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1. Introduction 
Stiffened plates have wide applications in many civil engineering, aerospace and marine structures. They are used in box girders, plate 
girders, ship hulls and wing structures. Interest in stiffened plate construction has been widespread in recent years due to its economic 
and structural benefits. The advantage of stiffening a plate lies in achieving an economical, light weight design. While the stiffening 
elements add negligible weight to the overall structure, their influence on strength and stability is enormous.  
The conventional methods of analysis includes, Energy approach, Orthotropic plate approach, and Numerical approach. 
Orthotropic plate is somewhat convenient especially when the stiffeners are of equal spaced. In this method, stiffened plate is 
converted into an equivalent plate with constant thickness by smearing out the stiffeners. The resulting idealized structure is therefore 
composed of the original plate layer and additional layer Bedair, (1998). This model is however justified if the stiffeners are closely 
spaced, also further difficulties could appear if the stiffeners are not identical in both directions or not equally spaced, since the 
resulting thickness becomes non-uniform. In addition, the method does not take into account the discrete nature of the structure 
(Timoshenko and Gere, 1961 and Hughes et al., 2004). 
Timoshenko and Gere, (1961) used energy approach to solve stability problem of stiffened plates with all the four edges simply 
supported, they assumed the trigonometric shape function in their work. However, in the analysis of stiffened plates by Energy 
method, it is a common knowledge that only trigonometric shape functions have been used (Bulson, 1970; Cox, 1954; Szilad 2004). 
The accuracy of Numerical approaches such as finite element and finite difference methods depends on the number of finite units 
created (Mukhopadhyay, 1989; Mukhopadhyay, 1990; Shahabian and Shahasavandi, 2008; Liu et al., 2012). 
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Abstract: 
The objective of this work is to present Elastic Buckling of Stiffened Rectangular Isotropic Plates using Work principle Approach. 
Stiffened plates possessing different aspect ratios, varying stiffness properties and varying number of stiffeners were analyzed for 
critical buckling loads using Work Principle approach. The present analysis was carried out only for uniaxially stiffened plate, 
where longitudinal stiffeners are presented parallel to inplane load of the plate. The governing differential equation for the 
stiffened plate system was obtained by super position principle. Polynomial functions were used in this study. Effects of the 
number of stiffeners, aspect ratios, boundary conditions, stiffener parameters upon the buckling coefficients, K of the stiffened 
plates were investigated. The results were obtained considering the bending displacements of the plate and the stiffener for all 
cases of edge conditions presented. Maximum percentage difference in buckling coefficients of SSSS stiffened plate for the case of 
one stiffener of present work with Reference works is 0.522%. For the case of two stiffeners, the maximum percentage differences 
in buckling coefficients recorded is 0.5247%, also for the case of three stiffeners maximum percentage difference is 1.239%. 
These differences revealed a good agreement with previous research works. In the structure modeling, the plate and the stiffeners 
were treated as a unit member. 
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In recent works Ibearugbulem (2012), Ezeh et al. (2013), Njoku et a.l (2013) have used Polynomial shape function in the analysis of 
thin plates of various boundary conditions. Practical situations are more likely to involve the consideration of plates incorporating 
some form of stiffeners. 
 
2. Governing Differential Equation 
Consider a plate of length a, width b and thickness t having two longitudinal stiffeners element as shown in Figure 1. According to 
Wutzow and De Paiva (2008) Stiffeners are as a rule, linear element, nearly always of negligible thickness. In this study, stiffeners are 
considered as line continuum. 
 

