

ISSN 2278 – 0211 (Online)

Online Built-In-Self Test Architecture Using SRAM Cells

M. Malarvizhi M.E, Applied Electronics, IFET College of Engineering, Villupuram, India M. Saravanan Associate Professor, IFET College of Engineering, Villupuram, India V. Rajendhiran M.E, Applied Electronics, IFET College of Engineering, Villupuram, India

Abstract:

In this brief, we present a novel input vector monitoring concurrent BIST scheme, which is based on the idea of monitoring a set (called window) of vectors reaching the circuit inputs during normal operation, and the use of a static-RAM like structure to store the relative location of the vectors that reach the circuit inputs in the examined window; the proposed scheme is shown to perform significantly better than previously proposed schemes with respect to the hardware overhead and concurrent test latency (CTL) trade off. In this paper two methods will be discussed, window monitoring concurrent bist and input vector monitoring concurrent bist using sram,

Keywords: Built-in-selftest, design for testability, testing, window monitoring bist.

1. Introduction

BIST is a design-for-testability technique that places the testing functions physically with the circuit under test (CUT). The basic BIST architecture requires the addition of three hardware blocks to a digital circuit: a test pattern generator, a response analyzer, and a test controller. The test pattern generator generates the test patterns for the CUT. Examples of pattern generators are a ROM with stored patterns, a counter, and a linear feedback shift register (LFSR). A typical response analyzer is a comparator with stored responses or an LFSR used as a signature analyzer. It compacts and analyzes the test responses to determine correctness of the CUT. A test control block is necessary to activate the test and analyze the responses. However, in general, several test-related functions can be executed through a test controller circuit.

In normal operation, the CUT receives its inputs from other modules and performs the function for which it was designed. During test mode, a test pattern generator circuit applies a sequence of test patterns to the CUT, and the test responses are evaluated by a output response compactor. In the most common type of BIST, test responses are compacted in output response compactor to form (fault) signatures. The response signatures are compared with reference golden signatures generated or stored on-chip, and the error signal indicates whether chip is good or faulty. Four primary parameters must be considered in developing a BIST methodology for embedded systems; these correspond with the design parameters for on-line testing techniques. BIST can be used for non-concurrent, on-line testing of the logic and memory parts of a system.

It can readily be configured for event-triggered testing, in which case, the BIST control can be tied to the system reset so that testing occurs during system start-up or shutdown. BIST can also be designed for periodic testing with low fault latency. This requires incorporating a testing process into the CUT that guarantees the detection of all target faults within a fixed time. On-line BIST is usually implemented with the twin goals of complete fault coverage and low fault latency.

2. Window Monitoring Concurrent Bist

Window monitoring concurrent bist is one type of bist. W-MCBIST is based on the separation of the test set into non-overlapping subsets called windows. Each one of size $ws=2^w$ where 0 < w < n

2.1. BIST Architecture

The normal operation of window monitoring concurrent bist exploits the arrival of any test vector belonging to a specific window called active window. The input vector is compared against a set of ws vectors that constitute the active as follows. n-wbits of a n-bit input vector are compared with the output of the test generator and if they match cmp is enabled. The remaining w bits of the input

vector are driven to the inputs of a wxWS decoder whose enable in driven by cmp. Therefore, if the input vector belongs to the active window, one of the D[i] signals is enabled. When al vectors of a window have performed a hit, that signal test generator enable (tge) triggers the test generator to the next state ,in order to examine a new window. After the test generator has generated al its 2ⁿ-w states, we examine the signature captured in RV and decided whether the CUT is faulty.

Submit your manuscript electronically for review.

2.2. Technique of Window Monitoring Concurrent BIST

The logic module consists of Ws logic cells .Each logic cells[i],1 < i < Ws, corresponds to a vector that belongs to the active window and can be either empty or full, depending on whether the corresponding vector has reached the CUT inputs during the examination of the current active window. This is indicated by the value of the signal full. When all logic cells are full, the signal tge is enabled, at the next clock cycle, all cells are emptied and the next active window is examined.

