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1. Introduction 
The research activities in the domain of error correcting codes are much useful in the development of wireless and digital 
communication. Coding techniques are used to improve the reliability of data transmission over communication channels which are 
susceptible to noise, fading, interference, etc. We consider convolutional code of rate ⅓ for a binary input additive white Gaussian 
noise (AWGN) channel. We present the convolutional encoder and decoder for various constraint lengths and try to minimize the gap 
to capacity with respect to Shannon’s theoretical limit. Shannon’s main result is that provided the input rate to the channel encoder is 
less than a given value established by the channel capacity, there exist encoding and decoding operations which asymptotically for 
arbitrarily long sequences can lead to error-free reconstruction of the input sequence [1]. The channel capacity C (bps) for a digital 
transmission channel of bandwidth B (Hz) on which errors are caused by random noise [2] can be given by the following equations (1) 
and (2) 
C = B. log2 (1 + ) 

= B. log2 (1 + )    (1) 
Where S is signal power (W), N is noise power (W), and N0 is noise power spectral density (W/Hz). Here, if B were unlimited, C 
would asymptotically approach the constant value C͚ , given below 
C ͚  = . log2 (1 + ) 

= ( ).      (2) 
When the transmission bandwidth is limited, the transmission rate can be increased without incurring errors only if the transmit power 
is increased to improve S/N0. 
Conversely, if power is limited, channel capacity can be increased by increasing the transmission bandwidth.  However, even if the 
bandwidth can be extended, the error-free transmission rate will reach a limiting value determined by the S/N0 of the transmission 
channel. Accordingly the issue in error correction is the extent to which the expansion of bandwidth due to coding can efficiently raise 
the reliability of information and bring the error-free transmission rate close to Shannon’s channel capacity [3]. The Shannon’s 
theoretical limit is -1.59dB. 
We start with the model for a binary input AWGN channel, given by 
rl = al + nl                   (3) 
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where al  {-1, 1} is the l-th transmitted symbol, and rl is the l-th measured or received symbol corrupted by i.i.d zero mean Gaussian 
noise nl with variance No/2. It seems to be a simple approximation but the AWGN channel presented in the equation (3) has been a 
powerful instrument in modeling real-life disturbances caused from ambient heat in the transmitter/receiver hardware and propagation 
medium. Many satellite channels and line-of-sight terrestrial channels can be accurately modeled as an AWGN channel. 
The concept of gap to capacity with respect to Shannon’s theoretical limit is illustrated using the figure 1. It highlights the Shannon’s 
theoretical limit and shows the gap to Shannon’s limit as well as coding gain with regards to an uncoded code. 
 

 
Figure 1: A simulated BER (in log scale) versus Eb/No (in dB) curve 

 
2. Convolutional Coding 
Convolutional codes are one of the powerful and widely used error correcting codes. Convolutional code protects the information by 
adding redundant bits to binary data. Each m bit information is encoded into an n-bit symbol [4]. Convolutional codes are used in 
numerous applications. Because of its ability of error correction, convolutional codes with longer constraint lengths are widely applied 
in domains of like digital video and satellite communication. They are also used in radio and mobile communication. Figure 2 shows 
typical block diagram of digital communication system using convolutional encoder/decoder.  An encoder can be considered as an 
LTI filter with banks gi(D), the message m = [m1, m2,…..mL] of length L is passed in bit-by-bit producing  n code words ck

n.  The 
codeword can then be formed as ck

n(D) = m(D) gi(D). Hence multiple encoding schemes can be designed to achieve rate ⅓ 
convolutional coding. Each encoding scheme can contain µ memory elements adding versatility to design of a particular convolutional 
code. So we seek to design convolutional code of different µ sizes. 
 

 
Figure 2: Block diagram of digital communication system using convolutional encoder/decoder 

 
3. Encoding Schemes 
Different encoding schemes can be implemented depending on the constraint length K = 1+ µ for a ⅓ rate convolutional system. 
Consider optimal filters with K = 3, 4, 5, 6. 
 

