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1. Introduction 
The main contribution of this paper is to give a first impression of how data mining techniques can be employed in order to improve 
KDD results. Large amounts of data have been collected routinely in the course of day-to-day management in business, 
administration, banking, the delivery of social and health services, environmental protection, security and in politics. Such data is 
primarily used for accounting and for management of the customer base. Typically, management data sets are very large and 
constantly growing and contain a large number of complex features. While these data sets reflect properties of the managed subjects 
and relations, and are thus potentially of some use to their owner, they often have relatively low information density. One requires 
robust, simple and computationally efficient tools to extract information from such data sets. The development and understanding of 
such tools is the core business of data mining. These tools are based on ideas from computer science, mathematics and statistics. 
Mining useful information and helpful knowledge from these large databases has thus evolved into an important research area [1, 
2].Data mining is about extracting interesting patterns from raw data and it has attracted a great deal of attention in the information 
industry and in society as a whole in recent years, due to the wide availability of huge amounts of data and the imminent need for 
turning such data into useful information and knowledge. There is some agreement in the literature on what qualifies as a “frequent 
pattern”, it is an important area in data mining. Here frequent patterns are a pattern that appears data set frequently, such as item set, 
substructures or subsequence. But only disjointed discussion of what “interesting” means. Problems that hamper effective statistical 
data analysis stem from many source of error introduction. Data mining algorithms like “Association Rule Mining” (ARM) [2,3] 
perform an exhaustive search to find all rules satisfying some constraints. The process of discovering interesting and unexpected rules 
from large data sets is known as association rule mining. An association rule is an implication or if-then-rule which is supported by 
data. The association rules problem was first formulated in [3] and was called the market-basket problem. The initial problem was the 
following: given a set of items and a large collection of sales records, which consist in a transaction date and the items bought in the 
transaction, the task is to find relationships between the items contained in the different transactions. A typical association rule 
resulting from such a study could be “90 percent of all customers who buy bread and butter also buy milk" – which reveals a very 
important information. Therefore this analysis can provide new insights into customer behavior and can lead to higher profits through 
better customer relations, customer retention and better product placements. The subsequent paper [4] is also considered as one of the 
most important contributions to the subject. 
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2. Related Work 
Based on my literature survey I have noted that researchers attempt to find frequent items using association rules like Apriori, Pincer-
search, Partition, and Border algorithms. From all of these perspectives, researchers are investigating various algorithms for association 
rule .Association rule mining, one of the most important and well researched techniques of data mining. It aims to extract interesting 
correlations, frequent patterns, associations or casual structures among sets of items in the transaction databases or other data 
repositories. The major aim of ARM is to find the set of all subsets of items or attributes that frequently occur in many database 
records or transactions, and additionally, to extract rules on how a subset of items influences the presence of another subset. 
Association rule mining is to find out association rules that satisfy the predefined minimum support and confidence from a given 
database. The problem is usually decomposed into two sub problems. One is to find those itemsets whose occurrences exceed a 
predefined threshold in the database, those itemsets are called frequent or large itemsets. The second problem is to generate 
association rules from those large itemsets with the constraints of minimal confidence. In general, the association rule is an expression 
of the form X=>Y, where X is antecedent and Y is consequent. Association rule shows how many times Y has occurred if X has 
already occurred depending on the support and confidence value. Support is the probability of item or item sets in the given 
transactional data base: support(X) = n(X) / n where n is the total number of transactions in the database and n(X) is the number of 
transactions that contains the item set X. Therefore, 
Support (X=>Y) = support (XUY). 
Confidence: It is conditional probability, for an association rule X=>Y and defined as confidence(X=>Y) = support(XUY) / 
support(X).Most Association rule related research has focused on the Apriori, also called the level-wise algorithm, makes use of the 
downward closure property. Apriori algorithm was first proposed by Agrawal in 1994. The AIS is just a straightforward approach that 
requires many passes over the database, generating many candidate itemsets and storing counters of each candidate while most of 
them turn out to be not frequent. Apriori is more efficient during the candidate generation process for two reasons; Apriori employs a 
different candidate’s generation method and a new pruning technique. There are two processes to find out all the large itemsets from 
the database in Apriori algorithm. First the candidate itemsets are generated, and then the database is scanned to check the actual 
support count of the corresponding itemsets. During the first scanning of the database the support count of each item is calculated and 
the large 1-itemsets are generated by pruning those itemsets whose supports are below the pre-defined threshold value. In each pass 
only those candidate itemsets that include the same specified number of items are generated and checked. The candidate k-itemsets are 
generated after the  (k-1)th passes over the database by joining the frequent (k-1)-itemsets. All the candidate k-itemsets are pruned by 
check their sub (k-1)-itemsets, if any of its sub (k-1) itemsets is not in the list of frequent (k-1)-itemsets, this k-itemsets candidate is 
pruned out because it has no hope to be frequent according the Apriori property. The Apriori property says that every sub (k-1) 
itemsets of the frequent k-itemsets must be frequent. In the process of finding frequent itemsets, Apriori avoids the effort wastage of 
Counting the candidate itemsets that are known to be infrequent. The candidates are generated by joining among the frequent itemsets 
level-wisely, also candidate are pruned according the Apriori property. As a result the number of remaining candidate itemsets ready 
for further support checking becomes much smaller, which dramatically reduces the computation, I/O cost and memory requirement. 
The Apriori algorithm pseudo code for discovering frequent itemsets for mining is given below: 
 
