
 www.ijird.com January, 2015 Vol 4 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 154

Process for Extracting Subpart from UML Sequence Diagram

1. Introduction
In current years, due to the enhance in size and difficulty of software products the significance of architectural design has been
improved. The design of an object-oriented software system define its high level design structure and allows an architect to motive
about various property of the system at higher level of concept. For this, Unified Modeling Language (UML) is the best choice and
widely used to symbolize and construct the design of software system with the help of a variety of model diagrams. UML diagrams
explain structural and behavioral aspect of architecture [1, 2]. Structural models (e.g. class diagrams, object diagrams, component
diagrams) are used to explain various relationships among objects, such as aggregation, connection, work and
simplification/specialization etc. On the other hand, the behavioral models (e.g. communication and sequence diagram, activity
diagram, state diagram) are applied to depict a sequence of events, states and their dealings, through which a use case is realized. The
task of analyzing UML Models is bit tricky since the information about system can be spread across several model views. To
surmount this problem the thought of model based slicing came to reality. Model Based slicing is a breakdown technique to extract
and recognize relevant model parts (or fragments) or associated elements across varied model views. It takes the user defined slicing
criteria as input and slices the architecture, as a view of importance [3]. Slicing is useful in software protection, reengineering, testing,
breakdown and integration, recompilation, program comprehension, and debugging. The aim of software testing is to ensure
excellence. Software testing is essential to produce highly dependable systems, since static verification techniques bear from several
hurdles to detect all software faults [16]. The most intellectually challenging part of testing is the plan of test cases. Test cases are
typically generated based on program source code. Another approach is to generate test cases from specifications developed using
formalisms such as UML models. Slicing is best technique which can decay the structure into sub models without disturbing their
core structure and functionality. It helps the developer to increase the perfect view of software according to their condition.

2. Literature Analysis on Model Based Slicing
In early stage of growth, Model based slicing has been useful to state machines [4] where similar benefits as those scheduled above
has been claimed. State machine slicing is an example of applying slicing to a model of a scheme rather than to the system
accomplishment. However, system models such as those represented in terms of the UML-family of languages are much more
difficult than state machines (and contain state machine sub-languages). Several approach and attempt have been made for slicing
UML diagrams. The loom in [5] describe context-free slicing of UML class models where the issue of situation has been defined to be
object position, which is a dynamic property of the situation therefore context free slicing is a static slice of a structural model. As
noted in [5] the criterion used for slicing a model is more composite than that used in program or state machine slicing since there are
more types of elements and relationships. This has been noted that OCL (object constraint language) should be use to state the slicing
criteria. A similar approach has been used to modularize the UML meta-model into collection of works that are relevant to the
different UML diagram types in [6] though the predicate used to resolve the slicing criteria has been set in terms of traverse the meta-

 ISSN 2278 – 0211 (Online)

Sneh Krishna
M.Tech. Research Scholar, LNCT, Bhopal, Madhya Pradesh, India

Alekh Dwivedi
Assistant Professor, LNCT, Bhopal, Madhya Pradesh, India

Vineet Richhariya
Head of the Department, CSE Department, LNCT, Bhopal, Madhya Pradesh, India

Abstract:
 Software visualization is lone promising technique meant at helping developers and testers to recognize the performance of
object-oriented systems successfully. However, it is still complex to understand this performance, because the size of
involuntarily generated model diagrams tends to be ahead of the study capacity. In this paper, a novel methodology to simplify
the problem of software visualization has been planned, that uses the concept of slicing UML diagrams and model based slicing
technique.

Keywords: Slicing, sequence diagram, software visualization, UML, model based slicing

 www.ijird.com January, 2015 Vol 4 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 155

model elements opening with a group of supplied classes. Class models has sliced in combination with OCL invariants in [7] thereby
dropping the state-space explosion that would otherwise occur when using a model-checker (in this case Alloy) to verify a class-
model. UML state-charts can be sliced as described in [8] [9] [10] though these approaches do not simplify the results to include other
parts of the UML language family. Both static and dynamic aspects of UML can be joint and sliced as described in [11] [12] where
class and sequence diagrams are combined into a single symbol (a model dependency graph MDG) that can be consequently sliced to
show partial dynamic and structural information resulting from criteria containing both structural and dynamic constraint. Slicing
UML sequence diagrams in order to produce test cases has been described in [13] [15]. UML sequence diagrams (or scenarios) are
basically an essential part of execution of a program. It depicts the objects and classes involved in the condition and the sequence of
messages exchange between the objects. Sequence diagrams are normally associated with use case realization in the Logical View of
the system under progress. It has been meticulously analyzed that for the process of slicing sequence diagram no combine technique
have been developed to remove the point of interest from architecture of software to ease the software visualization that uses
provisional predicate for finding out a relative slice. Figure 1 shows the general view of functional behavior of software models in the
form of sequence diagram. Rectangular box specify the objects within model diagram that are interacting with each other. Doted lines
signify the life line of the objects on which instances of the objects has been produced. Arrow represents the particular action (in the
form of messages) of objects and their way, where round brackets specify the guard condition that specifies the truth and false value to
interact. Sign of cross specify the end of life line where all the instance of the objects will devastate after the completion of their
relevant action.

