

ISSN 2278 - 0211 (Online)

Isometry of Riemannian Manifolds Admitting a Projective Vector Field Using Metric Semi-Symmetric Connection

S. N. Kadlag

Department of Mathematics

K. K. Wagh Institute of Engineering Education & Research Nashik, (M.S), India

Dr. S. B. Gaikwad

P.G., Department of Mathematics New Arts, Commerce & Science College, Amednagar (M.S), India

Abstract:

Purpose of this paper is to generalise integral formulas and inequalities of H. Hiramatu [1] using metric semi-symmetric connection ∇ .

Key words: Isometry of Riemannian manifold, conformal curvature tensor and projective curvature tensor, metric semisymmetric connection

1. Introduction

Let M be a connected Riemannian manifold of dimension n covered by the system of coordinate neighborhoods {U; xh}

Where the indices i,j,k,............ Run over the range $\{1,2,3,\ldots,n\}$. Let g_{ji} , Γ_{ji} , ∇_{j} , K_{kji} , K_{ji} , and K_{ji} be the covariant components of the metric tensor g, the Christoffel symbols formed by g_{ji} , the operator of the covariant differentiation with respect to Γ_{ji}^{h} , the components of curvature tensor and the components of Ricci tensor and the scalar curvature of M respectively. The vector field V_{ji} is called a projective vector field if it satisfies [4]

for a certain covariant vector field ρ_i , called the associated vector field of v^h , where L_v denotes the operator of Lie derivation with respect to the vector field v^h . When we refer to a projective vector field v^h , we always mean ρ_i , the associated covariant vector field given in (1.1). In particular, if ρ_i is zero, then a projective vector field is called an affine vector field.

In 1980, H. Hiramatu has obtained a series of integral formulas and integral inequalities in a compact orientable Riemannian manifold assuming that scalar

Curvature of M as constant. In this paper using projective and the conformal curvature tensor field of type (1,3), we have obtained the

series of integral formulas and integral inequalities on scalar curvature K of M .we get necessary and sufficient conditions for

Riemannian manifold to be isometric to a sphere of radius

2. Preliminaries

This section deals with preliminaries which are needed in the rest of the sections. The following known results are used in this paper.(for details please see [1].)

(2.1)
$$\nabla^{j} L_{v} g_{ih} = 2 \rho^{j} g_{ih} + \rho_{i} \delta_{h}^{j} + \rho_{h} \delta_{i}^{j}$$

(2.2)
$$\nabla^{j} L_{v} g^{ih} = -2 \stackrel{\circ}{\rho} g^{ih} - \stackrel{\circ}{\rho} g^{jh} - \stackrel{\circ}{\rho} g^{ji}$$
.

(2.3)
$$\overset{\circ}{G}_{ji} = \overset{\circ}{G}_{ij}$$
, $\overset{\circ}{G}_{ji} g^{ji} = 0$, $\overset{\circ}{Z}_{tji} = \overset{\circ}{G}_{ji}$.

Where Einstein's deviation tensor $\overset{\circ}{G}_{ji}$ of type (0,2) and the tensor $\overset{\circ}{Z}_{kji}$ h are given by (see [2])

$$(2.4) \qquad \overset{\circ}{P}_{kji}{}^{h} = -\overset{\circ}{P}_{jki}{}^{h}$$

Where $P_{kji}^{}$ are the components of the projective curvature tensor field of type (1,3) given by,

(2.5)
$${\overset{\circ}{P}_{kji}}^{h} = {\overset{\circ}{K}_{kji}}^{h} - \frac{\overset{\circ}{K}}{n(n-1)} (\delta^{h}_{k}g_{ji} - \delta^{h}_{j}g_{ki})$$

(2.6)
$$\stackrel{\circ}{P}_{kjih} g^{ji} = \frac{n}{n-1} \stackrel{\circ}{G}_{kh},$$

Where
$$\overset{\circ}{P}_{kjih} = \overset{\circ}{P}_{kji}{}^t \; g_{th}$$
 .

(2.7)
$$\overset{\circ}{C}_{kjih} = -\overset{\circ}{C}_{jkih}, \overset{\circ}{C}_{kjih} = -\overset{\circ}{C}_{ihkj}$$

$$(2.8) \quad \overset{\circ}{C}_{tji}{}^{t} = 0 \ , \ \overset{\circ}{C}_{kjt}{}^{t} = 0 \ , \ \overset{\circ}{C}_{kji}{}^{h} \ g^{ji} = 0$$

$$(2.9) \quad \overset{\circ}{C}_{kji}{}^{h} = \overset{\circ}{K}_{kji}{}^{h} + \delta^{h}_{k} \overset{\circ}{C}_{ji} - \delta^{h}_{i} \overset{\circ}{C}_{i} + \overset{\circ}{C}_{k} g_{ji} - \overset{\circ}{C}_{j} g_{ki}$$

Where $\overset{\circ}{C}_{kji}{}^h$ are the components of conformal curvature tensor field of type (1,3).