2.3. Logic Module

The Window monitoring concurrent bist can switch from normal to test mode. If at time some of the vectors belonging to the current window have reached the CUT inputs, the remaining vectors of the current active window are applied offline before proceeding to examine the next window. The response verifier compresses the CUT outputs. Since in W-MCBIST the order of the vectors that perform hit during the examination of the window is not fixed.

The final signature must be independent of the order of the output vectors of the CUT. Thus, an order –independent RV is used with Window monitoring concurrent BIST. The accumulator –based compaction is an order-independent response verification technique that has been shown to have aliasing properties similar to the best compactors based on cellular automata and multiple input signature registers and is utilized with Window monitoring concurrent BIST.

3. SRAM Cells

The module is reset through the external reset signal. When reset is issued, the tge signal is enabled and all the outputs of the decoder are enabled. The CD signal is enabled therefore, a one is written to the right hand side of the cells and a zero value to the left hand side of the cells. The normal mode, the inputs to the CUT is driven from the normal inputs. The n inputs are also driven to the CBU as follows the w low-order inputs are driven to the inputs of the decoder; the k high-order inputs are driven to the inputs of the comparator. During the first half of the clock cycle (clk and cmp are enabled) the addressed cell is read; because the read value is zero, the w-stage counter is triggered through the NOT gate with output the response verifier enable (rve) signal. During the second half of the clock cycle, the left flip-flop (the one whose clock input is inverted) enables the AND gate (whose other input is clk and cmp), and enables the buffers to write the value one to the addressed cell. If the cell corresponding to the incoming vector contains a one i.e., the respective vector has reached the CUT inputs during the examination of the current window before. The rve signal is not enabled during the first half of the clock cycle; hence, the w-stage counter is not triggered and the AND gate is not enabled during the second half of the clock cycle. When all the cells are full (value equal to one), then the value of the w-stage counter is all one. Hence, the activation of the rve signal causes the counter to overflow; hence in the next clock cycle(through the unit flop delay) the tge signal is enabled and all the cells(because all the outputs of the decoder are enabled are set to zero.

When switching from normal to test mode, the w-stage counter is reset. During test mode, the w-bit output of the counter is applied to the CUT inputs. The outputs of the counter are also used to address a cell. If the cell was empty (reset), it will be filled (set) and the RV will be enabled. Otherwise, the cell remains full and the RV is not enabled. Accumulator based compaction method is used to reduce the concurrent test latency and hardware overhead.

4. Simulation Results

The simulation results will be shown for both window monitoring concurrent bist and Sram cells. The waveform will be shown in below .ROM modules will be tested in varies size,16k,64k,128k,256k for window monitoring concurrent bist and Sram cells. The flow summary will be shown how many logical elements will be used and propagation delay. The below waveform is for 16k ROM for window monitoring concurrent bist.

Figure 1: Simulation result for 16K ROM in window monitoring concurrent BIST.

The waveform will be generated based on the mode select. If the mode select will be zero, the normal mode values are generated in the CUT input. The cut output is produced and it is equal to the ideal result. The GB will be zero when the cut output is not equal to ideal result. The GB will be one when the cut output is equal to ideal result. Similarly the waveform for 64K ROM for window monitoring concurrent bist is shown below.

Sim	ulation	n Wa	veforms									
Simu	lation mo	de: Fi	unctional									
R	Master T	ime E	ac 1	7.325 r	15	• • Pointer	36.85 ns	Interval:	19.53 ns	Start	End	
Α					30.0 ns		40.0) ns	50	0 ns	6	i0.0 ns
Æ			Name									
æ,	@ 0	Đ	Cut_in	B 000	k -	0000000000	000000 X	000101	1110111100	κ—	000000000000000000000000000000000000000	X 110110101001
	17	Ð	Cut_out	B 000	k –				1111111111111111	11		1
44	34		G_B									
	igga 35	Œ	Ideal_result	B 000					000000000000000000000000000000000000000	0		
	52	Œ	In_normal	B 111		0101110011	101111	000101	1110111100		0010100011000000	X 11011010100
\rightarrow	69 69	Ð	In_test	B 000			00000000	0000000			000000000000000000000000000000000000000	001
89.	⊡≥ 86		de_select									
	⊡> 87		clk									
2+	⊡≥ 88		ret									

Figure 2: Simulation result for 64K ROM in window monitoring concurrent BIST.