Figure 1: Generic view of Sequence diagram [1]

3. Proposed Methodology
The proposed work addresses the slicing of sequence diagram to ease the software visualization through using conditional predicate
for finding relevant slices. In the planned methodology, following steps has been followed:
 Step1. Generation of UML (Sequence) diagrams of/from a demanding requirement specification.

1.1. Visual paradigm for UML, Magic-draw, and Rational rose; etc can be used to create the UML diagrams.
 Step 2. Create XML from the particular UML diagram (Sequence diagrams).

2.1. Visual paradigm for UML 10.0 version gives the in-built functionality to export the diagram into XML format.
 Step 3. Document Object Model (DOM) parsers for parsing XML code and produce an output file (with .txt extensions) having

Object name, message name, Identifier, message to & fro information.
3.1. Java API DOM is applied to parse the XML code file produced in step 2.
3.2. DOM parser utilizes the function Document Builder Factory () to constructs the instance of the class to parse the files.
3.3. DOM parser will create a txt file having information regarding objects name and its identifier. This file also holds the
information related to the entire messages and the objects with which the message is floating.
3.4. The entire information supplied by parser will be store up in separate .txt file.

 Step 4. Passing file achieved from step 3 and slicing criteria to a .java programs (which acts as slicer) for getting the
relative/required large piece of information in a separate .txt files.
4.1. Slicer will take .txt file produced in step 3 as input.
4.2. Slicer will request user to name the slicing criteria at run time to produce the chunk/slice as per particular requirement.
4.3. Computed slices will be store in different .txt file which contains the information of messages, their guard conditions and
objects id’s between which messages are being passed.

 www.ijird.com January, 2015 Vol 4 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 156

 Step 5. Shifting object id with relative object name between which message is passing so that information can be get back
easily (this step will only deal through sliced part).
5.1. To ease the regained of information objects id’s will exchanged by their corresponding objects name (in the file retrieved
from step 4.3).
5.2. The entire information will store in different .txt file which contains the information of messages and the object name
(between which they are communicating relative to user define slicing criteria).

 Step 6. Passing txt file as achieved from step 5 to a .java programs so that it can be exchanged into input file format for Quick
Sequence Diagram Editor.

 Step 7. Tool will produce the absolute and relatively small sequence diagram.
7.1. Tool will capture the input format described at step 6 as input to transform into its correspondent diagram.
7.2. Filtered slice (small sequence diagram) will be created as final output according to slicing criteria by means of requirement
to ease the software visualization.

Figure 2: Overview of Methodology

Consider an example UML sequence diagram as shown in figure: 3. the point of selecting this example is to display the concept of
proposed methodology. In the example there are four objects which are interacting with each other thorough message passing (using
guard order as true to interact with each other). We illustrate our methodology by explaining the generation of chunk or refined model
diagram as shown in figure 4 with respect to slicing criteria. Here in this example let the slicing criterion is variable „z‟. Given criteria
is a variable used in conditional predicate of message guard condition. True and false value of these guard conditions are used by
objects to interact with each other. According to user defined slicing criteria, proposed methodology will slice the model diagram
shown in figure 3 and generate the resultant small chunk or refined sequence diagram as shown in figure 4.

 www.ijird.com January, 2015 Vol 4 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 157

Figure 3: Example Sequence diagram

Figure 4: Refined Sequence diagram

 www.ijird.com January, 2015 Vol 4 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 158

Related
Work

Type
of

Model

Sliced Entity Slice Type IR* Elements of
Slicing Criterion

Elements of the Slice

Zhao[2] Wright
ADL

Architectural
Specification

Static AIFG* Set of ports of a
component, or a set

of rules of a
connector

Set of components, and
connectors

Zhao[17] Acme
ADL

Architectural
Specification

Static SADG* Set of ports of a
component, or a set

of rules of a
connector

Set of components,
connectors, and

attachments

Kim[18] Rapide
ADL

Architectural
description and its

implementation

Dynamic DNU-IR* Input values for
ADL executable,

event name and no.
of occurrences of

an event

Set of components, and
ports

Korel et
al.[19]

EFSM State-based EFSM
model

Static EDG+++ Pair of variable and
transition in EFSM

Transition in EFSM
that affect an variable

Kagdi et
al.[5]

UML Class Models Static Digraph Set of initial
elements, set of

selected elements,
and set of

relationship

Set of class elements
and its relations

Ojala[9] UML State Machines Static CFG Set of transitions in
state machines

CFG nodes

Wang et
al.[20]

UML State Charts Static EHA Set of states and
transitions based on

LTL** property

States and transitions
in eha

Langenhove
[10]

UML State Charts Static FSM States in state chart
and some data

values

Program statements

Bae et al[6] UML UML metamodel Static Digraph UML diagram type Elements of a UML
diagram

Lallchandani
[11]

UML UML
model(structural
and behavioural)

Dynamic
And Static

MDG class, scenario, and
data values

UML model elements

Present
Work

UML UML
model(sequence

diagram)

Static And
Dynamic

Guard
Condition

Model Based
Slicing

UML sequence
diagram

Table 1: Summary of Comparison with Related Work

*IR is acronym for “intermediate representation” #DNU-IR means “Do not use any intermediate representation” +AIFG is an
acronym for “Architecture information flow graph” ++SADG is an acronym for “software architectural dependence graph” +++EDG
is an acronym for “Extended finite state machine dependence graph” **LTL is an acronym for “Linear temporal logic”.