K G1 G2 G3 dfree 
3 5 7 7 8 
4 54 64 74 10 
5 52 66 76 12 
6 47 53 75 13 

Table 1: Octal Codes and Minimum Distance Of Rate ⅓ Convolutional Code Corresponding To K Values [5] 
 



   www.ijird.com                                           August, 2014                                             Vol 3 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 265 
 

Table 1 shows the optimal filter design for each code generator; here the response is given in octal representation. The greater free 
distance allows for a larger number of closely spaced errors to be corrected. Using this, we can realize the actual encoder via circuit 
diagram. Figure 3 shows convolutional encoder for the constraint length K=4. 
Encoding can also be done using trellis map. Trellis diagram represents linear time sequencing events. It is built using the horizontal 
axis as discrete time and all possible states lined up on the vertical axis. One moves through the trellis every time step. New bits arrive 
every time step. Each state is connected to the next state by allowable codeword for that state. There are only two possible choices at 
each state and are determined by the arrival of input bits 0 or 1[6]. 
After encoding the message m into codeword c, it is then passed through the channel model given by equation (3). We then need to be 
able to recover or decode the codeword corrupted by the noise. 
 

 
Figure 3: Optimal rate ⅓ convolutional encoder for K= 4 

 
4. Decoding Schemes 
The codeword has been passed through the channel and now we must decode the corrupted message. The most widely used decoding 
technique is Viterbi algorithm in which one can map the possible solutions to trellis map. The decoder uses maximum likelihood (ML) 
estimate by labeling the nodes with a value denoting the partial branch metric. Then we find the path with minimum cost and this path 
is called survival path. Depending on the chosen metric, hard or soft decoding is decided. If hamming distance is used as metric, then 
the decoding is hard decoding and if the metric used is Lp norm, specifically L2 norm, then the decoding is soft decoding [7]. 
Hard decision Viterbi decoding performs well in case of single errors and soft decision Viterbi decoding performs well in case of burst 
errors. 
 
4.1. Hard Decoding 
The chosen branch metric is crucial for the decoder. For decoding the trellis map, the hamming distance is used as partial branch 
metric. The output of the demodulator consists of binary value 0 or 1, and then we make hard decision of the received vector. In the 
hard decision decoding, based on the location of the received coded symbol, the coded bit was estimated, if the received symbol is 
greater than zero, the received coded bit is 1, if the received symbol is less than or equal to zero, the received bit is 0. In this way, hard 
decision digitizes the received voltage signals before passing it to the decoder. As a result we lose information. This procedure is 
defined as hard decision Viterbi decoding. 
 
4.2. Soft Decoding 
The major drawback of making hard decisions in forming the estimation is loss of information in received vector. Instead we deal with 
the received vector directly, we can then begin to form a measure of similarity using Lp norm. Then if we define the partial branch 
metric using p=2 or the Euclidean distance from the output of the demodulator then the decoding scheme is soft decoding [8]. In other 
words, using the results of a multi-value judgment (soft decision) made on the received signal as a value for selecting the surviving 
path instead of the hamming distance, which is determined from binary data (0, 1) into 8-level data (011, 010, 001, 000, 101, 110,111) 
represented in three bits according to the magnitude of that received signal, the reliability of that binary data can be applied to the 
decoding process. 
Using the generality and flexibility of convolutional codes we designed encoder for different constraint lengths. The complexity of 
convolutional encoder structure and decoding time increased with increasing constraint length and also this concept ceases good only 
for the constraint length of K up to 10. So we have investigated that the PSO algorithm finds to provide best connections for 
convolutional encoder. 
PSO algorithm has some good features like good diversity, wide searching area and strong global optimizing capability. Hence we 
present particle swarm optimization (PSO) to obtain good convolutional encoder for various constraint lengths. 
 