ROM modules will be tested in SRAM cells and the simulation results will be obtained. SRAM cells will be more efficient compare to window monitoring concurrent BIST. The simulation results for 16K ROM in SRAM cells will be shown below.

2000	liation	waveloints										
Simu	ation mo	de: Functional										
Þ	Master T	ime Bar:	24	3ns Poi	nter	19.28 ns	Interval	-5.02 ns	Stat		End	
A				20.0	ins	30.0 n	s .	40.0 ns	50.0 ns	60.	Dins	70.0 ns
æ		Name			24.3 m	8						
۹	<u>و</u>	🗄 Cut_in	8 00	000000000000000000000000000000000000000	0000000	xxxxxx	0000000000100) 000000000000000000000000000000000000	X	0000000000110	000000000000000000000000000000000000000	0000000000
ħ	@ ∕15	to_tuC ⊞	B 000	00000000	00000000	X	11111	1111111110		1111111	11111011	<u></u>
A	@32 @33	G_B ideal_resuit	B 000	0000000	0000000	X	11111	111111101	3-	1111111	11111011	
n .	iii 50	🗄 h_nomal	B 00	000000000000000000000000000000000000000	00000000	3003011	0000000000100) 0000000000101		0000000000110	0000000000111	X 0000000001
-	@65	🗄 h_test	B 00	0000000	0000001	X	0000	000000010		0000000	0000011	X 0000000000
82	■>80 ■>81	de_select clk				F		-	╞			
z+	€82	nt										

Figure 3: Simulation results for 16K ROM in SRAM cells.

The waveform will be generated based on the mode select. If the mode select will be zero, the normal mode values are generated in the CUT input. The cut output is produced and it is equal to the ideal result. The GB will be zero when the cut output is not equal to ideal result. The GB will be one when the cut output is equal to ideal result. Similarly the waveform for 64K ROM for SRAM cells BIST is shown below.

SHIN.	NOTION IN	averanns								
Simu	lation mod	de: Functional								
_										
A	Master T	ime Bar	14.875 ns	• • Po	intec	12.52 ns	Interval	-2.36 ns	Start	
A			0 ps	5.186 n	3	10.372 ns	15.5	58 ns	20.744 ns	25.93 n
£		Name	-				14.875 n	5		
1	₽0	dk	- <u> </u>				L			
	<u>اھ</u>	nt				_				
ī	₽ 2	Mode_select								
1	3	In_romal	0000000000	000000	0000000000000011	0000000	000000110	000000000001001	00000000000110	
•	20	🗉 In_test	(00000000000	00000	0000000	000000001	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
•	37	🗄 Cut_in	000000000	300000 X	0000000000000011	000000	000000110	000000000000000000	00000000000110	
1,	54	E Cut_out		0000000000	00000	X 1111111	111111100	1111111111111001	X 1111111111111111	Ţχ
8	71	🗄 ideal_resuit		0000000000	00000	(111111	111111100	1111111111111001	111111111111111111) (
	@88	G_B		-			_			1

Figure 4: Simulation results for 16K ROM (Normal mode) in SRAM cells

Serie	Aducti Inc	de, Puricuonal							
R	Master T	ime Bar.	14.875 ns	• Pointer.	5	.2 ns	Interval	-9.68 ns	
A Æ		Name	Ops	5.186 ns	10	1.372 ns	15.558 r 14.875 ns	ns	20.744
	i⊉0 i⊉1	cik rst			<u> </u>	<u> </u>	ļŗ	<u> </u>	_
M ^,	2 2 20 20	Mode_select In_normal In test	00000000000	0000 X 000	0000000000000011	X 0000000000	000110 X	000000000000000000000000000000000000000	R
→ 1%	37 54	Cut_in Cut_out Ideal result)))	X 000000000	000001 X	000000000000000000000000000000000000000	Ť
24		G_B			W.				