(2.10)
$$w^h = \frac{n-1}{2} \rho^h + \frac{\kappa}{n} v^h$$

(2.11)
$$L_v \overset{\circ}{Z}_{kji}^h = \frac{1}{n-1} \delta_k^h L_v \overset{\circ}{G}_{ji} - \frac{1}{n-1} \delta_j^h L_v \overset{\circ}{G}_{ki}$$

$$(2.12) L_v P_{kji}^b = 0$$

(2.13)
$$\overset{\circ}{C}_{kji}{}^{h} = \overset{\circ}{Z}_{kji}{}^{h} - \frac{1}{n-2} (\delta_{k}^{h} \overset{\circ}{G}_{ji} - \delta_{j}^{h} \overset{\circ}{G}_{ki} + \overset{\circ}{G}_{k} \overset{h}{g}_{ji} - \overset{\circ}{G}_{j} \overset{h}{g}_{ki})$$

Where $\overset{\circ}{C}_{kji}{}^{h}$ is conformal curvature tensor field of type (1,3) for n>2.

(2.14)
$$L_{v} \overset{\circ}{C}_{kji}{}^{h} = -\frac{1}{(n-1)(n-2)} (\delta_{k}^{h} L_{v} \overset{\circ}{G}_{ji} - \delta_{j}^{h} L_{v} \overset{\circ}{G}_{ki})$$

$$-\frac{1}{n-2}\{(L_vG_k^{\ h})g_{ji}+G_k^{\ h}L_vg_{ji}-(L_vG_j^{\ h})g_{ki}-G_j^{\ h}L_vg_{ki}\}$$

(2.15)
$$(L_v \overset{\circ}{G}_{ji}) g^{ji} = \frac{n-1}{n} (L_v \overset{\circ}{P}_{kjihi}) g^{kh} g^{ji}$$

$$(2.16) \qquad \stackrel{\circ}{\nabla} \stackrel{\kappa}{G}_{k} = 0$$

We need the following known Lemmas which are used in rest of the sections.

LEMMA A [3]: If complete and simply connected Riemannian manifold M with positive constant scalar curvature K of dimension n.>1 admits a non affine projective vector field v^h and if the vector field w^h is a killing vector field then M is isometric to a sphere of radius $\sqrt{\frac{n(n-1)}{v}}$ in the Euclidean (n+1) space.

LEMMA B [3]: For Projective vector field v^h on a compact orientable Riemannian manifold M of dimension n>1, we have

$$(2.17) \left[\int_{M} \stackrel{\circ}{\nabla}_{t} w^{t} \right]^{2} dV = \frac{n-1}{4(n+1)} \int_{M} L_{v} \left[\Delta \left\{ (L_{v} \stackrel{\circ}{G}_{ji}) g^{ji} \right\} \right]$$

$$+\frac{2(n+1)\overset{\circ}{K}}{n(n-1)}(L_{V}\overset{\circ}{G}_{ji})g^{ji}dV$$

LEMMA C [3]: For Projective vector field vh on a compact orientable Riemannian manifold M of manifold n>1, we have

LEMMA D [3]: For Projective vector field v^h on a compact orientable Riemannian manifold M of dimension n>1, we have

$$\int_{M} \overset{\circ}{G} \overset{\circ}{ji} \overset{\circ}{\rho} \overset{j}{w} \overset{i}{dV} - \frac{1}{2(n+1)} \int_{M} L_{v} \left[\Delta \left\{ (L_{v} \overset{\circ}{G}_{ji}) g^{ji} \right\} \right] \\
+ \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{G}_{ji}) g^{ji} dV \\
= \frac{-1}{2(n-1)} \int_{M} \left(\overset{\circ}{\nabla}_{j} w_{i} + \overset{\circ}{\nabla}_{i} w_{j} \right) \left(\overset{\circ}{\nabla}_{v} w^{i} + \overset{\circ}{\nabla}_{v} w^{j} \right) dV$$

LEMMA E [3]: For Projective vector field v^h on a compact orientable Riemannian manifold M without of dimension n>1, we have

$$\int_{M} g^{kj} \left[L_{v} \overset{\circ}{\nabla}_{k} \overset{\circ}{G}_{ji} \right] w^{i} dV + \frac{1}{n} \int_{M} \left[w, v \right] \overset{\circ}{K} dV + \frac{n-4}{n-1} \int_{M} L_{v} L_{w} dV$$

$$+ \frac{3}{2(n+1)} \int_{M} L_{v} \left[\Delta \left\{ (L_{v} \overset{\circ}{G}_{ji}) g^{ji} \right\} + \frac{(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{G}_{ji}) g^{ji} \right]$$

$$dv$$

$$= \frac{n+2}{2(n-1)} \int_{M} \left(\overset{\circ}{\nabla}_{j} w_{i} + \overset{\circ}{\nabla}_{i} w_{j} \right) \left(\overset{\circ}{\nabla}_{j} w^{i} + \overset{\circ}{\nabla}_{j} w^{j} \right) dV$$

where [,] is the lie bracket.

