encoding techniques based on the heuristics associated with these principles of localities for
reducing the transitions on the data address bus. The principle of locality states that most programs do not access all code and data
uniformly [10]. We will reduce the number of transitions between the most frequently accessed address ranges by assigning them the
codes with minimal Hamming distance. To achieve this, we use Move-To-Front (MTF) and Transpose (TR) methods in self-
organizing lists [14] for assigning codes so as to reduce the transitions on the address bus. Move-To-Front (MTF) is a transformation
algorithm that, instead of outputting the input symbol, outputs a code that refers to the position of the symbol in a table with all the
symbols. Thus the length of the code is the same as the length of the symbol. Both the encoder and decoder initialize the table with the
same symbols in the same positions. Once a symbol is processed, the encoder outputs its position in the table and then the symbol is
shifted to the top of the table (position 0). All the codes that from the position 0 until the position of the symbol being coded, are
moved to the next higher position. This simple scheme assigns codes with lower values for more redundant symbols (symbols which
appear more frequently). We illustrate this with the following input data sequence: 0 1 0 0 2 0 1 0 3. Shows encoding and decoding
of the data using MTF. The Transpose (TR) algorithm is similar to MTF in the way the code assigned to the symbol being the position
of the symbol, but instead of moving the symbol to the front, the symbol is exchanged in position with the symbol just preceding it. If
the symbol is at the beginning of the list, it is left in the same position. Note that, in both MTF and TR, the most frequent incoming
symbols are at the beginning of the list and the Hamming distance associated with these symbols is smaller. So, these heuristics are
very useful in data address buses in which there is a greater likelihood of two different address sequences being sent on the bus (two
arrays being accessed alternatively, reads from an address space and writes to a different address space, etc.). In such cases, we would
like to keep the encoding of these addresses as close as possible i.e., with minimal Hamming distance. The Move-To-Front (MTF) and
TRANSPOSE heuristics achieve the goal. Figure 4 shows the implementation of the encoder for MTF/TRANSPOSE based adaptive
encoding for a 2-bit bus. A straightforward implementation of the encoding method as suggested in the algorithm would be
impractical because searching for the symbol in the array and sending the index of the array would add a huge delay overhead on the
critical path. A better way for implementing this would be to keep the location of the symbol fixed and for every incoming symbol,
update the codes of the symbols. Figure 4 shows the implementation in which the symbol location is fixed and the code for the
symbols is changed based on the current input symbol and the current code of the symbol. The SEL-MUX does the job of selecting the

 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 207

corresponding code for X1X0. The combinatorial logic in front of the registers does the job of updating the codes depending on the
current codes of these symbols and the output code.
For MTF, the combinatorial logic will have the functionality in the following way:
Nxx = Cxx if Y0Y1 < Cxx
= Cxx + 1 if Y0Y1 > Cxx
= 00 if Y0Y1 = Cxx
For Transpose, the combinatorial logic will have the functionality as given below:
Nxx = Cxx - 1 if (Y0Y1 = Cxx) and (Cxx  0) = Cxx + 1if (Y0Y1 = Cxx + 1)= Cxx

Figure 4: Encoder for MTF/TRANSPOSE based adaptive encoding

Note that, by using this implementation structure, in the critical path only a 4-1 multiplexer delay is being introduced for a 2-bit
address bus. Similar to the SWAP based adaptive encoding, the number of storage elements needed and the size of SEL-MUX
increase exponentially with the number of address bits. So we use a standard method of splitting the address bus into smaller buses
and then applying this encoding on each of these smaller buses independently. For example, a 32-bit address bus can be split into 16
smaller buses each with 2-bits. The encoding can be applied independently on each of these 2-bit buses. The results in the next section
are shown for a 32-bit address bus and splitting it into different smaller bus sizes.

3.3 Adaptive Encoding for Multiplexed Address Buses
On the multiplexed address bus, both instruction and data addresses are sent on the same bus. So a significant percentage of addresses
on the multiplexed address bus would still be sequential. Also, these addresses still follow the principle of locality. We propose a
heuristic to combine the techniques proposed for instruction and data address buses on the multiplexed address bus. The proposal is to
apply encoding schemes discussed for instruction address bus on the least significant bits and those for data address bus on the higher
address bus bits. When the addresses of multiplexed bus are sequential, most transitions occur on least significant bits. The techniques
for instruction address bus on least significant bits minimize the transitions in such cases. Also, the addresses follow the principle of
locality. So the schemes for data, address bus applied to higher significant bits give further reduction in transition activity. Results
have been presented in Section 7 for various combinations of instruction and data address bus encoding techniques applied on
multiplexed bus.

4. Results
In this section, we show the reduction in transition activity obtained by applying the techniques discussed in previous sections of
address streams of several programs. We then compare these results with those obtained with existing techniques. We also compare
the delay overheads of these techniques. The address bus traces of the programs were obtained by running them on an instruction-level
simulator, SHADE [15] on a SUN Ultra-5 workstation. The comparison is made in terms of the total number of toggles on the bus
before and after the encoding is applied.