Figure 5: Simulation results for 64K ROM (Test mode) in SRAM cells

5. Flow Summary

The flow summary will give all the information about the process. It shows the number of combinational ALUTs, memory ALUTs, dedicated logic registers. The total block memory bits, total registers, total pins also shown.

Flow Status	Successful - Tue Oct 14 21:42:36 2014
Quartus II Version	9.1 Build 222 10/21/2009 SJ Web Edition
Revision Name	w_cbist_16k_16
Top-level Entity Name	w_cbist_16k_16
Family	Stratix III
Met timing requirements	Yes
Logic utilization	<1%
Combinational ALUTs	81 / 38,000 (< 1 %)
Memory ALUTs	0 / 19,000 (0 %)
Dedicated logic registers	27 / 38,000 (< 1 %)
Total registers	27
Total pins	78 / 296 (26 %)
Total virtual pins	0
Total block memory bits	262,144 / 1,880,064 (14 %)
DSP block 18-bit elements	0/216(0%)
Total PLLs	0/4(0%)
Total DLLs	0/4(0%)
Device	EP3SL50F484C2
Timing Models	Final

Figure 6: Flow summary for 16k ROM in window monitoring concurrent BIST.

The total logic elements, which is used for window monitoring concurrent bist in 16k ROM is 81 out of 38,000 logic elements. The total logical registers used for 16K ROM in window monitoring concurrent bist is 27 out of 38,000. The total pins used for 16K ROM in window monitoring concurrent bist is 27 out of 38,000 in 16K ROM is 262,144 out of 1,880,064. The flow summary for 64K ROM in window monitoring concurrent BIST is shown below.

now Summary	
Day Option	Successful West Oct 20 02:20:20 2014
Flow Status	Successiul - Wed Oct 25 03:25:36 2014
Quartus II Version	9.1 Build 222 10/21/2009 SJ Web Edition
Revision Name	w_cbist_64k_16
Top-level Entity Name	w_cbist_64k_16
Family	Stratix III
Device	EP3SE50F484C2
Timing Models	Final
Met timing requirements	Yes
Logic utilization	<1%
Combinational ALUTs	85 / 38,000 (< 1 %)
Memory ALUTs	0 / 19.000 (0 %)
Dedicated logic registers	39 / 38,000 (< 1 %)
Total registers	39
Total pins	84 / 296 (28 %)
Total virtual pins	0
Total block memory bits	0 / 5,455,872 (0 %)
DSP block 18-bit elements	0/384(0%)
Total PLLs	0/4(0%)
Total DLLs	0/4(0%)

Figure 7: Flow summary for 64k ROM in window monitoring concurrent BIST.

The tota l logic element which is used for window monitoring concurrent bist in 64k ROM is 85 out of 38,000 logic elements. The total logical registers used for 64K ROM in window monitoring concurrent bist is 39 out of 38,000. The total pins used for 64K ROM in window monitoring concurrent bist is 84 out of 296. Similarly the flow summary for 16K ROM in SRAM cells is shown below.

