

ISSN 2278 – 0211 (Online)

Conditional Equation's of Beal Conjecture

Mohamad Farhanuddin Firaq

BE Student, Akshaya Institute of Technology, Tumkur, Karnataka, India

Abstract:

This paper introduces two conditional equations which are termed as CE-1 and CE-2 in this paper. The CE-1 and CE-2 equations give a constant result for the variables of beal conjecture and show condition for its occurrence. This paper also includes proof of validity of beal conjecture which is shown by deriving CE-1 and CE-2 from beal conjecture equation.

Keywords: conditional equations (CE-1 and CE-2), Beal conjecture, prime numbers, ferman-catalan conjecture (FCC), number theory

1. Introduction

Beal conjecture states that if $a^x + b^y = c^z$ with a, b, c having a common prime factor then x,y,z>2. It was formulated by Andrew

beal. Although maudlin [1] also presented it as a generalization of Fermat's last theorem. Beal conjecture can also be concluded as that all Ferman Catalon Conjecture solutions use 2 as an exponent.

Darmon and Granville [2] have also worked in this kind of problem while investigating integer solutions of the super elliptic equation $z^m = F(x, y)$

Where F is a homogeneous polynomial with integer coefficients of the generalized Fermat equation $Ax^{p} + By^{q} + Cz^{r}$

beal conjecture is concerned with the common prime factor for positive integers and their exponents greater than 2. If $a^x + b^y = c^z$, where a, b, c, x, y and z are positive integers and x, y and z are all greater than 2, then A, B and C must have a common prime factor.

Ex:

		Common Prime Factor
$2^3 + 2^3 = 2^4$	=>	2
$2^9 + 8^3 = 4^5$	=>	2
$3^3 + 6^3 = 3^5$	=>	3
$3^9 + 54^3 = 3^{11}$	=>	3
$27^4 + 162^3 = 9^7$	=>	3
$7^6 + 7^7 = 98^3$	=>	7
$33^5 + 66^5 = 33^6$	=>	11
$34^5 + 51^4 = 85^4$	=>	17
$19^4 + 38^3 = 57^3$	=>	19

Table 1

2. Conditional Equations (CE-1 and CE-2)

If the equation $a^{N} + b^{Y} = c^{P}$ satisfies beal conjecture then

$CE-1: (x-2)\log a + (y-2)\log b - (z-2)\log c = K(\pm \log 2)$

CE-2: $2\log(c/ab) = k(\pm log 2)$

Where k=0, 1, 2, 3...n integers and $(\pm \log 2)$ is a constant(error correcting constant). Any one or both of the above equations

must be satisfied IF BEAL CONJECTURE IS TRUE.

However the result of CE-1 and CE-2 can be stated as a multiple of $(\pm \log 2)$.

From the below table a, b, c, x, y, z are variables of the equation $a^{*} + b^{y} = c^{*}$ satisfying beal conjecture.

Sl.no,	a	b	c	х	У	Z	$k(\pm log2)$	$k(\pm log2)$	Satisfying
							for	for	equation
							CE-1	CE-2	
1	2	2	2	3	3	4	0*log2	2*(-log2)	both
2	2	8	4	9	3	5	4*log2	4*(-log2)	both
3	3	6	3	3	3	5	1*log2	5*(-log2)	both
4	3	54	3	9	3	11	9*log2	12*(-log2)	both
5	27	162	9	4	3	7	1*log2	18*(-log2)	both
6	7	7	98	6	7	3	19*log2	2*(-log2)	both
7	33	66	33	5	5	6	13*log2	12*(-log2)	both
8	34	51	85	5	4	4	14*log2	9*(-log2)	both
9	19	38	57	4	3	3	8*log2	7*(-log2)	both

Table 2: Table showing solution of beal conjecture using CE-1 and CE-2

3. Derivation of conditional equations CE-1 and CE-2 using beal conjecture.

From beal conjecture we have $a^x + b^y = c^z \tag{1}$ Let $x=k_{1+2}, y=k_{2+2}, z=k_{3+2}$ and $k_{1,k_{2,k_{3}}}$ are any variables such that x, y, z>2 and satisfying beal conjecture. Let $loga^{x} + logb^{y} - logc^{z} = K(\pm log2)$(2) (From above table 3, SL.NO 1 contents the above equation (2) is possible, Now solution of equation 1 using CE-1 is k=0 Substituting the above in equation 2, we can write equation (2) as $loga^{k1+2} + logb^{k2+2} - logc^{k3+2} = 0.(\pm log2)$ [: k=0] Now, $loga^{k1+2} + logb^{k2+2} = logc^{k3+2}$ $(k1+2)\log a+(k2+2)\log b=(k3+2)\log c$ k1loga+2loga+k2logb+2logb=k3logc+2logc k1loga+k2logb-k3logc=2(logc-loga-logb) k1loga+k2logb-k3logc=2log(c/ab).....(3) Now solving for k1, k2, k3, We get (x - 2) = k1, (y - 2) = k2, (z - 2) = k3Substituting these values in equation (3) we get $(x-2)\log a + (y-2)\log b - (z-2)\log c = 2\log (c/ab)$(4) Now equation (4) can be resolved into two parts i.e. $(x-2)\log a + (y-2)\log b - (z-2)\log c = K(\pm \log 2)$(5) And $2\log (c/ab) = K(\pm \log 2)$(6) k=0,1,2,3 ... *n* integers

Where $(\pm \log 2)$ is a constant, it can be also called as error correcting constant.

Equation 5 and 6 are conditional equations CE-1 and CE-2, any one of them or both of them must be satisfied if beal conjecture is true.

4. Conclusion

- 1. CE-1 and CE-2 results a constant $K(\pm \log 2)$ only if beal conjecture is true, i.e. it also shows condition for occurrence of beal conjecture.
- 2. Derivation of CE-1 and CE-2 from beal conjecture is a valid proof for existence of beal conjecture.
- 3. The result of CE-1 and CE-2 can be stated as a multiple of $(\pm \log 2)$.

5. References

- 1. D.R. maudlin="a generalization of flt:beal conjecture and prize problem "in notices of AMS 1997.
- 2. H. Darmon and A. Granville, "On the equations ZS =F(x, y)_and Ax. + By. = Cz. ", in Bull. London Math. Soc., 27, 1995, pp. 513-543.