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1. Introduction 

Let M be a connected   Riemannian manifold of dimension n covered by the system of coordinate neighborhoods {U; xh}  

Where the indices i,j,k,……….. Run over the range {1, 2, 3………,n}. Let   
,K   and  K,K,,,g ji

h
kjij

h

jiji



 be the covariant 

components of the   metric tensor g, the Christoffel symbols formed by  gji , the operator of the covariant differentiation with respect to 
h
ji  , the components of curvature tensor and the components of Ricci tensor and the scalar curvature of M respectively. The vector 

field   vh   is called a projective vector field if it satisfies [4] 
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for a certain covariant vector field   ρi , called the associated vector field of  vh , where  Lv  denotes the operator of  Lie derivation with 
respect to the vector field vh .When we refer to a projective vector field  vh, we always mean ρi ,   the associated covariant vector field  
given in (1.1). In particular, if ρi is zero, then a projective vector field is called an affine vector field. 
In 1980, H. Hiramatu has obtained a series of integral formulas and integral inequalities in a compact orientable Riemannian manifold 
assuming that scalar  
Curvature of M as constant. In this paper using projective and the conformal curvature tensor field of type (1,3), we have obtained the 

series of integral formulas and integral inequalities on scalar curvature 

K of M .we get necessary and sufficient conditions for 

Riemannian manifold to be isometric to a sphere of radius 


K

)1n(n 
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2. Preliminaries 
This section deals with preliminaries which are needed in the rest of the sections. 
The following known results are used in this paper.(for details please see [1].) 
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 . 

(2.3)    ji

t

tji
ji

jiijji GZ,0gG,GG


 . 

Where Einstein’s deviation tensor jiG


 of type (0,2) and the tensor h
kjiZ


are given by (see [2]) 
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= h
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Where h
kjiP


 are the components of the projective curvature tensor field of type (1,3) given by, 
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Where h
kjiC


 are the components of conformal curvature tensor field of type (1,3). 
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Where h
kjiC


 is conformal curvature tensor field of type (1,3) for n > 2. 
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We need the following known Lemmas which are used in rest of the sections. 
 
LEMMA A [3]: If complete and simply connected Riemannian manifold M with positive constant scalar curvature K of dimension 
n.>1 admits a non affine projective vector field hv and if the vector field hw is a killing vector field then M is isometric to a sphere of 

radius 

K

)1n(n 
in the Euclidean (n+1) space. 

  
LEMMA B [3]: For Projective vector field vh on a compact orientable Riemannian manifold M of dimension n>1, we have 
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LEMMA C [3]: For Projective vector field vh on a compact orientable Riemannian manifold M of manifold n>1, we have 
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LEMMA D [3]: For Projective vector field vh on a compact orientable Riemannian manifold M of dimension  n>1,  we have 
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LEMMA E [3]: For Projective vector field vh on a compact orientable Riemannian manifold M without of dimension n>1, we have  
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3. Lemmas 
In this section we prove series of Lemmas on the scalar curvature K of M which are needed to establish main theorems in the section 
4. 
 
LEMMA 3.1: For a projective vector field vh on a compact orientable Riemannian manifold M of dimension n>1, we have 
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Proof. From (2.11), it can be proved that 
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From (3.2) and after lengthy simplification, we get 
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Integrating (3.3) over M, we get 
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Now using (2.17) of Lemma B[3] and (2.18) of Lemma C[1] in (3.4) and after simplification we get (3.1). This completes the proof of 
Lemma. 
 
  
LEMMA 3.2: For a projective vector field vh on a compact orientable Riemannian manifold M of dimension n>1, we have 
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Proof. Consider, 
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From (2.1) and after lengthy simplification, we get  
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Integrating (3.11) over M, we get 
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Using (2.19) of Lemma D [3] and (3.1) of Lemma 3.2 in (3.8) we get (3.6). This completes the proof of Lemma. 
 
LEMMA 3.3: For a projective vector field vh on a compact orientable Riemannian manifold M of dimension n>1, we have 
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From (2.1), (2.6), (2.12) and after lengthy simplification, we get 
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Integrating (3.10) over M, we get 
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Using (2.19) of Lemma D[3] in (3.11) we get (3.9). This completes the proof of Lemma. 
  