Pass 1 
1. Generate the candidate itemsets in C1 
2. Save the frequent itemsets in L1 
Pass k 
1. Generate the candidate itemsets in Ck from the frequent itemsets in Lk-1 
a) Join Lk-1 p with Lk-1q, as follows: 
Insert into Ck 
Select p.item1, p.item2 . . . p.itemk-1, q.itemk-1 
From Lk-1 p, Lk-1q 
Where p.item1 = q.item1 . . . p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1 
b) Generate all (k-1)-subsets from the candidate itemsets in Ck 
c) Prune all candidate itemsets from Ck where some (k-1) - subset of the candidate itemset is not in the frequent itemset Lk-1 
2. Scan the transaction database to determine the support for each candidate itemset in Ck 
3. Save the frequent itemsets in Lk 
 
Here a frequent itemset is an itemset whose support is greater than some user specified minimum support (denoted Lk, where k is the 
size of the itemset) and a candidate itemset is a potentially frequent itemset (denoted Ck, where k is the size of the itemset).Apriori 
algorithm still inherits the drawback of scanning the whole data bases many times. Based on Apriori algorithm, many new algorithms 
were designed with some modifications or improvements. Generally there were two approaches: one is to reduce the number of passes 
over the whole database or replacing the whole database with only part of it based on the current frequent itemsets, another approach 
is to explore different kinds of pruning techniques to make the number of candidate itemsets much smaller. That is why Apriori and 
other algorithms take too much computer time to compute all the frequent item sets. All the traditional association rule mining 
algorithms were developed to find positive associations between items. Positive associations refer to associations between items 
existing in transactions. In addition to the positive associations, negative associations can provide valuable information. In practice 
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there are many situations where negation of products plays a major role. By using Genetic Algorithm (GA) the system can predict the 
rules which contain negative attributes in the generated rules along with more than one attribute in consequent part. It reduces the 
computer time to compute all the frequent item sets. 
 
3. Genetic Algorithm 
In my opinion, Genetic Algorithm can find the frequent items for nonbinary datasets.The Genetic Algorithm was developed by John 
Holland in 1970. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural 
selection and genetics. Genetic algorithms (GAs) are a part of Evolutionary computing, a rapidly growing area of artificial 
intelligence.GA are inspired by Darwin's theory about evolution - "survival of the fittest”. Gas represents an intelligent exploitation of 
a random search used to solve optimization problems. GAs, although randomized, exploit historical information to direct the search 
into the region of better performance within the search space.GAs are one of the best ways to solve a problem for which little is 
known. GA is stochastic search algorithm modelled on the process of natural selection, works in an iteration manner by generating 
new populations of strings from old ones. Standard GA apply genetic operators such selection, crossover and mutation on an initially 
random population in order to compute a whole generation of new strings GA runs to generate solutions for successive generations. 
The probability of an individual reproducing is proportional to the goodness of the solution it represents. The process is terminated 
when an acceptable or optimum solution is found. GA is appropriate for problems which require optimization, with respect to some 
computable criterion. The functions of genetic operators are as follows: 
 
3.1. Selection 
The selection of the member from the population can be done with the help of Roulette Wheel sampling method. Roulette Wheel 
selection is a process of choosing members from the population of chromosomes in a way that is proportional to their fitness. It does 
not guarantee that the fittest member goes through to the next generation, merely which it has a very good chance of doing so. It works 
like this: Imagine that the population’s total fitness score is represented by a pie chart, or roulette wheel. Now you assign a slice of the 
wheel to each member of the population. The size of the slice is proportional to that chromosomes fitness score. i.e. the fitter a 
member is the bigger the slice of pie it gets. Now, to choose a chromosome all you have to do is spin the ball and grab the 
chromosome at the point it stops. 
 
3.2. Crossover 
Crossover takes two individuals, and cuts their chromosome strings at some randomly chosen position, to produce two “head" 
segments and two “tail" segments. The tail segments are then swapped over to produce two new full length chromosomes. The two 
offspring each inherit some genes from each parent. This is known as single point crossover. Crossover is not usually applied to all 
pairs of individuals selected for mating. A random choice is made, where the likelihood of crossover being applied is typically 
between 0.6 and 1.0. If crossover is not applied, offspring are produced simply by duplicating the parents. This gives each individual a 
chance of passing on its genes without the disruption of crossover.It as illustrated in the following example, given two chromosomes, 
 

 
Choose a random bit along the length, say at position 3, and swap all the bits after that point. 
 