3. Lemmas

In this section we prove series of Lemmas on the scalar curvature K of M which are needed to establish main theorems in the section 4.

LEMMA 3.1: For a projective vector field v^h on a compact orientable Riemannian manifold M of dimension n>1, we have

$$(3.1) \int_{M} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{Z}_{kji}^{h}) g^{ji} w_{h} dV - \frac{1}{4(n+1)} \int_{M} L_{v} \left[\Delta \left\{ (L_{v} \overset{\circ}{Z}_{kijh}) g^{kh} g^{ji} \right\} + \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{Z}_{kijh}) g^{kh} g^{ji} \right] dV$$

$$= \frac{-1}{2(n-1)} \int_{M} (\overset{\circ}{\nabla}_{j} w_{i} + \overset{\circ}{\nabla}_{i} w_{j}) \left(\overset{\circ}{\nabla}^{j} w^{i} + \overset{\circ}{\nabla}^{i} w^{j} \right) dV$$

Proof. From (2.11), it can be proved that

$$L_{v}\overset{\circ}{Z}_{kji}^{h} = \frac{1}{n-1}\delta_{k}^{h}L_{v}\overset{\circ}{G}_{ji} - \frac{1}{n-1}\delta_{j}^{h}L_{v}\overset{\circ}{G}_{ki}$$

Consider,

$$(3.2) \quad \nabla^{k} L_{v} \overset{\circ}{Z}_{kji}^{h} = \frac{1}{n-1} \left[\delta_{k}^{h} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{G}_{ji}) - \delta_{j}^{h} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{G}_{ki}) \right]$$

$$= \frac{1}{n-1} \left[\delta_{k}^{h} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{G}_{ji}) - \delta_{j}^{h} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{G}_{ki}) \right]$$

From (3.2) and after lengthy simplification, we get

$$(3.3) \left[(\overset{\circ}{\nabla}^{k} \overset{\circ}{L_{v}} \overset{\circ}{Z_{kji}}) g^{ji} w_{h} = \right] \left[\frac{2}{n-1} (\overset{\circ}{\nabla}_{t} w^{t})^{2} - \frac{1}{n-1} (\overset{\circ}{\nabla}^{j} L_{v} \overset{\circ}{G}_{ji}) w^{i} \right]$$

Integrating (3.3) over M, we get

(3.4)
$$\int_{M}^{\circ} (\nabla^{k} L_{v} Z_{kji}) g^{ji} w_{h} dV = \frac{2}{(n-1)} \int_{M}^{\circ} (\nabla^{k} w^{t})^{2} dV$$

$$-\frac{1}{(n-1)} \int_{M} (\overset{\circ}{\nabla}^{i} L_{v} \overset{\circ}{G}_{ji}) w^{i} dV$$

$$-\frac{1}{(n-1)} \int_{M} (\overset{\circ}{\nabla}^{i} L_{v} \overset{\circ}{G}_{ji}) w^{i} dV$$

Now using (2.17) of Lemma B[3] and (2.18) of Lemma C[1] in (3.4) and after simplification we get (3.1). This completes the proof of Lemma.

LEMMA 3.2: For a projective vector field v^h on a compact orientable Riemannian manifold M of dimension n>1, we have

$$\left| (3.6) \int\limits_{M} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{Z}_{kjih}) g^{ji} w^{h} dV - \frac{1}{(n+1)} \int\limits_{M} L_{v} \left[\Delta \left\{ (L_{v} \overset{\circ}{Z}_{kjih}) g^{kh} g^{ji} \right\} + \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{Z}_{kjih}) g^{kh} g^{ji} \right]$$

$$= \frac{-2}{(n-1)} \int_{\mathbf{M}} \left(\overset{\circ}{\nabla}_{j} \mathbf{w}_{i} + \overset{\circ}{\nabla}_{i} \mathbf{w}_{j} \right) \left(\overset{\circ}{\nabla}_{\mathbf{w}^{i}} + \overset{\circ}{\nabla}_{\mathbf{w}^{j}} \right) dV$$

Proof. Consider,

$$\begin{array}{|c|c|} \hline (\overset{\circ}{\nabla}^k \overset{\circ}{L_v} \overset{\circ}{Z_{kjih}}) = \{\overset{\circ}{\nabla}^k \overset{\circ}{L_v} (\begin{bmatrix} \overset{\circ}{Z_{kji}}^t g_{th}) \} \\ \end{array}$$

$$= \{ \overset{\circ}{\nabla}^{k} [(L_{v} \overset{\circ}{Z}_{kji}^{t})g_{th} + \overset{\circ}{Z}_{kji}^{t} (L_{v}g_{th})] \}$$

$$= (\overset{\circ}{\nabla}^{k} \overset{\circ}{L_{v}} \overset{\circ}{Z_{kji}}) g^{ji} w_{t} + \overset{\circ}{G_{k}} (\overset{\circ}{\nabla}^{k} \overset{\circ}{L_{v}} g_{th}) w^{h} \}$$

