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1. Introduction 
Multicore machines are a commonplace for current generation of computer systems, as these machines have the capability to perform 
multiple tasks concurrently and hence are more efficient when compared to single core machines but same cannot be said for virtual 
platforms and simulation tools, which are largely having a sequential simulation engine and doesn’t support concurrent multithreaded 
simulation even when running on a multicore machine, which downgrades simulation performance for complex virtual platforms 
having multiple processes that requires concurrent notion of execution, as is in case of pipeline architecture, thus mainstream 
processor virtual models do not implement pipelines in their design. The language of choice for developing processor virtual models is 
C, C++, which all inherently don’t implement multi-threaded language constructs. The increase of processing power and parallelism 
of host machines creates the need for faster yet accurate multithreaded virtual models and supporting simulation tools for virtual 
prototyping, supporting both functional verification and performance evaluation [1].Several industrial and academic frameworks 
appeared to help modeling, simulating and debugging these architectures. The SystemC hardware description languageis the effective 
backbone of these entire frameworks, describing hardware from RTLto Transactional Level Modeling (TLM) [1].  However, when it 
comes to simulate architectures containing concurrent processes that share the parallel notion of simulation time, even the simulation 
speed provided by the TLMis not enough. Unfortunately, the genuine SystemC simulation kernel is fully sequential and cannot exploit 
the processing power provided by these multi-cores host machine [1], and any performance gain expected from implementing the 
pipelines in the processor virtual model requires multicore execution of each pipeline process, which makes the necessity to use an 
alternative parallel simulation engine for the kernel, called SystemC-SMP [1]. 
 
2. Problem Statement 
Mainstream processor virtual models do not implement pipelines in their design, mainly because the hardware description languages 
used to develop the processor virtual models don’t implement the support for utilizing the resources available in a multicore host 
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workstation, hence losing out the ability to have a true concurrent execution, thus it is considered as an overhead in terms of code 
complexity to implement a heavy context switching logic like that of pipeline on a sequential simulator and in fact it may even reduce 
the overall simulation performance. 
This problem provides an interesting opportunity to evaluate the performance of a pipelined processor virtual model when it is 
implemented using a multithreaded language and simulated on a multicore supported simulation kernel, which is free of the single 
thread context switching overhead. SystemC-SMP is used to implement and evaluate the performance improvement of concurrent 
execution algorithm of pipelines in a SystemC based RISC processor virtual model, this simulation engine is a work in progress 
version of genuine SystemC kernel, having multicore execution and is different from original SystemC as shown by Fig.1 and Fig.2. 
 

  
Figure 1: Simulation with Only Notion of Concurrency & Figure 2: True Concurrent Simulation 

 
3. Proposed Solution 
Implement the 3 stages of pipeline in the processor virtual model and simulating it on SystemC-SMP kernel improve the performance 
of the virtual system without any context switching overhead that is present when the pipeline is described in the sequential SystemC 
kernel. SystemC-SMP kernel exploit the underlying multi-core architecture of the host work station as it execute   independent 
simulation processes on individual cores concurrently. 3-stage pipeline consists of fetch, decode and execute independent processes. 
To implement the logic of 3-stages, SystemC method process is used. Three independent SystemC method processes - fetch method, 
decode method, execute method are used. The concurrent algorithm for pipeline is simple to implement, at the time of simulation start, 
only fetch method is allowed to be executed by adding it in the runnable queue of the SystemC SMP kernel. Both decode method and 
execute method has been removed from the runnable queue by the use of don’t initialize function. When executed fetch method 
creates the TLM-generic payload, which is used to interact with the rest of the virtual system and fetches the instruction from the 
memory virtual model, to be functionally accurate fetch operation, the address field of the payload is assigned the value present in the 
program counter register of the processor model. Before the execution of fetch finishes, a timed notification to the init-decode-event is 
performed, with time argument as one clock cycle. After the timed notification of event, the method performs a call to the next trigger 
function with argument as one clock cycle time period, so that after the simulation time increases by one clock cycle, fetch method can 
be executed again using the dynamic sensitivity, this finishes the execution of fetch method and there is no other process schedule in 
the runnable queue, thus, SystemC-SMP kernel scheduler advances the simulation time by the smallest value which can trigger the 
next scheduled event, that in this scenario is one clock cycle time period, so at simulation time t = t + 1, fetch method and decode 
method are both started concurrently, and they will get executed on independent individual cores of the host machine. The decode 
method also performs timed event notification to init-execute-event and a next trigger call with argument as one clock cycle time 
period. At simulation time t = t + 2, fetch method, decode method, and execute methods are all started concurrently, and they all will 
also get executed on independent individual cores of the host machine. 
When this processor model is compared to a sequential SystemC based no pipelined processor model, which has no overhead of 
pipeline logic, we get the following results for different branching condensation level in the executed code. 
 

