
 www.ijird.com June, 2014 Vol 3 Issue 6

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 189

Allocation of Dynamic Resources for
Cloud Computing Environment using Virtual Machines

1. Introduction
The elasticity and the lack of upfront capital investment offered by cloud computing is appealing to many businesses. There is a lot of
discussion on the benefits and costs of the cloud model and on how to move legacy applications onto the cloud platform. Here we study
a different problem: how can a cloud service provider best multiplex its virtual resources onto the physical hardware? Studies have found
that servers in many existing data centers are often severely under-utilized due to over-provisioning for the peak demand [1] [2]. The
cloud model is expected to make such practice unnecessary by offering automatic scale up and down in response to load variation.
Besides reducing the hardware cost, it also saves on electricity which contributes to a significant portion of the operational expenses in
large data centers.
Virtual machine monitors (VMMs) like Xen provide a mechanism for mapping virtual machines (VMs) to physical resources [3]. This
mapping is largely hidden from the cloud users. Users with the Amazon EC2 service [4], for example, do not know where their VM
instances run. It is up to the cloud provider to make sure the underlying physical machines (PMs) have sufficient resources to meet their
needs. VM live migration technology makes it possible to change the mapping between VMs and PMs while applications are running [5],
[6]. However, a policy issue remains as how to decide the mapping adaptively so that the resource demands of VMs are met while the
number of PMs used is minimized. The capacity of PMs can also be heterogenous because multiple generations of hardware co-exist in
a data center.
We aim to achieve two goals in our algorithm:

 Overload avoidance: the capacity of a PM should be sufficient to satisfy the resource needs of all VMs running on it.
Otherwise, the PM is overloaded and can lead to degraded performance of its VMs.

 Green computing: the number of PMs used should be minimized as long as they can still satisfy the needs of all VMs. Idle
PMs can be turned off to save energy.

There is an inherent trade-off between the two goals in the face of changing resource needs of VMs. For overload avoidance, we
should keep the utilization of PMs low to reduce the possibility of overload in case the resource needs of VMs increase later. For
green computing, we should keep the utilization of PMs reasonably high to make efficient use of their energy.

 ISSN 2278 – 0211 (Online)

M. Sujitha
Department of MCA, Santhiram Engineering College

Nandyal, Affiliated to JNTU, Ananthapur, India
E. Sreenivasulu

Assistant Professor, Department of MCA, Santhiram Engineering College
Nandyal, Affiliated to JNTU, Ananthapur, India

Abstract:
Cloud computing enables business customers to scale up and down their resource usage based on needs. Many of the touted
gains in the cloud model come from resource multiplexing through virtualization technology. In this paper, we present a system
that uses virtualization technology to allocate data center resources dynamically based on application demands and support
green computing by optimizing the number of servers in use. We introduce the concept of “skewness” to measure the unevenness
in the multi-dimensional resource utilization of a server. By minimizing skewness, we can combine different types of workloads
nicely and improve the overall utilization of server resources. We develop a set of heuristics that prevent overload in the system
effectively while saving energy used. Trace driven simulation and experiment results demonstrate that our algorithm achieves
good performance.

Keywords: Cloud Computing, Resource Management, Virtualization, Green Computing

 www.ijird.com June, 2014 Vol 3 Issue 6

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 190

In this paper, we present the design and implementation of an automated resource management system that achieves a good balance
between the two goals. We make the following contributions:

 We develop a resource allocation system that can avoid overload in the system effectively while minimizing the number of
servers used.

 We introduce the concept of “skewness” to measure the uneven utilization of a server. By minimizing skewness, we can
improve the overall utilization of servers in the face of multi-dimensional resource constraints.

 We design a load prediction algorithm that can capture the future resource usages of applications accurately without looking
inside the VMs. The algorithm can capture the rising trend of resource usage patterns and help reduce the placement churn
significantly.

 The rest of the paper is organized as follows. Section 2 provides an overview of our system and Section 3 describes our
algorithm to predict resource usage. The details of our algorithm are represented in Section 4.Section 5 and 6 present
simulation and experiment results, respectively.

