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1. Introduction 
Electroencephalography (EEG) is the technique of measuring electrical signals generated within the brain by placing electrodes on the 
scalp. The EEG signal produced provides a non-invasive, high time resolution, interface to the brain, and as such the EEG is a key 
diagnosis tool for conditions such as epilepsy, and it is frequently used in Brain-Computer Interfaces [1]. EEG compression is 
achieved by exploiting correlation (redundancy) in the source data. The compressibility of EEG depends on its amplitude distribution 
and its power spectrum. EEG is not usually considered sufficiently sparse in time or frequency domains for matching the recovery 
requirements of the clinical practice. However, filtered EEG show an amplitude distribution and a frequency spectrum largely 
concentrated in suitable ranges [2]. EEG compression schemes have achieved up to 65% data reduction with lossless compression [3], 
and up to 89% data reduction when lossy compression is employed [4]. 
Compressive sensing method is to make the signal transform into low dimensional measurement domain with under-sampling and it is 
also known as compressive sampling in the recent years [5–6]. Just as the bandwidth to the Nyquist-Shannon sampling theory, sparsity 
of the signal is the essential condition to Compressive Sensing [6]. The relevance of using compressive sensing in these signals is 
double: On one hand it has been previously reported in [7] that EEG signals meet the necessary requirements to ensure reconstruction 
after compression when projected in certain basis. Hence compressive sensing appears as a very attractive technique to reduce the 
power consumption and thus the size of future miniaturized EEG systems, which could be used in a variety of applications ranging 
from long term medical monitoring [8] to brain computer interfaces [9]. The concept of compressive sensing [10] is based on the fact 
that there is a difference between the rate of change of a signal and the rate of information in the signal. Traditional Nyquist sampling, 
putting the signal into the digital domain ready for wireless transmission, is based on the former. A conventional compression 
algorithm would then be applied to all of these samples taken to remove any redundancy present, giving a reduced number of bits that 
represent the signal. Compressive sensing [11] is a novel technique which suggests random acquisition of the non adaptive linear 
projection at lower than the Nyquist rate, which preserves signal structure. By using an optimization problem the signal is 
reconstructed. 
Wavelet Transform (WT) is a powerful time-frequency signal analysis tool and it is used in a wide variety of applications including 
signal and image coding [12]. Wavelet Transform and Subband Coding (SBC) are closely related to each other. In fact the fast 
implementation of Wavelet Transforms is carried out using Subband (SB) filter banks. Due to this reason Wavelet Transform based 
waveform coding methods are essentially similar to the SBC based methods. 
Curvelet transform has undergone a major revision since its invention. The first generation curvelet transform is based on the concepts 
of ridgelet transform [13]. The curve singularities have been handled by smooth partitioning of the bandpass images. In each smooth 
partitioned block the curve singularities can be approximated to a line singularity. A ridgelet transform is applied on these small 
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blocks, where ridgelets can deal the line singularities effectively. To avoid blocking artifacts, the smooth partitioning is done on 
overlapping blocks which results in redundancy, and the whole process involves subband decomposition using wavelet transform, 
smooth partitioning and ridgelet analysis on each block; this process consumes more time. The implementation of second generation 
curvelet transform is based on the Fourier transform and is faster, less complex, and less redundant.   
 
2. Signal Compression 
Signal compression is the process where the redundant information contained in the signal is detected and eliminated. The aim of any 
biomedical signal compression scheme is to minimize the storage space without losing any clinically significant information, which 
can be achieved by eliminating redundancies in the signal, in a reasonable manner. The purpose of compression is three-fold:1) to 
reduce the volume of data to be transmitted,  2) to reduce the bandwidth required for transmission, 3) to reduce  the storage 
requirements. Fig 1 shows the block diagram of data compression. 
 