5. Particle Swarm Optimization 
PSO is an effective and computationally efficient algorithm inspired by the dynamics of socially organized groups of living 
organisms. It utilizes a population (called swarm) of search points (called particles) that iteratively probe the search space with an 



   www.ijird.com                                           August, 2014                                             Vol 3 Issue 8 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 266 
 

adaptive velocity (position shift), locating the most promising regions with the ultimate goal of finding a global minimizer. Each 
particle has an adaptable memory where it stores the best position it has ever encountered during its search, i.e., the position with 
lowest function value [9]. 
PSO is technique used to explore the search space of a given problem to find the settings or parameters required to maximize a 
particular objective. The algorithm maintains a population potential where each particle represents a potential solution to the 
optimization problem. It works by simultaneously maintaining several candidate solutions in the search space. During each iteration of 
the algorithm, each candidate solution is evaluated by the objective function being optimized, determining the fitness of that solution. 
 
6. PSO Algorithm 
The PSO algorithm consists of the following steps, repeated until some stopping condition is met. 

 Initialize the population, location and velocity. 
 Evaluate the fitness of the individual particle (called Pbest). 
 Keep track of the individual highest fitness (called Gbest). 
 Modify velocity based on Pbest and Gbest location. 
 Update the particle position. 
 Repeat ii, iii, iv, v steps until end condition is reached. 

Fitness evaluation is conducted by supplying the candidate solution to the objective function. Individual and global best fitnesses and 
positions are updated by comparing the newly evaluated fitnesses against the previous individual and global best fitnesses and 
replacing the best fitnesses and positions as necessary. 
The velocity and position updating are the optimizing ability of the PSO algorithm. The velocity of each particle is updated using the 
equation below. 
Vi(t) = w. Vi(t) + c1 r1 [ pi(t) –Xi(t)] + 
c2 r2 [g(t)- Xi(t)]  (4) 
Xi(t+1) = Xi(t) + Vi(t+1)      (5) 
where Vi(t) and Xi(t) are velocity and position of the particle at time t and pi(t), g(t) are the particle best position, Pbest and global best 
position, Gbest respectively. The parameters w [0 1.2], c1 and c2 [0 2] are user supplied coefficients and r1, r2 [0 1] are random value 
regenerated for each velocity update. 
 

 
Figure 4: PSO algorithm 

 
The second part is the cognitive part, which represents the private thinking of the particle itself. The third part is the social part, which 
represents the collaboration among the particles. They contribute to change of the velocity of particle. Without these two parts, the 
particles keep moving at current speed in same direction to reach the boundary. Without first part, all particles will tend to move 
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towards same position, that is, search area is contracting through generations. Only when global optimum is within initial search 
space, then there is chance for PSO to find solution. So, it is more likely to exhibit local search ability without first part. 
Both local search and global search will benefit solving some kind of problems. There is a tradeoff between global and local search. 
There should be different balances between the local search ability and global search ability. So inertial weight, w is used to balance 
the global search and local search. PSO with inertial weight in the range [0.9 1.2] on average will have better performance, that is, 
there is bigger chance to find the global optimum within a reasonable number of iterations. By using w, the particle tends to explore 
new areas of search space since it cannot easily change its velocity towards best solutions [10]. 
Global search is faster but might converge to local optimum for some problems. Local search is a little bit slower but not easy to be 
trapped into local optimum [11]. 
 
7. PSO for Convolutional Code Optimization 
As complexity of Viterbi decoding algorithm increases exponentially with constraint length, it is adopted to decoding of shorter 
convolutional codes. Fast decoding of convolutional codes is possible using particle swarm optimization algorithm. This algorithm 
reduces the searching area in the trellis decoding and shortens decoding delay and this algorithm also reduces bit error rate [12]. 
Convolutional code optimization using particle swarm optimization is done using following steps. 