LEMMA 3.4: For a projective vector field vh on a compact orientable Riemannian manifold M of dimension n>1, we have 
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After lengthy simplification and from (2.6), we get 
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Integrating (3.13) over M, we get 
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Using (2.19) of Lemma D [3] in (3.14), we get (3.12).This completes the proof of a Lemma. 
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LEMMA 3.5: For a projective vector field vh on a compact orientable Riemannian manifold M of dimension n>2, we have 
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Proof. From (2.14), we have 
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Applying covariant differentiation on both sides of (3.16), we get 
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Integrating (3.17) over M and using (2.2), (2.4), (2.6), we get 
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Using (2.17) of Lemma B[3], (2.18) of Lemma C[3], (2.19) of Lemma D[3] in (3.18) and after lengthy simplification we get (3.15). 
This completes the proof of a Lemma. 
 
LEMMA 3.6: For a projective vector field vh on a compact orientable Riemannian manifold M of dimension n>2, we have   
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Proof. Substituting (1.1) in following equation, 
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After simplification and using (2.7) and (2.8), we get 
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Integrating (3.25) over M, we get 
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Using (3.14) of Lemma 3.5 we get (3.19). This completes the proof of Lemma. 
 
4. Theorems 
In this section we prove that series of integral inequalities without putting any restriction on the scalar curvature of a Riemannian 
manifold M and obtain the necessary and sufficient conditions for M to be isometric to a sphere. 
 
THEOREM 4.1: Suppose that a compact, orientable Riemannian manifold M of dimension n>1 admits a projective vector field hv . 
Then we have, 
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Where hw is defined by (2.10). Equality in (4.1) holds if  wh is a killing vector field. 
 
Proof. Follows from Lemma A [3] and (3.1) of Lemma 3.1 
      

If in the Theorem 4.1 0Z h
kji 


 for n>2 then 


K is necessarily a constant and consequently we have following corollary from 

Theorem 4.1. 
 
COROLLARY 4.1: Suppose that a compact orientable and simply connected Riemannian manifold M of dimension n>2 admits a 
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 which is the corollary 4.1 due to H. Hiramatu [1] . 

 
THEOREM 4.2: Suppose that a compact orientable Riemannian manifold M of dimension n>1 admits a projective vector field hv , 
then we have    
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Where hw is defined by (2.10). Equality in (4.2) holds if if  wh is a Killing vector field  
 
Proof. Follows from Lemma A [3] and (3.110) of Lemma 3.3 
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If h
kjiP


=0 for n>2, that is M is projectively flat for n>2, then from (2.6), 


K is necessarily a constant and consequently we have 

following corollary  
from Therorem 4.2. 
 
COROLLARY 4.3: Suppose that a compact orientable and simply connected Riemannian manifold M of dimension n>2 admits a 

non-affine projective vector field hv . Then M is projectively flat if and only if M is isometric to a sphere of radius
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, 

which is the Corollary 4.2 due to H. Hiramatu[1]. 

Since h
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=0 for n=2, we have the following Corollary. 

 
COROLLARY 4.4: Suppose that a compact orientable and simply connected Riemannian manifold M with constant scalar curvature 

K of dimension n=2 admits a non affine projective vector field hv  then M is isometric to a sphere of radius 
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Corollary 4.3 page No.513 due to H. Hiramatu[1].  
 
THEOREM 4.3: Suppose that a compact orientable Riemannian manifold M of dimension n>1 admits a projective vector field hv . 
Then we have 
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Where hw is defined by (2.10). Equality in (4.3) holds  if  wh is a killing vector field. 
 
Proof. Follows from Lemma A [3] and (3.18) of Lemma 3.5. 
 

THEOREM 4.4: Suppose that a compact orientable Riemannian manifold M of dimension n>1 admits a projective vector field hv . 
Then we have 
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 Where hw is defined by (2.10). Equality in (4.4) holds if  wh is a Killing vector field. 
 
Proof. Follows from Lemma A [3] and (3.22) of Lemma 3.6 
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COROLLARY 4.5: Suppose that a compact orientable and simply connected Riemannian manifold M with constant scalar curvature 

K of dimension n>3 admits a non affine projective vector field hv  then M is conformally flat and (LvGji)gji=0 if and only if M is 

isometric to a sphere of radius , .
K

)1n(n



, which is the Corollary 4.4 due to H. Hiramatu[1]. 

Since 

C kji

h  =0   for n=3 , we have the following Corollary from Theorem 4.4 
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, which is the 

Corollary 4.5 page No.515 due to H. Hiramatu[1]. 
 
THEOREM 4.5:  Suppose that a compact orientable Riemannian manifold M of dimension n>1 admits a projective vector field hv . 
Then we have 
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Where hw is defined by (2.10). Equality in (4.5) holds if  wh is a Killing vector field. 
 
Proof. Follows from Lemma A [3] and (3.19) of Lemma 3.6 
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