 
Figure 3: Pipelined processor model vs No pipelined processor model 
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4. Methodology 
SystemC-SMP simulation kernel is used for simulation of 3-stage concurrent pipeline. Features of SMP-SystemC kernel include 
concurrent execution of methods using TBB multi-processor C++ class library. TBB extensions are the industry recommended 
methodology for implementation of concurrent program logic. Base SystemC is a sequential simulator which provides a notion of 
concurrency to the simulated processes but in actuality executes only one process at a time and uses one host process thread to execute 
its tasks on a single core, even on a multi-core work station. This results in large context switching overhead for concurrent notion 
processes. For the simulation of pipeline implemented in this paper, base SystemC simulation kernel is modified to implement TBB 
functions in its evaluation phase to provide the multi-core execution support for simulation processes. SystemC has two simulation 
processes – sc method, sc thread in SystemC SMP kernel, out of which only the method process is able to execute on multi core work 
station concurrently. Salient features of SystemC SMP kernel are: 

 Uses TBB standard multi core C++ extension library. 
 Does not change the stack of SystemC, keeping the simulator backward compatible. 
 No shared variables are changed in kernel and hence it is safe from race conditions. 

As the SMP SystemC is a work in progress project, it has the following limitation: 
1. Only method simulation process can be executed concurrently. 
To analyze the execution of the instructions on the ISS, we also require a value change trace tool - GTKWave, which creates and 
updates a graph with the values of  all signals which it is tracing at the exact time of change event, As the ISS has provided signals to 
monitor the phases of instruction being executed, the instruction value is also displayed in the graph every time any change occurs.  
For the 3 stage pipelined , the graph is given in Fig. 7, which displays that the instruction 0xE3A00010 being fetched at 0ns, at 1ns it 
goes into decode mode, and a new instruction 0xE3A01020 starts its fetch phase at the same time, at 2ns instruction-1 goes into 
execute phase, instructions-2 goes in decode phase and a new instruction-3 0xE3A02030 starts its fetch phase, and the processor 
virtual model continues the concurrent phases of individual instructions, providing the necessary concurrency of a three stage 
pipelined real processor in the corresponding virtual model. 
 

 
Figure 4: Three Stage ISS execution value change dump trace graph 

 
5. Conclusion 
Analysis of the value change dump graphs generated by the GTKWave trace dump tool Fig. 4, shows that the pipelined processor 
virtual model executes the instructions concurrently in all three stages, and verifies the implementation of 3 stage pipeline in the 
processor virtual model, using the results given by the trace tool and the simulation execution times observed as given in Fig. 3, we 
can conclude that the newly implemented 3 stage pipelined processor virtual model had improved the performance and time efficiency 
of every instruction executed, and thus giving a functionally accurate base for simulation of processor intensive software at a higher 
speed, which may not be possible to execute otherwise until the time of silicon tape-out, this results in saving the expensive cost in 
terms of software readiness delays which happen due to slow processor virtual models simulating instructions sequentially. 
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