Figure 1: System Architecture

2. System Overview
The architecture of the system is presented in Figure 1. Each PM runs the Xen hypervisor (VMM) which supports a privileged domain
0 and one or more domain U [3]. Each VM in domain U encapsulates one or more applications such as Web server, remote desktop,
DNS, Mail, Map/Reduce, etc. We assume all PMs share a backend storage.
The multiplexing of VMs to PMs is managed using the Usher framework [7]. The main logic of our system is implemented as a set of
plug-ins to Usher. Each node runs an Usher local node manager (LNM) on domain 0 which collects the usage statistics of resources for
each VM on that node. The CPU and network usage can be calculated by monitoring the scheduling events in Xen. The memory usage
within a VM, however, is not visible to the hypervisor.
The statistics collected at each PM are forwarded to the Usher central controller (Usher CTRL) where our VM scheduler runs. The
VM Scheduler is invoked periodically and receives from the LNM the resource demand history of VMs, the capacity and the load
history of PMs, and the current layout of VMs on PMs.
The MM allotter on domain 0 of each node is responsible for adjusting the local memory allocation.
The hot spot solver in our VM Scheduler detects if the resource utilization of any PM is above the hot threshold (i.e., a hot spot). If so,
some VMs running on them will be migrated away to reduce their load. The cold spot solver checks if the average utilization of
actively used PMs (APMs) is below the green computing threshold. If so, some of those PMs could potentially be turned off to save
energy. It then compiles a migration list of VMs and passes it to the Usher CTRL for execution.

3. Predicting Future Resource Needs
We need to predict the future resource needs of VMs. One solution is to look inside a VM for application level statistics, e.g., by
parsing logs of pending requests. Doing so requires modification of the VM which may not always be possible. Instead, we make our
prediction based on the past external behaviors of VMs. Our first attempt was to calculate an exponentially weighted moving average
(EWMA) using a TCP-like scheme:
E (t) =α* E (t - 1) + (1 – α)*O (t), 0<=α<=1
Where E (t) and O (t) are the estimated and the observed load at time t, respectively. α reflects a tradeoff between stability and
responsiveness.
We use the EWMA formula to predict the CPU load on the DNS server in our university. We measure the load every minute and
predict the load in the next minute. Figure 2 (a) shows the results for = 0 7 . Each dot in the figure is an observed value and the
curve represents the predicted values. Visually, the curve cuts through the middle of the dots which indicates a fairly accurate
prediction. This is also verified by the statistics in Table 1. The parameters in the parenthesis are the values. W is the length of the
measurement window (explained later). The “median” error is calculated as a percentage of the observed value: E(t) O(t)O(t). The
“higher” and “lower” error percentages are the percentages of predicted values that are higher or lower than the observed values,
respectively. As we can see, the prediction is fairly accurate with roughly equal percentage of higher and lower values.

 www.ijird.com June, 2014 Vol 3 Issue 6

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 191

 ewma(0.7)
W=1

fusd(-0.2, 0.7)
W=1

fusd (-0.2, 0.7)
W=8

median
error

5.6% 9.4% 3.3%
high error 56% 77% 58%
low error 44% 23% 41%

Table 1: Load Prediction Algorithms

Although seemingly satisfactory, this formula does not capture the rising trends of resource usage. For example, when we see a sequence
of O (t) = 1 0 2 0 3 0 and 4 0 , it is reasonable to predict the next value to be 50. Unfortunately,
When α is between 0 and 1, the predicted value is always between historic value and the observed one. To reflect the “acceleration”,
we take an innovative approach by setting to a negative value. When –1 <=α<0, the above formula can be transformed into the
following:
E (t) = -|α|*E (t – 1) + (1+| α|)*0(t)
=O (t) +| α|*(O (t) – E (t – 1))

4 The Skewness Algorithm
We introduce the concept of skewness to quantify the unevenness in the utilization of multiple resources on a server. Let n be the
number of resources we consider and ri be the utilization of the i-th resource. We define the resource skewness of a server p as
Skewness (p) =

Where r is the average utilization of all resources for server p. In practice, not all types of resources are performance critical and hence
e only need to consider bottleneck resource in the above calculation. By minimizing the skewness, we can combine difference types of
workloads nicely and improve the overall utilization of server resources. In the following, we describe the details of our algorithm.