Where
$$\begin{bmatrix} \circ & t & & \\ G & k & = & Z kji & t & g & ji \end{bmatrix}$$

From (2.1) and after lengthy simplification, we get

$$(3.7) \quad \left[(\overset{\circ}{\nabla}^{k} \overset{\circ}{L}_{v} \overset{\circ}{Z}_{kjih}) g^{ji} w^{h} = \right] \left[(\overset{\circ}{\nabla}^{k} \overset{\circ}{L}_{v} \overset{\circ}{Z}_{kji}) g^{ji} w_{h} + 3 \overset{\circ}{G}_{ji} \rho^{i} w^{i} \right]$$

Integrating (3.11) over M, we get

$$(3.8) \int\limits_{M}^{\circ} (\overset{k}{\nabla} \overset{\circ}{L}_{v} \overset{\circ}{Z}_{kjih}) g^{ji} w^{h} dV = \int\limits_{M}^{\circ} (\overset{\circ}{\nabla} \overset{k}{L}_{v} \overset{\circ}{Z}_{kji}) g^{ji} w_{h} dV + 3 \int\limits_{M}^{\circ} G_{ji} \rho^{i} w^{i} dV$$

Using (2.19) of Lemma D [3] and (3.1) of Lemma 3.2 in (3.8) we get (3.6). This completes the proof of Lemma.

LEMMA 3.3: For a projective vector field v^h on a compact orientable Riemannian manifold M of dimension n>1, we have

$$\begin{bmatrix}
\int_{M} (\mathring{\nabla}^{k} L_{v} \mathring{P}_{kjih}) g^{ji} w^{h} dV - \frac{3}{2(n+1)} \int_{M} L_{v} \left[\Delta \left\{ (L_{v} \mathring{P}_{kjih}) g^{kh} g^{ji} \right\} \right] \\
+ \frac{2(n+1) \mathring{K}}{n(n-1)} (L_{v} \mathring{P}_{kjih}) g^{kh} g^{ji} \\
= \frac{-3}{2} \frac{n}{(n-1)^{2}} \int_{M} (\mathring{\nabla}_{j} w_{i} + \mathring{\nabla}_{i} w_{j}) \left(\mathring{\nabla}^{j} w^{i} + \mathring{\nabla}^{i} w^{j} \right) dV$$

Proof. Consider,

$$\begin{bmatrix} \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{t} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{i} & \overset{\circ}{\nabla}^{k} & \overset{}{\nabla}^{k} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{k} & \overset{\circ}{\nabla}^{k}$$

$$= \{ \nabla \left[L_{v} P_{kji} g_{th} + P_{kji} (L_{v} g_{th}) \right] \} g^{ji} w^{h}$$

From (2.1), (2.6), (2.12) and after lengthy simplification, we get

$$(3.10) \boxed{ (\overset{\circ}{\nabla}^{k} \overset{\circ}{L}_{v} \overset{\circ}{P}_{kjih}) g^{ji} w^{h} = } \boxed{ \frac{3n}{n-1} \overset{\circ}{G}_{ji} \rho^{j} w^{i} }$$

Integrating (3.10) over M, we get

(3.11)
$$\int_{M}^{\circ} (\nabla^{k} L_{v} \stackrel{\circ}{P}_{kjih}) g^{ji} w^{h} dV = \frac{3n}{n-1} \int_{M}^{\circ} G_{ji} \rho^{i} w^{i} dV$$

Using (2.19) of Lemma D[3] in (3.11) we get (3.9). This completes the proof of Lemma.

LEMMA 3.4: For a projective vector field v^h on a compact orientable Riemannian manifold M of dimension n>1, we have (3.12)

$$\int_{M} g^{lk} \left(L_{v} \overset{\circ}{\nabla}_{l} \overset{\circ}{P}_{kji}^{h} \right) g^{ji} w^{h} dV + \frac{1}{2(n+1)} \int_{M} L_{v} \left[\Delta \left\{ (L_{v} \overset{\circ}{P}_{kjih}) g^{kh} g^{ji} \right\} + \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{P}_{kjih}) g^{kh} g^{ji} dV \right]$$

$$= \frac{n}{2(n-1)^2} \int_{\mathbf{M}} \left(\overset{\circ}{\nabla}_{j} w_{i} + \overset{\circ}{\nabla}_{i} w_{j} \right) \left(\overset{\circ}{\nabla}_{w}^{i} + \overset{\circ}{\nabla}_{w}^{i} \right) dV$$