 
Figure 1: A Stiffened System under in plane load 

 
From the principles of the theory of elasticity, the governing equation for stiffened rectangular isotropic plates was given by Ibeabuchi 
(2014) as; 
 

 
where; Q and R are non dimensional parameter 
Q         that is   ;      R         that is     

 = Ratio of bending stiffness rigidity of stiffeners to the plate 

  = Ratio of cross-sectional area of the stiffeners to the plate 

 
2.1. Work Principle 
Work is defined mathematically as the product of average force and distance travelled by the force. Hence, for the combined action of 
work done by the compressive and resistive force on the stiffened system through a distance w, equation (1.0) becomes; 

 
Where; Deflection function, W = AH; A = coefficient; H is the shape function: ei is the introduced error, “i” is the number of points 
on the continuum. 
Integrating equation (3.100) twice with respect to R and Q gave; 

 
 
∏ is the Total Work error Functional. Minimizing and making  the subject of equation (3.0) gave; 
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Equation (4.0) is the Buckling equation for rectangular plate stiffened longitudinally under in-plane loading. 
 
2.2. Boundary Conditions for SSSS Stiffened Plates 
A Stiffened plate with simply supported edges and dimensionless R-Q axes is shown in Figure 2. The boundary conditions in 
dimensionless coordinate system are given below as; 
 

 
Figure 2: Longitudinally stiffened rectangular plate with edge numbers 

 
 

 ;  

 ;  

 
2.3. Polynomial Shape Function 
Ibearugbulem in 2012 formulated the general shape function for rectangular plates from Taylor-McLaurin’s series as; 

 
For M = N = 4 

Substituting  and into equation (7.0) gave; 

 
Similarly, substituting into equation (7.0) respectively gave; 

 

Substituting  into equation (7.0) respectively gave; 

 
Solving the two equations simultaneously gave; 

 
Similarly, substituting into equation (7.0) gave; 

 
Substituting the values of a0, a1, a2, a3, a4, b0, b1, b2, b3 and b4 into (7.0) gave; 

 
 

 
 
3. Formulation of Stability Equation for SSSS Stiffened Plates 

(6.0) 
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Three cases of SSSS stiffened plates are considered as shown in figure 3. 
 
 

  
Figure 3: Stiffeners Arrangement for SSSS Stiffened Plates 

 
3.1. Case of One Stiffener 
Consider figure 3.0(a), the stiffener divides the plate into two equal widths. 
From equation (13.0) deflection function, H is given as; 

 
FOR THE STIFFENER /RIB 
For  , we have; 

 

 

 
FOR THE PLATE ELEMENT 
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Applying equations (15.0), (16.0), (17.0), (18.0), (19.0), (20.0) into (5.0), gave; 

 

 
Where, 

 
 
4. Stiffeners Case of Two 
Consider figure 3.0(b), the stiffeners divides the plates into three equal parts. 

 
Where are the distances of the stiffeners from the edge y = 0. 
Assuming stiffeners are symmetrical, hence; 

 
Following the same procedure in the case of one stiffener, we obtain the equations as follows; 

 

 
Substituting equations (17.0), (18.0), (19.0), (20.0), (23.0), and (24.0) into (5.0), gave; 

 

 

 
 
5. Case of Three Stiffeners 
Consider figure 3.0(c), the stiffeners divides the plate into four equal parts, thus; 
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Substituting equations (17.0), (18.0), (19.0), (20.0), (31.0), and (32.0) into (5.0), gave; 

 

 

 
 
6. Results and Discussion 
The buckling coefficient, K for SSSS stiffened plate for the three cases considered is presented, as well as comparism with other 
published works. 
Szilad (2004) used single fourier series to obtain buckling coefficient for a plate with one central longitudinal stiffener as; 

 
Where; ࣅ = buckling coefficient 
Timoshenko and Gere (1961) applied Energy Principle in Ritz method to obtain buckling coefficients for the three cases considered as 
follows; 
For the cases of one, two and three longitudinal stiffeners, K was given as; 

 
Where; β represents aspect ratio, γ represents the ratio of flexural rigidity of stiffener to that of plate, ᅊ represents the cross-sectional 
area of stiffener to that of plate. 
 

 Comparison of K values obtained using work principle approach and those from Timoshenko and Gere (1961) for the case of 
one longitudinal stiffener at 5 = ࢽ. 
 