4.1. Hot and Cold Spots
Our algorithm executes periodically to evaluate the resource allocation status based on the predicted future resource demands of VMs.
We define a server as a hot spot if the utilization of any of its resources is above a hot threshold. This indicates that the server is
overloaded and hence some VMs running on it should be migrated away. We define the temperature of a hot spot p as the square sum
of its resource utilization beyond the hot threshold:
Temperature (p) = ∑ r £ R (r -- rt) 2

Where R is the set of overloaded resources in server p and rt is the hot threshold for resource r. The temperature of a hot spot reflects
its degree of overload. If a server is not a hot spot, its temperature is zero.
Different types of resources can have different thresholds. For example, we can define the hot thresholds for CPU and memory
resources to be 90% and 80%, respectively. Thus a server is a hot spot if either its CPU usage is above 90% or its memory usage is
above 80%.

4.2. Hot Spot Mitigation
We sort the list of hot spots in the system in descending temperature (i.e., we handle the hottest one first). Our goal is to eliminate all
hot spots if possible. For each server p, we first decide which of its VMs should be migrated away. We sort its list of VMs based on the
resulting temperature of the server if that VM is migrated away. The server must not become a hot spot after accepting this VM. Among
all such servers, we select one whose skewness can be reduced the most by accepting this VM. Note that this reduction can be negative
which means we select the server whose skewness increases the least.

4.3. Green Computing
When the resource utilization of active servers is too low, some of them can be turned off to save energy. This is handled in our green
computing algorithm. The challenge here is to reduce the number of active servers during low load without sacrificing performance
either now or in the future. We need to avoid oscillation in the system.
For a cold spot p, we check if we can migrate all its VMs somewhere else. For each VM on p, we try to find a destination server to
accommodate it. The resource utilizations of the server after accepting the VM must be below the warm threshold.

 www.ijird.com June, 2014 Vol 3 Issue 6

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 192

4.4. Consolidated Movements
The movements generated in each step above are not executed until all steps have finished. The list of movements is then consolidated
so that each VM is moved at most once to its final destination. For example, hot spot mitigation may dictate a VM to move from PM
A to PM B, while green computing dictates it to move from PM B to PM C. In the actual execution, the VM is moved from A to C
directly.

5. Simulations
We evaluate the performance of our algorithm using trace driven simulation. Note that our simulation uses the same code base for the
algorithm as the real implementation in the experiments. This ensures the fidelity of our simulation results. Traces are per-minute server
resource utilization, such as CPU rate, memory usage, and network traffic statistics, collected using tools like “perfmon” (Windows), the
“/proc” file system (Linux), “pmstat/vmstat/netstat” commands (Solaris), etc.. The raw traces are pre-processed into “Usher” format so
that the simulator can read them. We collected the traces from a variety of sources:
We collected the traces from a variety of sources:

 Web Info Mall: the largest online Web archive in China (i.e., the counterpart of Internet Archive in the US) with more than
three billion archived Web pages.

 Real Course: the largest online distance learning system in China with servers distributed across 13 major cities
 Amazing Store: the largest P2P storage system in China.

The default parameters we use in the simulation are shown in Table 2. We used the FUSD load prediction algorithm with = 0 2 , =
0 7 , and W = 8. In a dynamic system, those parameters represent good knobs to tune the performance of the system adaptively. We
choose the default parameter values based on empirical experience working with many Internet applications. In the future, we plan to
explore using AI or control theoretic approach to find near optimal values automatically.

Symbol Meaning Value

h hot threshold 0.9

c cold threshold 0.25

w warm threshold 0.65

g green computing
threshold

0.4

l consolidation limit 0.05

Table 2: Parameters in Our Simulation

5.1. Effect of thresholds on APMs
We first evaluate the effect of the various thresholds used in our algorithm. We simulate a system with 100 PMs and 1000 VMs
(selected randomly from the trace). We use random VM to PM mapping in the initial layout. The scheduler is invoked once per minute.
The bottom part of Figure 4 shows the daily load variation in the system. The x-axis is the time of the day starting at 8am. The y-axis
is overloaded with two meanings: the percentage of the load or the percentage of APMs (i.e., Active PMs) in the system. Recall that a
PM is active (i.e., an APM) if it has at least one VM running. As can be seen from the figure, the CPU load demonstrates diurnal
patterns which decrease substantially after midnight. The memory consumption is fairly stable over the time. The network utilization
stays very low.
To examine the performance of our algorithm in more extreme situations, we also create a synthetic workload which mimics the shape
of a sine function (only the positive part) and ranges from 15% to 95% with a 20% random fluctuation.