Proof. Consider,

$$\boxed{ g^{lk} (L_v \overset{\circ}{\nabla_l} \overset{\circ}{P}_{kji}) g^{ji} w_h } = (\overset{\circ}{\nabla} \overset{\circ}{L}_v \overset{\circ}{P}_{kji}) g^{ji} w_h - g^{lk} (L_v \{_{l} \overset{t}{,} \ _k \}) g^{ji} w_h \overset{\circ}{P}_{tji} - g^{lk} (L_v \{_{l} \overset{t}{,} \ _j \}) \overset{\circ}{P}_{kti} g^{ji} w_h }$$

$$-\,g^{lk}\,(L_{v}\{_{l\,\stackrel{t}{,}\,i}\})\,\overset{\circ}{P}_{kjt}\,\,g^{ji}\,w_{\,h}\,+\,g^{lk}\,(L_{v}\{_{l\,\stackrel{h}{,}\,t}\})\,\overset{\circ}{P}_{kji}\,\,g^{ji}\,w_{\,h}$$

From (1.1)

$$= g^{lk}g^{ji}w_h \left\{ -(\delta_l^t \stackrel{\circ}{\rho}_k + \delta_k^t \stackrel{\circ}{\rho}_l) \stackrel{\circ}{P}_{tji} - (\delta_l^t \stackrel{\circ}{\rho}_j + \delta_j^t \stackrel{\circ}{\rho}_l) \stackrel{\circ}{P}_{kti} - (\delta_l^t \stackrel{\circ}{\rho}_i + \delta_i^t \stackrel{\circ}{\rho}_l) \stackrel{\circ}{P}_{kti} - (\delta_l^t \stackrel{\circ}{\rho}_i + \delta_i^t \stackrel{\circ}{\rho}_l) \stackrel{\circ}{P}_{kji} + (\delta_l^t \stackrel{\circ}{\rho}_t + \delta_t^t \stackrel{\circ}{\rho}_l) \stackrel{\circ}{P}_{kji} \right\}$$

$$= -\rho w^{m}g^{ji} \stackrel{\circ}{P}_{ljim} + \rho w^{m}g^{lk} \stackrel{\circ}{P}_{lkim} + \rho w^{m}g^{lk} \stackrel{\circ}{P}_{lkim} + \rho w^{m}g^{lk} \stackrel{\circ}{P}_{jlkm} + \rho w^{k}g^{ji} \stackrel{\circ}{P}_{kjim} - 2\rho w^{m}g^{ji} \stackrel{\circ}{P}_{kjim}$$

After lengthy simplification and from (2.6), we get

(3.13)
$$\boxed{ g^{lk} (L_v \nabla_l P_{kji}) g^{ji} w_h } = -\frac{n}{n-1} G_{ji} \rho^{ji} w^i$$

Integrating (3.13) over M, we get

(3.14)
$$\int_{M} g^{lk} (L_{v} \overset{\circ}{\nabla}_{1} \overset{\circ}{P}_{kji}) g^{ji} w_{h} dV = -\frac{n}{n-1} \int_{M} \overset{\circ}{G}_{ji} \overset{\circ}{\rho}^{j} w^{i} dV$$

Using (2.19) of Lemma D [3] in (3.14), we get (3.12). This completes the proof of a Lemma.

LEMMA 3.5: For a projective vector field v^h on a compact orientable Riemannian manifold M of dimension n>2, we have

$$(3.15) \left[\int\limits_{M}^{\circ} (\overset{K}{\nabla} L_{v} \overset{\circ}{C}_{kji}^{h}) g^{ji} w_{h} dV + \frac{n-3}{(n-2)(n+1)} \int\limits_{M} L_{v} [\Delta \left\{ \left(L_{v} \overset{\circ}{G}_{ji} \right) g^{ji} \right\} + \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} \left(L_{v} \overset{\circ}{G}_{ji} \right) g^{ji} - \frac{(n^{2}-6n+2)}{n(n-1)(n-2)} \int\limits_{M} [w,v] \overset{\circ}{K} dV \right] dV$$

$$= \boxed{ \frac{-1}{2} \frac{(n^2 - n - 4)}{(n - 1)(n - 2)} \int\limits_{M} (\overset{\circ}{\nabla}_{j} w_{i} + \overset{\circ}{\nabla}_{i} w_{j}) (\overset{\circ}{\nabla}_{w^{i}} + \overset{\circ}{\nabla}_{w^{j}}) dV}$$

Proof. From (2.14), we have

$$(3.16) \begin{bmatrix} L_{v} \overset{\circ}{C}_{kji}^{h} = -\frac{1}{(n-1)(n-2)} (\delta_{k}^{h} L_{v} \overset{\circ}{G}_{ji} - \delta_{j}^{h} L_{v} \overset{\circ}{G}_{ki}) \\ -\frac{1}{n-2} \left\{ (L_{v} \overset{\circ}{G}_{k}) g_{ji} + \overset{\circ}{G}_{k} (L_{v} g_{ji}) - (L_{v} \overset{\circ}{G}_{j}) g_{ki} - \overset{\circ}{G}_{j} (L_{v} g_{ki}) \right\}$$