3.3. Mutation 
After a crossover is performed, mutation takes place. Mutation is used to maintain genetic diversity from one generation of a 
population of algorithm chromosomes to the next. Mutation occurs during evolution according to a user definable mutation 
probability, usually set to fairly low value, say 0.01 a good first choice. Mutation alters one or more gene values in a chromosome 
from its initial state. This can result in entirely new gene values being added to the gene pool.  With the new gene values, the 
genetic algorithm may be able to arrive at better solution than was previously possible.       Mutation is an important part of the 
genetic search, helps to prevent the population from stagnating at any local optima. Mutation is intended to prevent the search 
falling into a local optimum of the state space. It was illustrated in the following example for above two chromosomes after performing 
crossover, 
 

 
 
In the above example, third gene has changed its value, thereby creating a new solution. The need for mutation is to maintain diversity 
in population. Not only does GAs provide alternative methods to solving problem, it consistently outperforms other traditional 
methods in most of the problems link. Many of the real world problems involved finding optimal parameters, which might prove 
difficult for traditional methods but ideal for Gas. 
This generational process is repeated until a termination condition has been reached. Common terminating conditions are: 
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 A solution is found that satisfies minimum criteria 
 Fixed number of generations reached 
 Allocated budget (computation time/money) reached 
 The highest ranking solution's fitness is reaching or has reached a plateau such that successive iterations 
 Manual inspection 
 Combinations of the above 

 
4. Working Principle 
1) [Start]Generate random population of n chromosomes (i.e... suitable for the population). 
2) [fitness]Evaluate the fitness f(x) of each chromosome x in the population. 
3) [New population]create a new population by repeating the following steps until the new population is complete. 

 [Selection] select two parent chromosomes from population according to their fitness (better the fitness, bigger the 
chance to select). 

 [crossover] With a crossover probability, cross over the parents to form new offspring (children).If no crossover was 
performed, offspring is the exact copy of parents. 

 [Mutation] With a mutation probability, mutate new offspring at each locus (position in chromosome). 
 [Accepting]  Place new offspring in the new population. 

4) [replace] use new generated population for further  run of a algorithm 
5) Test] if the condition is satisfied, stops, and returns the best solution in the current population. 
6) [loop]Go to step2. 
An evaluation function associates a fitness measure to every string indicating its fitness for the problem. Standard GA apply genetic 
operators such selection, crossover and mutation on an initially random population in order to compute a whole generation of new 
strings. GA runs to generate solutions for successive generations. The probability of an individual reproducing is proportional to the 
goodness of the solution it represents. Hence the quality of the solutions in successive generations improves. The process is terminated 
when an acceptable or optimum solution is found 
Not only does GAs provide alternative methods to solving problem, it consistently outperforms other traditional methods in most of 
the problems link. Many of the real world problems involved finding optimal parameters, which might prove difficult for traditional 
methods but ideal for Gas. This generational process is repeated until a termination condition has been reached. Common terminating 
conditions are: 

 A solution is found that satisfies minimum criteria 
 Fixed number of generations reached 
 Allocated budget (computation time/money) reached 
 The highest ranking solution's fitness is reaching or has reached a plateau such that successive iterations no longer produce 

better results 
 Manual inspection 
 Combinations of the above 
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5. Flow Chart of GA 
 

 
 
6. Results 
Initially we have considered the transaction database T, which contains 15 records listed in Table 1 (see below). Let us consider the set 
of items, A = {milk, tea powder, bread, coffee, noodles, sugar, salt, biscuit, eggs} and assume α=20%. Since T contains 10 records, it 
means that an itemset that is supported by at least 2 transactions is a frequent set. Here presence of 1 at i-th position indicates 
occurrence of the item[i] in a transaction. Here presence of 1 at i-th position indicates occurrence of the item[i] in a transaction. 
Similarly presence of 0 at j-th position indicates absence of item[j]. 
 

 
 

The initial population was 20 and crossover was chosen randomly. The mutation probability was taken 0.05. The frequent itemsets 
with user-specified minimum support (α) ≥ 20% generated for the given database are listed in Table 2 as follows. Obviously the result 
matches with the result found from Apriori algorithm and all its variants.As described earlier, the implementation of GAs is also 
applied on different large data sets. In every case we got satisfactory results from our experiments. we also  achieved success which 
surely proves the effectiveness of the proposed method. 
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7. Comparison with Existing System 
In existing system every time we had to scan the dataset and generate the candidate key it take more compute time,By using proposed 
system we guarentee reduce the compute time.The following table shows comparison between existing and proposed system. 
 

Apriori Algorithm Genetic Algorithm 
32 items 32 items 

10 transactions 10 transactions 
Exection time: 0.037 Exection time :0.011 

 
 

 
 
For execution of above table by using apriori it take 0.037secs and for GA it is 0.011secs. 
 
8. .Conclusion 
We have dealt with a challenging association rule mining problem of finding frequent item sets using our proposed GA based method. 
The method, described here is very simple and efficient one. This is successfully tested for different large data sets. The results 
reported in this paper are correct and appropriate. However, a more extensive empirical evaluation of the proposed method will be the 
objective of our future research. We also intend to compare the performance of our GA based method proposed in this paper with the 
FP-tree algorithm 
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