Summary			
	Row Status	Successful - Tue Oct 14 21:02:27:2014	
	Quatus II Version	9.1 Build 222 10/21/2009 SJ Web Edition	
	Revision Name	sram_cbist_19k_16	
	Top-level Entity Name	sram_cbidt_16k_16	
	Family	Stratix II	
	Net timing requirements	Yes	
	Logic utilization	<11	
	Combinational ALUTs	78/38.000(<1%)	
	Memory ALUTs	0/19.000(0%)	
	Dedicated logic registers	25/38.000(<1%)	
	Total registers	28	
	Total pins	78/296(26%)	
	Total vitual pins	0	
	Total block memory bits	262.160 / 1.880.064 (14 %)	
	DSP block 18-bit elements	0/216(0%)	
	Total PLLs	0/4(0%)	
	Total DLLs	0/4(0%)	
	Device	EP35L50F494C2	
	Tirring Models	Final	

Figure 8: Flow summary for 16k ROM in SRAM cells

The tota l logic elements, which is used for SRAM cells in 16k ROM is 78 out of 38,000 logic elements. The total logical registers used for 16K ROM in SRAM cells is 26 out of 38,000. The total pins used for 16K ROM in window monitoring concurrent bist is 78 out of 296. The total block memory bits used in 16K ROM is 262,120 out of 1,880,064 In SRAM cells. The flow summary for 64K ROM in SRAM cells is shown below.

Flow Status	Successful - Wed Oct 15 01:16:46 2014
Quartus II Version	9.1 Build 222 10/21/2009 SJ Web Edition
Revision Name	sram_cbist_64k_16
Top-level Entity Name	sram_cbist_64k_16
Family	Stratix III
Device	EP3SE50F484C2
Timing Models	Final
Met timing requirements	Yes
Logic utilization	< 1 %
Combinational ALUTs	115/38,000 (<1%)
Memory ALUTs	0 / 19,000 (0%)
Dedicated logic registers	34 / 38,000 (< 1 %)
Total registers	34
Total pins	84 / 296 (28 %)
Total virtual pins	0
Total block memory bits	1.048.592 / 5.455.872 (19 %)
DSP block 18-bit elements	0/384(0%)
Total PLLs	0/4(0%)
Total DLLs	0/4(0%)

Figure 9: Flow summary for 64k ROM in SRAM cells

The total logic element which is used for SRAM cells in 64k ROM is 115 out of 38,000 logic elements. The total logical registers used for 64K ROM in SRAM cells is 34 out of 38,000. The total pins used for 64K ROM in SRAM is 84 out of 296. The total block memory bits used in 64K ROM is 1,048,592 out of 5,455,872 in SRAM cells.

6. Timing Analyzer

Timing analysis report provides the propagation delay time used for window monitoring concurrent bist for 16k ROM of maximum operating frequency 179.79MHZ is 5.562ns without any failed paths. The timing analyzer for window monitoring concurrent bist for 16k ROM is shown in below diagram.

li	ming Analyzer Summ	ary				
	Туре	Slack	Required Time	Actual Tine	Fion	To
1	Worst-case tsu	NA	Nore	6.305 ns	ln_noma(8)	CUT1:4data_(2)
2	Worst-case too	NA	None	8.790 ns	wstage_counter.26(Count(4)	Cut_in(8)
3	Worst-case tpd	NA	Nane	11.810 ns	ln_noma(8)	Curjin(8)
4	Worst-case th	NA	None	-3.060 ns	ln_noma(7)	stored_result24Jalsyncian:alsyncian_component(aksyncian_bkg1;auto_generated) an_block1a0" porta_address_reg0
5	Clock Setup: 'dk'	NA	Nane	179.79 MHz (period = 5.562 ns	wstage_counter.26(Count(4)	cycle_delay177w
6	Total number of failed paths					
Γ						· · · · · · · · · · · · · · · · · · ·

Table 1: Timing analyzer report for 16K ROM in window monitoring concurrent BIST

For 64K ROM, the timing analysis report provides the propagation delay time used in window monitoring concurrent BIST is also same as maximum operating frequency 179.79MHZ is 5.562ns without any failed paths. The timing analyzer for window monitoring concurrent bist for 64k ROM is shown in below diagram.