Applying covariant differentiation on both sides of (3.16), we get

$$(3.17) \left[(\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{C}_{kji}^{h}) = \frac{-1}{(n-1)(n-2)} \left(\delta_{k}^{h} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{G}_{ji}) - \delta_{j}^{h} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{G}_{ki}) \right) \right]$$

$$-\frac{1}{n-2} \left\{ (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{G}_{k}^{h}) g_{ji} + \frac{n-2}{2n} (L_{v} g_{ji}) + \overset{\circ}{G}_{k}^{h} (\overset{\circ}{\nabla}^{k} L_{v} g_{ji}) \right\}$$

$$\left. - (\nabla \ L_{v} \ G_{j}) g_{ki} - (\nabla \ G_{j}) (L_{v} g_{ki}) - G_{j} (\nabla \ L_{v} g_{ki}) \right\}$$

Integrating (3.17) over M and using (2.2), (2.4), (2.6), we get (3.18)

$$\int_{M}^{\circ} (\nabla^{k} L_{v} C_{kji}) g^{ji} w_{h} dV$$

$$= \frac{-2}{(n-1)(n-2)} \int_{M} (\overset{\circ}{\nabla}_{t} w^{t})^{2} dV + \frac{1}{(n-1)(n-2)} \int_{M} (\overset{\circ}{\nabla}^{i} L_{v} \overset{\circ}{G}_{ji}) w^{i} dV$$

$$-\frac{1}{n-2}\int\limits_{M}(\overset{\circ}{\nabla}^{k}\overset{\circ}{G}_{k}^{h})(L_{v}g_{ji})g^{ji}w^{h}dV + \frac{1}{n-2}\int\limits_{M}g^{kj}(L_{v}\overset{\circ}{\nabla}^{k}\overset{\circ}{G}_{ji})w^{i}dV$$

$$-\frac{n-1}{n-2}\int_{M}^{\circ} \overset{\circ}{G}_{ji} \overset{\circ}{\rho} \overset{i}{w}^{i} dV - \frac{n-1}{n-2}\int_{M}^{\circ} (\overset{\circ}{\nabla}^{i} L_{v} \overset{\circ}{G}_{j}^{i}) w_{i} dV$$

Using (2.17) of Lemma B[3], (2.18) of Lemma C[3], (2.19) of Lemma D[3] in (3.18) and after lengthy simplification we get (3.15). This completes the proof of a Lemma.

LEMMA 3.6: For a projective vector field v^h on a compact orientable Riemannian manifold M of dimension n>2, we have

$$\int_{M} g^{lk} (L_{v} \overset{\circ}{\nabla}_{l} \overset{\circ}{C}_{kji}^{h}) g^{ji} w_{h} dV - \frac{n-3}{(n-2)(n+1)} \int_{M} L_{v} \left[\Delta \left\{ (L_{v} \overset{\circ}{G}_{ji}) g^{ji} \right\} \right]$$

$$+ \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{G}_{ji}) g^{ji} dV$$

$$- \frac{(n^{2}-6n+2)}{n(n-1)(n-2)} \int_{M} [w,v] \overset{\circ}{K} dV$$

$$= \frac{-\left(n^2 - n - 4\right)}{2(n - 1)(n - 2)} \int\limits_{M} \left(\overset{\circ}{\nabla}_{j} \, w_{i} + \overset{\circ}{\nabla}_{i} \, w_{j}\right) \left(\overset{\circ}{\nabla}^{j} \, w^{i} + \overset{\circ}{\nabla}^{i} \, w^{j}\right) dV$$

Proof. Substituting (1.1) in following equation,

$$-g^{lk}(L_{v}\{_{l}^{t},_{i}\})\overset{\circ}{C_{kjt}}g^{ji}w_{h}+g^{lk}(L_{v}\{_{l}^{h},_{t}\})\overset{\circ}{C_{kji}}g^{ji}w_{h}$$

We get

$$(3.20) \left[g^{lk} \left(L_{v} \overset{\circ}{\nabla}_{l} \overset{\circ}{C}_{kji} \right) g^{ji} w_{h} = (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{C}_{kji} \right) g^{ji} w_{h} - g^{lk} \left\{ (\delta_{l}^{t} \overset{\circ}{\rho}_{k} + \delta_{k}^{t} \overset{\circ}{\rho}_{l}) \overset{\circ}{C}_{tji} \right\}$$

$$\left. + (\delta_l^t \stackrel{\circ}{\rho}_j + \delta_j^t \stackrel{\circ}{\rho}_l) \stackrel{\circ}{C}_{kti} + (\delta_l^t \stackrel{\circ}{\rho}_i + \delta_i^t \stackrel{\circ}{\rho}_l) \stackrel{\circ}{C}_{kjt} - (\delta_l^h \stackrel{\circ}{\rho}_t + \delta_t^h \stackrel{\circ}{\rho}_l) \stackrel{\circ}{C}_{kji} \right\} g^{ji} w_h$$