 Generate polynomial: The polynomial description of convolutional encoder describes the connection among shift registers 
and modulo-2 adders. Form a binary representation by placing a 1 in each connection line from shift feed into the adder and 0 
elsewhere. Convert this binary representation into octal representation. 

 Draw the trellis: A trellis description of a convolutional encoder shows how each possible input of encoder influences both 
the output and state transition of encoder. Start with a polynomial description of the encoder and use poly2trellis function to 
convert it to valid structure. 

 Calculate bit error rate:  Calculate bit error rate using octal code and trellis structure. To decode convolutional code, use 
the vitdec function with the flag hard and with binary input data. Because the output of convenc is binary, hard decision 
decoding can use the output of convenc directly. After white Gaussian noise (AWGN) is added to the code. 

 Update particle’s position and velocity: At each time, all particles have an update. At iteration t, the tth element in the 
vector is updated. Particle’s position is decided by velocity as in equation (3). At the decoding process, the update of velocity 
and location must act up to transfer rule of encoder state. Select lowest value of bit error rate as fitness function. 

 Update personal best position and global best position: Update personal best position and global best position after all 
particles position have been updated. 

 Ending condition: When iteration t=L, all particle’s position have been updated for L times and reaches the end. 
 These steps are clearly illustrated in the following flowchart shown in figure 5. 

 

 
Figure 5: Convolutional encoder using PSO 
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8. Results 
The performance of particle swarm optimization with convolutional code is verified using MATLAB software. The results show that 
using particle swarm optimization for convolutional code reduces bit error rate and decoding delay. 
We perform experiments for different constraint lengths of rate ⅓ convolutional code for hard and soft Viterbi decoding and optimize 
using particle swarm optimization. Experiments are done with 100 trials and the results are briefly discussed in the following tables 
table II and table III and are shown in figures from figure 6 to figure 13. They are obtained with less decoding delay and also good bit 
error rates are achieved within less number of trials. Without optimization, to obtain such results 1000 trials or more are required 
which consumes large time. 
 

 
K 

Convolutional code PSO 

Eb/N0(dB) BER Eb/N0(dB) BER 
3 7 0.001 7 0.007 
4 6 0.007 6 0.0001 
5 5 0.001 5 0.008 
6 5 0.009 5 0.0004 

Table 2: Decoding Performance Using PSO for ⅓ Rate Hard Decoding 
 

 
K 
 

Convolutional code PSO 

Eb/N0(dB) BER Eb/N0(dB) BER 

3 4 0.002 4 0.008 
4 3 0.09 3 0.005 
5 3 0.003 3 0.008 
6 3 0.002 3 0.002 

Table 3: Decoding Performance Using PSO for ⅓ Rate Soft Decoding 
 

  
Figure 6: Simulation result of K=3 hard decoding    Figure 7: Simulation result of K=3 soft decoding 

 

  
Figure 8: Simulation result of K=4 hard decoding      Figure 9: Simulation result of K=4 soft decoding 
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Figure 10: Simulation result of K=5 hard decoding    Figure 11: Simulation result of K=5 soft decoding 

 

  
Figure 12: Simulation result of K=6 hard decoding    Figure 13: Simulation result of K=6 soft decoding 

 
9. Conclusion 
The Viterbi decoding algorithm used for decoding of convolutional codes is of large decoding delay. The adoption of particle swarm 
optimization algorithm to the Viterbi decoding of convolutional codes is discussed in this paper. Convolutional code of rate ⅓ for 
different constraint lengths, for hard and soft Viterbi decoding is optimized using PSO. It is observed from the results that using 
particle swarm optimization algorithm gives better bit error rates and also the large decoding time of convolutional codes is so much 
reduced because it uses less number of trials. Fast decoding of convolutional codes is possible using PSO. So PSO is an efficient 
technique for convolutional code optimization. Other optimization techniques can be adopted to convolutional codes in future scope. 
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