 
Figure 1: General Data Compression Scheme 

 
The purpose of any signal compression technique is the reduction of the amount of bits used to represent a signal. This must be 
accomplished while preserving the morphological characteristics of the waveform. Signal compression techniques are commonly 
classified in two categories: lossless and lossy compression.  
The design of data compression schemes involves trade-offs among various factors, including the degree of compression, the amount 
of distortion introduced, and the computational resources required to compress and uncompress the data. 
 
2.1. Lossless compression 
In lossless data compression, the integrity of the data is preserved. The original data and the data after compression and decompression 
are exactly the same because, in these methods, the compression and decompression algorithms are exact inverses of each other: no 
part of the data is lost in the process. Redundant data is removed in compression and added during decompression.  
 
2.2. Lossy compression 
Our eyes and ears cannot distinguish subtle changes. In such cases, we can use a lossy data compression method. In lossy 
compression, a controlled amount of distortion is allowed. The reconstructed signal is allowed to differ from the original signal. Lossy 
signal compression techniques show higher compression gains than lossless ones. Apart from obtaining good compression ratios with 
imperceptible degradation of signal quality, data reduction techniques should also hold low computational costs; particularly if they 
are going to be implemented on portable devices. Fig 2 shows the schematic of lossless and lossy compression. 
 

 
Figure 2: Lossless and Lossy compression 

 
EEG signals have non-stationary behaviour; it means the behaviour through the time is changing every time window. For this reason, 
the pre-processing, processing, and analysis should be different of the deterministic and stationary signals. EEG signals can be 
compressed in the following domains: time domain, frequency domain and time-frequency doma 

 Time-domain EEG compression  
Generally, most of the techniques proposed in the literature devoted to EEG compression are mainly prediction based. This 
can be explained by the fact that the EEG is a low-frequency signal, which is characterized by a high temporal correlation. 
Some of these techniques are in fact a direct application of classical digital signal processing methods. These include Linear 
Prediction Coding (LPC), Markovian Prediction, Adaptive Linear Prediction and Neural Network Prediction based methods. 
On the other hand, some approaches include the information related to the long-term temporal correlation of the samples. In 
fact, if we analyze the correlation function of an EEG segment, we will note that spaced samples present a non-neglected 
correlation that should be taken into account during processing. This information might be integrated into various dedicated 
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codecs. Finally, we can also evoke the techniques which consist of correcting the errors of the prediction using information 
intrinsic to the EEG.  

 Frequency-domain EEG compression 
The compression of the EEG in the frequency domain did not come from classical techniques such as Karhunen-Loève 
Transform (KLT) or the Discrete Cosine Transform (DCT). The EEG signal is dominated by low frequencies, mainly lower 
than 20 Hz. In fact, it is considered that the main energy is located around the alpha rhythm (between 8 Hz and 13 Hz). 

 Time-frequency domain EEG compression 
Among the time-frequency techniques, the wavelet transform has been commonly used to compress the EEG. In this 
technique, the signal is segmented and decomposed using Wavelet Packets. The coefficients are coded afterwards. Other 
algorithms such as the well known EZW (Embedded Zerotree Wavelet) have also been successfully applied to compress the 
EEG signal. 

 
3. Compressive Sensing 
Compressive sensing is a useful tool for eliminating the inefficiencies caused by traditional signal processing algorithms, because 1) it 
offers simpler hardware implementation for encoder, as it transforms its computational burden from encoder to decoder, 2) no need to 
encode the location of the largest coefficients in the wavelet domain, 3) its ability to reconstruct the signal from significantly fewer 
data samples compared to conventional Nyquist sampling theory. 
Compressed Sensing is about acquiring and recovering a sparse signal in the most efficient way possible with the help of an 
incoherent projecting basis. 

 The signal needs to be sparse 
 The technique acquires as few samples as possible 
 Later, the original sparse signal can be recovered 
 This done with the help of an incoherent projecting basis 

 
4. Curvelet Transform Based Compression 
The Curvelet transform is a higher dimensional generalization of the wavelet transform designed to represent images at different 
scales and different angles. Curvelet transform is a special member of the multi scale geometric transforms. Basis functions of wavelet 
transform are isotropic and thus it requires large number of coefficients to represent the curve singularities. Curvelets obey parabolic 
scaling. Because of these properties, curvelet transform allows almost optimal sparse representation of curve singularities. It is a 
transform with a multi scale pyramid with many directions at each length scale.  
 