5.2. Scalability of the Algorithm
We evaluate the scalability of our algorithm by varying the number of VMs in the simulation between 200 and 1400. The ratio of VM
to PM is 10:1. The results are shown in Figure 5. The left figure shows that the average decision time of our algorithm increases with
the system size. The speed of increase is between linear and quadratic. We break down the decision time into two parts: hot spot
mitigation (marked as ‘hot’) and green computing (marked as ‘cold’). We find that hot spot mitigation contributes more to the decision
time. We also find that the decision time for the synthetic workload is higher than that for the real trace due to the large variation in the
synthetic workload. With 140 PMs and 1400 VMs, the decision time is about 1.3 seconds for the synthetic workload and 0.2 second
for the real trace.
We also conduct simulations by varying the VM to PM ratio. With a higher VM to PM ratio, the load is distributed more evenly among
the PMs. The results are presented in Section 4 of the supplementary file.

 www.ijird.com June, 2014 Vol 3 Issue 6

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 193

5.3. Effect of Load Prediction
We compare the execution of our algorithm with and without load prediction in Figure 6. When load prediction is disabled, the
algorithm simply uses the last observed load in its decision making. Figure 6 (a) shows that load prediction significantly reduces the
average number of hot spots in the system during a decision run. Notably, prediction prevents over 46% hot spots in the simulation
with 1400 VMs. This demonstrates its high effectiveness in preventing server overload proactively. Without prediction, the algorithm
tries to consolidate a PM as soon as its load drops below the threshold. With prediction, the algorithm correctly foresees that the load
of the PM will increase above the threshold shortly and hence takes no action. This leaves the PM in the “cold spot” state for a while.
However, it also reduces placement churns by avoiding unnecessary migrations due to temporary load fluctuation.

Fig.ure 7: Algorithm effectiveness

Consequently, the number of migrations in the system with load prediction is smaller than that without prediction as shown in Figure 6
(c). We can adjust the conservativeness of load prediction by tuning its parameters, but the current configuration largely serves our
purpose (i.e., error on the side of caution). The only downside of having more cold spots in the system is that it may increase the
number of APMs. This is investigated in Figure 6 (b) which shows that the average numbers of APMs remain essentially the same with
or without load prediction (the difference is less than 1%). This is appealing because significant overload protection can be achieved
without sacrificing resources efficiency. Figure 6 (c) compares the average number of migrations per VM in each decision with and
without load prediction. It shows that each VM experiences 17% fewer migrations with load prediction.

6. Experiments
Our experiments are conducted using a group of 30 Dell PowerEdge blade servers with Intel E5620 CPU and 24GB of RAM. The
servers run Xen-3.3 and Linux 2.6.18. We periodically read load statistics using the x e n s t a t library (same as what x e n t o p
does). The servers are connected over a Gigabit ethernet to a group of four NFS storage servers where our VM Scheduler runs. We use
the same default parameters as in the simulation.

6.1. Algorithm Effectiveness
We evaluate the effectiveness of our algorithm in overload mitigation and green computing. We start with a small scale experiment
consisting of three PMs and five VMs so that we can present the results for all servers in figure 7. Different shades are used for each
VM. All VMs are configured with 128 MB of RAM. An Apache server runs on each VM. We use httperf to invoke CPU intensive
PHP scripts on the Apache server. This allows us to subject the VMs to different degrees of CPU load by adjusting the client request
rates. The utilization of other resources are kept low.
We first increase the CPU load of the three VMs on PM1 to create an overload. Our algorithm resolves the overload by migrating
VM3 to PM3. It reaches a stable state under high load around 420 seconds. Next we extend the scale of the experiment to 30 servers.
We use the TPC-W benchmark for this experiment. TPC-W is an industry standard benchmark for e-commerce applications which
simulates the browsing and buying behaviors of customers [13]. We deploy 8 VMs on each server at the beginning. Each VM is
configured with one virtual CPU and two gigabyte memory.