After simplification and using (2.7) and (2.8), we get

$$(3.21) \left[g^{lk} (L_{v} \overset{\circ}{\nabla}_{l} \overset{\circ}{C}_{kji}) g^{ji} w_{h} = \overset{\circ}{\nabla}^{k} \overset{\circ}{C}_{kji}) g^{ji} w_{h} \right]$$

Integrating (3.25) over M, we get

$$(3.22) \int_{\mathbf{M}} \mathbf{g}^{lk} (\mathbf{L}_{\mathbf{V}} \overset{\circ}{\nabla}_{l} \overset{\circ}{\mathbf{C}}_{kji}) \mathbf{g}^{ji} \mathbf{w}_{h} dV = \int_{\mathbf{M}} (\overset{\circ}{\nabla}^{k} \mathbf{L}_{\mathbf{V}} \overset{\circ}{\mathbf{C}}_{kji}) \mathbf{g}^{ji} \mathbf{w}_{h} dV$$

Using (3.14) of Lemma 3.5 we get (3.19). This completes the proof of Lemma.

4. Theorems

In this section we prove that series of integral inequalities without putting any restriction on the scalar curvature of a Riemannian manifold M and obtain the necessary and sufficient conditions for M to be isometric to a sphere.

THEOREM 4.1: Suppose that a compact, orientable Riemannian manifold M of dimension n>1 admits a projective vector field v^h . Then we have, (4.1)

$$\begin{split} & \int\limits_{M} (\overset{\circ}{\nabla}^{k} \overset{\circ}{L}_{v} \overset{\circ}{Z}_{kji}^{h}) g^{ji} w_{h} dV - \frac{1}{4(n+1)} \int\limits_{M} L_{v} \Bigg[\Delta \Bigg\{ (L_{v} \overset{\circ}{Z}_{kjih}) g^{kh} g^{ji} \Bigg\} \\ & + \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{Z}_{kjih}) g^{kh} g^{ji} dV \le 0 \end{split}$$

Where w^h is defined by (2.10). Equality in (4.1) holds if w^h is a killing vector field.

Proof. Follows from Lemma A [3] and (3.1) of Lemma 3.1

If in the Theorem 4.1 $\overset{\circ}{Z}_{kji}{}^h=0$ for n>2 then $\overset{\circ}{K}$ is necessarily a constant and consequently we have following corollary from Theorem 4.1.

COROLLARY 4.1: Suppose that a compact orientable and simply connected Riemannian manifold M of dimension n>2 admits a non-affine projective vector field v^h then $\overset{\circ}{Z}_{kji}{}^h=0$ if and only if M is isometric to a sphere of

Radius
$$\sqrt{\frac{n(n-1)}{\overset{\circ}{K}}}$$
 which is the corollary 4.1 due to H. Hiramatu [1].

THEOREM 4.2: Suppose that a compact orientable Riemannian manifold M of dimension n>1 admits a projective vector field v^h , then we have

$$\begin{split} & \int\limits_{M}^{(4.2)} \left(\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{P}_{kjih} \right) g^{ji} w^{h} dV - \frac{3}{2(n+1)} \int\limits_{M}^{} L_{v} \left[\Delta \left\{ (L_{v} \overset{\circ}{P}_{kjih}) g^{kh} g^{ji} \right\} \right. \\ & \left. + \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{P}_{kjih}) g^{kh} g^{ji} \le 0 \end{split}$$

Where w h is defined by (2.10). Equality in (4.2) holds if if wh is a Killing vector field

Proof. Follows from Lemma A [3] and (3.110) of Lemma 3.3

If $\stackrel{\circ}{P_{kji}}{}^h=0$ for n>2, that is M is projectively flat for n>2, then from (2.6), $\stackrel{\circ}{K}$ is necessarily a constant and consequently we have following corollary from Theorem 4.2.

COROLLARY 4.3: Suppose that a compact orientable and simply connected Riemannian manifold M of dimension n>2 admits a non-affine projective vector field v^h . Then M is projectively flat if and only if M is isometric to a sphere of radius $\sqrt[n]{\frac{n(n-1)}{\kappa}}$,

which is the Corollary 4.2 due to H. Hiramatu[1].

Since $\overset{\circ}{P}_{kii}^{\quad \ h}$ =0 for n=2, we have the following Corollary.

COROLLARY 4.4: Suppose that a compact orientable and simply connected Riemannian manifold M with constant scalar curvature

K of dimension n=2 admits a non affine projective vector field v^h then M is isometric to a sphere of radius $\left| \frac{n(n-1)}{o} \right|$, which

Corollary 4.3 page No.513 due to H. Hiramatu[1].