4.1. Curvelet Transform 
The overview of the curvelet transform is shown below: 
 

 
Figure 3: Curvelet Transform 

 
Curvelet coefficients can be obtained from scaling and windowing function. Window frame’s width and length is selected by the 
relation:  
Width = Length2     (1) 
This is also called as curvelet scaling law. This law gives better advantage of curvelet transform over wavelet transform because 
wavelet coefficient window has directly proportional relation between width and length. Also there are other advantages of curvelet 
over wavelet transform like PSNR and edge representation. 
 
4.1.1. Sub-band decomposition  
We define a bank of subband filter P0, (△s, s ≧0). The object f is filter into subbands:  

  
This step divides the image into sevel resolution layers. Each layer contains details of different frequencies: 

 P0  → Lowpass filter 
 1, 2, … – Band-pass (high-pass) filters. 

0  : A lowpass filter. The filter deal with low frequency near ||1 
2s : The band pass filters. The filter deal with frequencies near the domain ||[22s, 22s+2].   
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Besides, there is Recursive construction: 2s(x) = 24s  (22sx). 
The sub-band decomposition is simply applying a convolution operator: 

 (20) 
 
4.1.2. Smooth Partitioning 

It is defined as a collection of smooth window wQ(x1 , x2) localized around dyadic squares: 

   (2) 

Let w be a smooth windowing function with ‘main’ support of size 2-s2-s . Multiplying a funtion by the corresponding window 
function wQ produces a result localized near Q ( Q Qs ). Doing this for all Q at a certain scale, i.e. all      Q=Q(s , k1 , k2) with k1 and 
k2 varying but s fixed, procedure, we apply this windowing dissection to each of the subbands isolated in the previous stage of the 
algorithm. This step produces a smooth dissection of the function into ‘squares’.  

   (3) 

The image become smooth after multiplying wQ function.  The partitioning make us more  easier to analyze local line or curve  
singularities. 
 
4.1.3. Renormalization 

For a dyadic square Q, let  

   (4) 
denote the operator which transports and renormalizes f so that the part of the input supported near Q becomes the part of the output 
supported near [0,1][0,1]. In this stage of the procedure, each ‘square’ resulting in the previous stage is renormalized to unit scale: 
 

  (5) 
 
4.1.4. Ridgelet Analysis 
Each ‘square’ is analyzed in the orthonormal ridgelet system. This is a system of basis element  making an orthonomal basis for 
L2(2). There are some frequency domain analysis for Ridgelet. The ridgelet construction divides the frequency domain to dyadic 
coronae ||[2s, 2s+1].  In the angular direction, it samples the s-th corona at least 2s times. In the radial direction, it samples using local 
wavelets. 
The ridgelet element has a formula in the frequency domain: 

   (6) 
 i,l  : periodic wavelets for [-,  ).  
 i : the angular scale ,  l[0, 2i-1–1] : the angular location. 
 j,k  : Meyer wavelets for . 
 j : the ridgelet scale ,  k : the ridgelet location. 

Each normalized square is analyzed in the ridgelet system: 
 

  (7) 
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 The ridge fragment has an aspect ratio of 2-2s2-s.  
 After the renormalization, it has localized frequency in band ||[2s, 2s+1]. 
 A ridge fragment needs only a very few ridgelet coefficients to represent it. 

 
4.2. Inverse Curvelet Transform 
Inverse the procedure of curvelet transform with some mathematic revising: 
 
4.2.1. Ridgelet Synthesis 
Each ‘square’ is reconstructed from the orthonormal ridgelet system. Summation all the Ridgelet coefficinets with basis: 

               (8) 

 
4.2.2. Renormalization 
Each ’square’ resulting in the previous stage is renormalized to its own proper square. 

  (9) 

 
4.2.3. Smooth Integration 
We reverse the windowing dissection to each of the windows reconstructed in the previous stage of the algorithm. 