P ᅊ = 0.05 Percentage difference ᅊ = 0.10 Percentage difference Present Reference Present Reference 
0.1 996.60 1001.83 0.522 914.07 918.34 0.46 
0.2 250.55 251.85 0.516 229.80 230.87 0.46 
0.3 112.43 113.01 0.513 103.12 103.60 0.45 
0.4 64.14 64.46 0.496 58.83 59.09 0.44 
0.5 41.84 42.05 0.499 38.37 38.54 0.44 
0.6 29.78 29.92 0.467 27.31 27.43 0.44 
0.7 22.57 22.67 0.411 20.70 20.78 0.38 
0.8 17.94 18.03 0.499 16.46 16.52 0.36 
0.9 14.84 14.90 0.403 13.61 13.66 0.37 
1.0 12.68 12.73 0.393 11.63 11.67 0.34 

Table 1 
 

 Comparison of Buckling Coefficient, K for SSSS stiffened plates obtained in equation (26.0) with Szilad (2004), a case of 
one central longitudinal stiffener dividing the plate into two equal parts having, γ = 5. 
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P 
ᅊ = 0.05 Percentage 

difference 

ᅊ = 0.10 
Percentage difference 

Present Work Szilad 
(2004) Present Work Szilad 

(2004) 
0.1 996.598 1001.827 0.5247 914.068 918.342 0.4676 
0.2 250.548 251.855 0.5214 229.800 230.867 0.4642 
0.3 112.431 113.011 0.5158 103.121 103.593 0.4586 
0.4 64.138 64.464 0.5076 58.827 59.092 0.4505 
0.5 41.838 42.045 0.4968 38.373 38.542 0.4396 
0.6 29.779 29.923 0.4830 27.313 27.430 0.4259 
0.7 22.567 22.672 0.4662 20.698 20.782 0.4091 
0.8 17.945 18.025 0.4463 16.459 16.523 0.3892 
0.9 14.837 14.900 0.4235 13.609 13.659 0.3664 
1.0 12.677 12.727 0.3980 11.627 11.667 0.3409 

Table 2 
 

 Comparison of Buckling Coefficient, K for SSSS stiffened plates obtained in equation (34.0) with Timoshenko and Gere 
(1961), a case of three longitudinal stiffeners dividing the plate into four equal parts having, γ = 5. 

 

P 
ᅊ = 0.05 Percentage 

difference 

ᅊ = 0.10 Percentage 
difference Present Timoshenko and Gere 

(1961) Present Timoshenko and Gere 
(1961) 

0.1 1765.111 1751.675 0.7671 1520.033 1501.436 1.239 
0.2 442.568 439.200 0.767 381.119 376.457 1.238 
0.3 197.689 196.186 0.766 170.241 168.160 1.238 
0.4 112.026 111.175 0.765 96.472 95.293 1.237 
0.5 72.424 71.875 0.764 62.368 61.607 1.236 
0.6 50.964 50.578 0.763 43.887 43.352 1.234 
0.7 38.077 37.789 0.761 32.790 32.392 1.232 
0.8 29.768 29.544 0.759 25.635 25.323 1.230 
0.9 24.128 23.947 0.756 20.536 20.778 1.227 
1.0 20.151 20.000 0.753 17.353 17.143 1.224 

Table 3 
 

For the case of one central longitudinal stiffener, Table 1.0 shows a comparison between present study and reference. At constant 
value of γ = 5, and ᅊ = 0.05, 0.10, it is observed that maximum and minimum percentage difference values are 0.5247 and 0.393 
which occurs at P = 0.1 and 1.0. 
Table 2.0 shows a comparison between present study and Szilad (2004). The values obtained shows good agreement. Percentage 
difference is between 0.5247 to 0.3980 which shows good agreement. 
Similarly, for the case of three longitudinal stiffeners dividing the plates into four equal parts, Table 3.0 shows the comparison 
between present study and reference.  For γ = 5 and ᅊ = 0.10, the percentage difference is between 1.239 to 1.224. 
Hence, there is a good agreement. 
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