THEOREM 4.3: Suppose that a compact orientable Riemannian manifold M of dimension n>1 admits a projective vector field v^h . Then we have

$$(4.3) \underbrace{\int_{M} g^{lk} (L_{v} \overset{\circ}{\nabla}_{l} \overset{\circ}{P}_{kji}) g^{ji} w_{h} dV}_{M} + \frac{1}{2(n+1)} \underbrace{\int_{M} L_{v}}_{M} \underbrace{\Delta \left\{ (L_{v} \overset{\circ}{P}_{kjih}) g^{kh} g^{ji} \right\}}_{M}$$

$$+ \frac{2(n+1)\overset{\circ}{K}}{n(n-1)} (L_{V}\overset{\circ}{P}_{kjih}) g^{kh} g^{ji} \ge 0$$

Where w^h is defined by (2.10). Equality in (4.3) holds if w^h is a killing vector field.

Proof. Follows from Lemma A [3] and (3.18) of Lemma 3.5.

THEOREM 4.4: Suppose that a compact orientable Riemannian manifold M of dimension n>1 admits a projective vector field v^h . Then we have (4.4)

$$\begin{split} & \int\limits_{M} (\overset{\circ}{\nabla}^{k} L_{v} \overset{\circ}{C}_{kji}^{h}) g^{ji} w_{h} dV + \frac{n-3}{(n-2)(n+1)} \int\limits_{M} L_{v} \bigg[\Delta \bigg\{ (L_{v} \overset{\circ}{G}_{ji}) g^{ji} \bigg\} \\ & + \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{G}_{ji}) g^{ji} \le 0 \end{split}$$

Where w h is defined by (2.10). Equality in (4.4) holds if whis a Killing vector field.

Proof. Follows from Lemma A [3] and (3.22) of Lemma 3.6

COROLLARY 4.5: Suppose that a compact orientable and simply connected Riemannian manifold M with constant scalar curvature

K of dimension n>3 admits a non affine projective vector field v^h then M is conformally flat and $(L_v G_{ji})g^{ji}=0$ if and only if M is

isometric to a sphere of radius , $\sqrt[n]{\frac{n(n-1)}{\overset{\circ}{K}}}$, which is the Corollary 4.4 due to H. Hiramatu[1].

COROLLARY 4.6: Suppose that a compact orientable and simply connected

Riemannian manifold M with constant scalar curvature K of dimension n=3 admits a

Non-affine projective vector field v^h . then $(L_v \overset{\circ}{G}_{ji}) g^{ji} = 0$ if and only if M is isometric to a sphere of radius

us $\sqrt{\frac{n(n-1)}{\overset{\circ}{K}}}$, which is the

Corollary 4.5 page No.515 due to H. Hiramatu[1].

THEOREM 4.5: Suppose that a compact orientable Riemannian manifold M of dimension n>1 admits a projective vector field v^h . Then we have

$$\int_{M} g^{lk} (\overset{\circ}{\nabla}_{l} L_{v} \overset{\circ}{C}_{kji}^{h}) g^{ji} w_{h} dV$$

$$(4.5) - \frac{n-3}{(n-2)(n+1)} \int_{M} L_{v} \left[\left\{ (L_{v} \overset{\circ}{G}_{ji}) g^{ji} \right\} + \frac{2(n+1) \overset{\circ}{K}}{n(n-1)} (L_{v} \overset{\circ}{G}_{ji}) g^{ji} \right] dV - \frac{(n^{2}-6n+2)}{n(n-1)(n-2)} \int_{M} [w,v] \overset{\circ}{K} dV \leq 0$$

Where w h is defined by (2.10). Equality in (4.5) holds if wh is a Killing vector field.

Proof. Follows from Lemma A [3] and (3.19) of Lemma 3.6

5. References

- 1. Hiramatu H., on integral inequalities and their applications in Riemannian manifolds admitting a projective vector field, Geometriae Dedicata 9 (1980)
- 2. K.Yano, Integral Formulas in Riemannian geometry, Marcel DeK k. lnc. New York, 1970.
- 3. S.S. Pujar and S.N.Kadlag, On Integral Formulas, inequalities and their Applications, in Riemannian manifolds. Ultra Scientist Vol.22 (2) M
- 4. H. Hiramatu, on integral inequalities and their applications in Riemannian Manifold, Geometriae Dedicata 9 (1978).
- 5. N. H. Ackerman & C.C. Hsiung , Isometry of Riemannian manifolds to spheres, Canad . J. Math .28(1976)63-72.
- 6. K. Amur & S.S.Pujar, Isometry of Riemannian manifolds admitting a conformal transformation group, J.Differential Geometry 12(1977)247-252.
- 7. T.Imai, Notes on semi-symmetric metric connections, Tensor N.S.24 (1972)293-296.
- 8. Y.Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117(1975)251-295
- K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15(1970)1579-1581