6.2. Impact of Live Migration
One concern about the use of VM live migration is its impact on application performance. Previous studies have found this impact to
be small [5]. We investigate this impact in our own experiment. We extract the data on the 340 live migrations in our 30 server
experiment above. Next we extend the scale of the experiment to a group of 72 VMs running over 8 PMs. Half of the VMs are CPU
intensive, while the other half are memory intensive. Initially, we keep the load of all VMs low and deploy all CPU intensive VMs on
PM4 and PM5 while all memory intensive VMs on PM6 and PM7. Then we increase the load on all VMs gradually to make the
underlying PMs hot spots.

7. Related Work

 www.ijird.com June, 2014 Vol 3 Issue 6

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 194

7.1. Resource Allocation at the Application Level
Automatic scaling of Web applications was previously studied in [14] [15] for data center environments. In MUSE [14], each server
has replicas of all web applications running in the system. The dispatch algorithm in a frontend L7-switch makes sure requests are
reasonably served while minimizing the number of under-utilized servers. MapReduce [16] is another type of popular Cloud service
where data locality is the key to its performance.

7.2. Resource Allocation by Live VM Migration

VM live migration is a widely used technique for dynamic resource allocation in a virtualized environment [8] [12] [20]. Our work
also belongs to this category. Sandpiper combines multi-dimensional load information into a single Volume metric [8].
The HARMONY system applies virtualization technology across multiple resource layers [20]. It uses VM and data migration to
mitigate hot spots not just on the servers, but also on network devices and the storage nodes as well. It introduces the Extended Vector
Product (EVP) as an indicator of imbalance in resource utilization.

7.3. Green Computing
Many efforts have been made to curtail energy consumption in data centers. Hardware based approaches include novel thermal design
for lower cooling power, or adopting power-proportional and low-power hardware.

8. Conclusion
We have presented the design, implementation, and evaluation of a resource management system for cloud computing services. Our
system multiplexes virtual to physical resources adaptively based on the changing demand. We use the skewness metric to combine
VMs with different resource characteristics appropriately so that the capacities of servers are well utilized. Our algorithm achieves
both overload avoidance and green computing for systems with multi-resource constraints.

9. Acknowledgements
The authors would like to thank the anonymous reviewers for their invaluable feedback. This work was supported by the National
Natural Science Foundation of China (Grant No. 61170056) and National Development and Reform Commission (Information
Security 2011, CNGI2008-108).

10. References

1. N. Bila, E. d. Lara, K. Joshi, H. A. Lagar-Cavilla, M. Hiltunen, and M. Satyanarayanan, “Jettison: Efficient idle desktop
consolidation with partial vm migration,” in Proc. of the ACM European conference on Computer systems (EuroSys’12),
2012.

2. L. Siegele, “Let it rise: A special report on corporate IT,” in The Economist, Oct. 2008.
3. “Amazon elastic compute cloud (Amazon EC2), http://aws.amazon.com/ec2/.”
4. M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migration for virtual machines,” in Proc. of the USENIX Annual

Technical Conference, 2005.
5. “TPC-W: Transaction processing performance council, http://www.tpc.org/tpcw/.”
6. T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and gray-box strategies for virtual machine migration,”

in Proc. of the Symposium on Networked Systems Design and Implementation (NSDI’07), Apr. 2007.
7. C. A. Waldspurger, “Memory resource management in VMware ESX server,” in Proc. of the symposium on Operating

systems design and implementation (OSDI’02), Aug. 2002.
8. T. Das, P. Padala, V. N. Padmanabhan, R. Ramjee, and K. G. Shin, “Litegreen: saving energy in networked desktops using

virtualization,” in Proc. of the USENIX Annual Technical Conference, 2010.
9. P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and A. Merchant, “Automated control of multiple

virtualized resources,” in Proc. of the ACM European conference on Computer systems (EuroSys’09), 2009.
10. N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines for managing sla violations,” in Proc. of the

IFIP/IEEE International Symposium on Integrated Network Management (IM’07), 2007