                          (10) 

 
4.2.4. Subband Recomposition 
We undo the bank of subband filters, using the reproducing formula to summation all the subbands: 

     (11) 
 
5. Performance Evaluation 
Depending on the nature of the application there are various criteria to measure the performance of a compression algorithm. 

 Mean Square Error (MSE) 
 Peak Signal to Noise Ratio (PSNR) 
 Compression Ratio (CR) 

 
5.1. Mean Square Error 
Mean Square Error is defined as follows: 

   (12) 
 
Where xn,yn and N are the input data sequence, reconstructed data sequence and length of the data sequence respectively. 
 
5.2. Peak Signal to Noise Ratio 
Peak Signal to Noise Ratio is defined as follows: 
 
 



   www.ijird.com                                          July, 2014                                             Vol 3 Issue 7 
  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 357 
 

 

   (13) 
 
where  σd

2  is the MSE. 
 
5.3. Compression Ratio 
Compression Ratio (CR) is the most important parameter in data compression algorithms. The amount of compression is measured by 
Compression Ratio. High Compression Ratio leads to a better response. It is the ratio between the numbers of bits before compression 
to that after compression. 
 

                                      (14) 
 
6. Results 
The simulation results obtained using MATLAB show that compressive sensing is an effective method to make data compressed for 
EEG signals with high compression ratio and good quality of reconstruction. First of all, the EEG signal is compressed using 
Compressive Sensing. The sparse signal is thus obtained. The Discrete Curvelet Transform of the sparse signal is obtained. 
Afterwards, Inverse Discrete Curvelet Transform is used to reconstruct the coefficients. The simulation results are shown in Fig 4. Fig. 
4(a) is the original EEG signal, and Fig. 4(b) shows the compressive sensed signal. Fig. 4(c) shows the reconstructed EEG signal. 
 

   
Figure 4(a) Original EEG signal        Figure 4(b) Compressive sensed signal       Figure 4(c) Reconstructed signal 

 
Table 1 shows the performance of curvelet transform compression method based on Compression Ratio (CR), Peak Signal to Noise 
Ratio (PSNR) and Mean Square Error (MSE). 
 

Input signal Compression Ratio PSNR in decibels MSE 

eeg_signal1 (awake) 17.16 40.24 6.16 

eeg_signal2 (drowsy) 17.05 41.04 5.12 

eeg_signal3 (sleep stage-1) 16.95 42.17 3.94 

eeg_signal4 (sleep stage-2) 17.25 35.67 17.61 

eeg_signal5 (deep sleep) 17.5 31.7 43.93 

eeg_signal6 (REM sleep) 16.58 44.61 2.25 

Table 1: Performance of curvelet transforms method based on CR, PSNR and MSE 
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7. Conclusion and Future Work 
EEG is not only a key diagnostic tool for neurologists, but it is growingly used in Brain-Computer Interfaces (BCI) applications. The 
traditional approach to EEG signal processing is to perform Nyquist sampling on the band-limited version of the signal. Compressive 
Sensing is a useful tool for eliminating the inefficiencies caused by traditional signal processing algorithms. Compressive Sensing is 
an effective method to make data compressed for EEG signals with high compression ratio and good quality of reconstruction. 
Experimental results show that the curvelet transform compression method performs much better based on Compression Ratio (CR), 
Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE). 
The compressive sensing (CS) methodology can be used in EEG analysis for discriminating among different, possibly pathological, 
brain states. It can be used for diagnosing and controlling Alzheimer’s disease patients. An interesting alternative to use the CS 
derived compression coefficients can be to use a set of connection weights extracted from a trained Spiking Neural Network. This 
approach can certainly be the object of further studies. 
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