5. Conclusion
A new technique for model based slicing has been planned that will extract the sub-model from architecture of the software to ease the
software visualization. The key contribution of the method is to generate the refined model slices related to user defined slicing
criteria using conditional predicate in sequence diagram. Sequence diagrams capture time dependent (temporal) sequences of relations
between objects. The basis of the proposed technique is „UML‟ and „Slicing‟. With this, the problem of visualization of large and
complex software can be sorted out. This technique can further be improved and applied in the field of concurrent programming.

6. References

1. Grady Booch, James Rumbaugh, Ivar Jacobson, “The Unified Modeling Language User Guide," 2nd Edition,
May 2005, Publisher. Addison Wesley.

2. Jianjun Zhao, "Slicing Software Architecture," Technical Report 97-SE-117, pp.85-92, Information Processing Society of
Japan, Nov 1997.

3. Sneh Krishna, Alekh Dwivedi , “Literature Survey on Model based Slicing” International Journal of Engineering Sciences &

 www.ijird.com January, 2015 Vol 4 Issue 1

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 159

Research Technology , pp. 576-583, [Krishna, 3(10): October, 2014].
4. K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and L. Tratt. Control dependence for extended finite state machines.

Fundamental Approaches to Software Engineering, pp. 216–230, 2009.
5. H. Kagdi, J.I. Maletic, and A. Sutton, “Context-Free Slicing of UML Class Models,” Proc. 21st IEEE Int‟l Conf.

Software Maintenance, pp. 635-638, 2005.
6. J.H. Bae, K.M. Lee, and H.S. Chae. Modularization of the UML metamodel using model slicing. In Information Technology:

New Generations, 2008. ITNG 2008. Fifth International Conference on, pages 1253–1254. IEEE, 2008.
7. A. Shaikh, R. Clarisó, U.K. Wiil, and N. Memon, “Verification-driven slicing of UML/OCL models,” In Proceedings of the

IEEE/ACM international conference on Automated software engineering, pages 185–194. ACM, 2010.
8. Kevin Lano Crest, “Slicing of UML State Machines,” Proceedings of the 9th WSEAS International Conference on APPLIED

INFORMATICS AND COMMUNICATIONS (AIC '09), 2009.
9. V. Ojala, “A slicer for UML state machines,” Helsinki University of Technology, 2007.
10. S. Van Langenhove, “Towards the Correctness of Software Behavior in UML: A Model Checking Approach Based on

Slicing,” Dissertation, Department of Mathematics, Ghent University, 2006.
11. J.T. Lallchandani and R. Mall, “Slicing UML architectural models,” ACM SIGSOFT Software Engineering Notes, vol.33,

no.3, pp. 1–9, 2008.
12. J.T. Lallchandani and R. Mall, “Integrated state-based dynamic slicing technique for UML models,” Software, IET, vol. 4,

no. 1, pp. 55–78, 2010.
13. P. Samuel and R. Mall. A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams. e-

Informatica Software Engineering Journal Selected full texts, vol. 2, no. 1, pp. 61–77, 2008.
14. J. Qian and B. Xu, “Program slicing under UML scenario models,” ACM SIGPLAN NOTICES, vol. 43, no. 2, 2008.
15. P. Samuel, R. Mall, and S. Sahoo, “UML Sequence Diagram Based Testing Using Slicing,” IEEE Indicon 2005 Conference,

pages 176–178, IEEE, 2005.
16. R. V. Binder, “Testing object-oriented software: a survey,” Software Testing Verification and Reliability, vol. 6(3/4), pp:

125 – 252, 1996.
17. Jianjun Zhao, “Applying slicing technique to software architectures,” In Fourth IEEE International Conference on

Engineering of Complex Computer Systems, pp.87 –98, 1998.
18. T. Kim, Y.-T. Song, L. Chung, and D.T. Huynh, “Dynamic Software Architecture Slicing”, In Proceeding 23rd

International conference on Computer Software and Applications , pp. 61-66, 1999.
19. B. Korel, I. Singh, L. Tahat, and B. Vaysburg, “Slicing of State Based Models”, In Proceeding of International

Conference of Software Maintenance, pp.34-43, 2003.
20. J. Wang, Wei Dong, and Zhichang Qi, “Slicing Hierarchical Automata for Model Checking UML Statechart,” In Proceeding

of 4th International Conference of Formal Engineering Methods and Software Engineering, pp. 435-446, Oct. 2002.