Data Flow Diagrams
Data Flow Diagrams For NOC Project
Control Data Pins

 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 208

Figure 5

Figure 6

Figure 7: Input Data

Figure 8: Encoded Data

 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 209

Figure 9: Decoded Data

Figure 10: Counter Values

Figure 11: Networking Datas

Simulation Results

Figure 12: Shows the Simulation Result of the Final Encoded Data

 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 210

Figure 13: Power Result of Phase 1 methodology

Figure 14: Power Result of Phase 2 methodology

5. Conclusion
We have proposed several encoding techniques for the address buses. For instruction address buses, two encoding functions ENC1
and ENC2 and an adaptive encoding technique, SWAP is proposed. For data address buses, MTF and TRANSPOSE, adaptive
encoding techniques based on self-organizing lists, have been proposed. For multiplexed address bus, a combination of encoding
techniques has been proposed. The techniques proposed for instruction address bus are applied only on few least significant bits. This
enables the usage of these techniques in the multiplexed address bus along with the techniques proposed for data address bus.
While the INC-XOR could be used for encoding on the instruction address bus, our techniques could be used for data and multiplexed
address bus. The techniques proposed for the data address bus and multiplexed address bus, outperform the existing techniques.
Results show that 4-bit MTF with transition signaling applied to various data address streams gives up to 51% reduction in transition
activity. On the multiplexed address bus, the 4-bit SWAP + MTF on various address streams yields a reduction of up to 61%. We also
showed the configurations that have very little delay overhead but still give significant reduction in transition activity.
None of the proposed techniques add redundancy in space or time. In some applications, redundancy in space in time might be
tolerable. We are trying to develop techniques, which give better reduction in transition activity for such applications, by adding some
redundancy in space or time. Also, we are looking at how the proposed techniques could be applied on data of the data buses if the
characteristics of the data are known a priori.

6. References

1. “International thechnology roadmap for semiconductors – interconnect,”Semiconductor Industry Association, 2006.
2. S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,A. Singh, T. Jacob, S. Jain, V. Erraguntla, C.

Roberts, Y. Hoskote,N. Borkar, and S. Borkar, “An 80-tile sub-100-W TeraFLOPS processor in 65-nm CMOS,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 1,pp. 29–41, Jan. 2008.

3. M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma,
A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The raw microprocessor: a
computational fabric for software circuits andgeneral-purpose programs,” IEEE Micro, vol. 22, no. 2, pp. 25–35, 2002.

4. J. C. S. Palma, L. S. Indrusiak, F. G. Moraes, A. G. Ortiz, M. Glesner,and R. A. L. Reis, “Inserting data encoding techniques
into NoC-based systems,” in IEEE Computer Society Annual Symposium on VLSI, Mar.2007, pp. 299–304.

5. A. Jantsch, R. Lauter, and A. Vitkowski, “Power analysis of link level and end-to-end data protection in networks on chip,”
in IEEE International Symposium on Circuits and Systems, vol. 2, May 2005, pp. 1770–1773.

6. M. R. Stan and W. P. Burleson, “Bus invert coding for low power I/O,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 3, pp.49–58, Mar. 1995.

7. K. W. Kim, K. H. Baek, N. Shanbhag, C. L. Liu, and S. M. Kang,“Coupling-driven signal encoding scheme for low-power
interface design,” in IEEE/ACM International Conference on Computer-aided Design, 2000, pp. 318–321.

 www.ijird.com January, 2014 Vol 3 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 211

8. L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in direct networks,” IEEE Computer, vol. 26, pp.
62–76, Feb. 1993.

9. D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture for gigascale systems-on-chip,” IEEE Circuits and
Systems Magazine, vol. 4, no. 2, pp. 18–31, 2004.

10. Debra A. Lelewer and Daniel S. Hirschberg, Data Compression. 1987.
11. Xilinx. www.xilinx.com. [Online]. http:// www .xilinx. Com/support/documentation/data_ sheets/ds100. pdf
12. Ian D. L. Anderson and Mohammed A. S. Khalid Jason G. Tong, "Soft-Core Processors for Embedded Systems," in 18th

International Conference on Microelectronics, 2006.
13. xilinx., http:// www.xilinx.com/ise/embedded/emb_r ef_guide.pdf
14. www.xilinx.com. [Online]. http:// www.xilinx.com /microblaze/
15. www.xilinx.com. [Online]. http://www.xilinx. com/ support/ documentation/ sw_manuals / edk92i_ctt.pdf
16. Khalid Sayood, Introduction to Data Compression.
17. International Technology Roadmap for Semiconductors (ITRS) Working Group, \International Technology Roadmap for

Semiconductors (ITRS), 2009 Edition. "http://www.itrs.net/Links/2009ITRS/Home2009.htm.
18. W. J. Dally and B. Towles, \Route Packets, Not Wires:On-Chip Interconnection Networks," in The 38th InternationalDesign

Automation Conference (DAC), 2001.
19. Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, \A5-GHz Mesh Interconnect for a Teraps Processor,"

IEEEMicro, vol. 27, 2007.
20. M. Taylor, M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, \Scalar Operand Networks: On-chip Interconnect for ILP

in Partitioned Architectures," in The IEEE International Symposium on High Performance ComputerArchitecture (HPCA),
2002.

21. D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, \Memory Performance and Cache Coherency Eects on an Intel
Nehalem Multiprocessor System," in The 18th International Conference on Parallel Architectures and
CompilationbTechniques (PACT), 2009.

22. Advanced Micro Devices (AMD) Inc., \AMD Opteron Processors for Servers: AMD64-Based Server Solutions for x86
Computing." http://www.amd.com/us-en/ Processors/ Product Information /0 30 118 8796, 00.html.

23. P. Pujara and A. Aggarwal, \Cache Noise Prediction," IEEE Transactions on Computers

