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1. Introduction 
The first differential equation models of infectious disease dynamics go back as far as 1766 to the work of Daniel Bernoulli [4, 6]. The 
study of compartmental epidemic models with Modern differential equation models, in the context of single-epidemic outbreaks, 
began with the work of Kermack and McKendrick [5] and later expanded by Anderson and May [1,2]. 
 
2. Model Description 
Discrete epidemic models are more suitable to understand disease transmission dynamic and to prepare eradication policies because 
they permit arbitrary time –step units, preserving the basic features of corresponding continuous time models. Furthermore, this allows 
better use of statistical data for numerical simulations due to the reason that the infection data are complied at discrete given time 
intervals [7]. We propose a system of non-linear difference equations which models the propagation of a disease in a constant 
population. 
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Where (0) 0, (0) 0, (0) 0, , , 0S I R a b c    . 
S (n), I (n) and R (n) denote the number of a population who are susceptible to a disease, infective members and recovered at time n, 
respectively [3]. The system (1) has the two equilibriums, a disease free equilibrium 0 (1,0,0)E   and a unique endemic equilibrium  
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3. Dynamic Behavior of the Model 
The linearized matrix J of for the system (1) is 
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Trace ( , , ) 3(1 ) ( )J S I R a b S I c      and 

Det 2( , , ) (1 )(1 )(1 ) (1 )J S I R a a bI a bS c b a SI         . For the system (1), we have the following analysis.  The 
following lemma is needed to discuss the stability of the equilibrium points of (2) 
 
Lemma: Let 
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Be the characteristic equation for a matrix defined by (2). Then the following statements are true: 

 If every root of equation (3) has absolute value less than one, then the equilibrium point of the system (1) is locally 
asymptotically stable and equilibrium point is called a sink. 

 If at least one of the roots of equation (3) has absolute value greater than one, then the equilibrium point of the system (1) is 
unstable and equilibrium point is called a saddle. 

 If every root of equation (3) has absolute value greater than one, then the equilibrium point of the system (1) is a source. 
 The equilibrium point of system (1) is called hyperbolic if no root of equation (3) has absolute value equal to one. If there 

exists a root of equation (3) with absolute value equal to one, then the equilibrium point is called non-hyperbolic. 
Using the lemma, we have the following propositions for the system (1). 
 
Proposition 1: The disease free equilibrium point 0E  is a 

 Sink if 2 and 0 2.b c a b c a        
 Source if 2 and 2b c a b c a      . 
 Saddle if 2 and 0 2.b c a b c a        
 Non-hyperbolic if either (or) 2 (or) 2.a b c a b c a       

 
Proof: From (2), linearized matrix for 0E  is given by 
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The Eigen values of the matrix 0( )J E  are 1 21 and 1 .a a b c        

In view of Lemma, we see that, 0E  is a sink if 2 and 0 2;b c a b c a        

0E is a source if 2 and 2b c a b c a      ; 0E  is a saddle if 2 and 0 2;b c a b c a       and also 0E  is non-

hyperbolic if either (or) 2 (or) 2.a b c a b c a        Here 0
bR

a c



 is the basic reproduction number. 

 
Proposition 2: The equilibrium point 1E  is a 
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 Saddle if.
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Proof: From (2), linearized matrix for 1E  is given by 
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The Eigen values of the matrix 1( )J E  are 
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By using Lemma, it is easy to see that, 1E   is a sink if 2
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4. Numerical Simulations 
In this section, we carry out numerical simulations to demonstrate our theoretical results and the complex dynamics of model. We 
present the time plots of S (n); I (n); R (n) for the system (1). Dynamic behaviors of the system (1) about the equilibrium points under 
different sets of parameter values. A key parameter in epidemiology is the basic reproductive ratio, R0 which is fundamental and 
widely used in the study of epidemiological models. R0 tells us about the initial rate of spread of the disease. R0 often serves as a 
threshold parameter that predicts whether an infection dies out or keeps persistence in a population. The magnitude of R0 plays a 
crucial role in determining the dynamical behavior of model (1). 

 Example 1: We shall consider the values a = 0.23; b = 0.99; c = 0.12 see figure-2. 
 

 
Figure 2: 0 1R   
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 Example 2: We shall consider the values a = 0.03; b = 0.09; c = 0.2 see figure-3. 
 

 
Figure 3: 0 1R   
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