T	iming Analyzer Summ	iary								
	Туре	Slack	Required Time	Actual Time	From	To	From Clock	To Clock	Failed Paths	
1	Worst-case tsu	N/A	None	5.981 ns	In_normal[9]	cycle_delay;j17lw		clk	0	
2	Worst-case tco	N/A	None	8.822 ns	stored_result;i24(q(15)	Ideal_result[6]	clk	-	0	
3	Worst-case tpd	N/A	None	10.643 ns	Made_select	Cut_in(6)	-	-	0	
4	Worst-case th	N/A	None	-2.893 ns	In_normal[3]	CUT1:i4 data_t(3)		clk	0	
5	Clock Setup: 'clk'	N/A	None	179.79 MHz (period = 5.562 ns)	wstage_counter:i26[Count[3]	cycle_delay;j17lw	clk	clk	0	
6	Total number of failed paths								0	
Γ										

 Table 2: Timing analyzer report for 64K ROM in window monitoring concurrent BIST

The propagation delay time used for SRAM cells for 16k ROM of maximum operating frequency 179.79MHZ is 5.562ns without any failed paths. The timing analyzer for SRAM cells for 16k ROM is shown in below diagram.

	Туре	Slack	Required Time	Actual Time	From
1	Worst-case tsu	N/A	None	5.047 ns	In_normal[5]
2	Worst-case tco	N/A	None	8.951 ns	CUT1:i4(data[15]
3	Worst-case tpd	N/A	None	9.702 ns	In_normal(0)
4	Worst-case th	N/A	None	-2.831 ns	In_norma[11]
5	Clack Setup: 'clk'	N/A	None	439.75 MHz (period = 2.274 ns)	sram_celti9laltsyncram:altsyncram_component altsyncram_ocm1:auto_generated q_a(0
6	Total number of failed paths				
0	rota number or taleg pains				

Table 3: Timing analyzer report for 16K ROM in SRAM cells

The propagation delay time used for SRAM cells for 64k ROM of maximum operating frequency 499.25MHZ is 2.003ns without any failed paths. The timing analyzer for SRAM cells for 64k ROM is shown in below diagram.

Slack	Slack Required Time	Actual Time	From	To
u N/A	N/A None	E 400		
		5.122 ns	Mode_select	stam_celt(1)altsyncram;altsyncram_component)altsyncram
o N/A	N/A None	8.842 ns	CUT1:i4 data[15]	Cut_out[8]
d N/A	N/A None	11.063 ns	Mode_select	Cut_in(6)
N/A	N/A None	-2.722 ns	In_normal[3]	sram_celt()1 altsyncram;altsyncram_component()altsyncram_
cik' N/A	N/A None	499.25 MHz (period = 2.003 ns)	wstage_counter:i26 Count[4]	sram_celt[1]altsyncram;altsyncram_component[altsyncram]
¢	sk' If failed paths	sk' N/A None If failed paths	sk' N/A None 499.25 MHz (period = 2.003 ns) if failed paths	sk' N/A None 499.25 MHz (period = 2.003 ns) wstage_counter:26(Count)(4) f failed paths

Table 4: Timing analyzer report for 64K ROM in SRAM cells

7. Comparison Table

Comparison table shows the logical elements used for both the window monitoring concurrent bist and input vector monitoring concurrent BIST using sram cells. It also shows the propagation delay for 16k, 64k.

METHODS	NO OF LOGICAL ELEMENT S USED	DELAY	AREA
WINDOW MONITERING CONCURREN T BIST	81/31,000	5.562ns	65,617
SRAM CELL	78/38,000	2.585ns	65,614

Table 5: Comparison Table for 16 K ROM for window monitoring concurrent bist and SRAM cells.

For 16K ROM, the number of logical elements used in window monitoring concurrent BIST is 81 out of 31,000. The number of logical elements used in SRAM cells is 78 out of 38,000. The propagation delay obtained in window monitoring concurrent BIST is 5,562ns. The propagation delay obtained in SRAM cells is 2.585ns. The area obtained in window monitoring concurrent bist is 65,617. The area obtained in SRAM cells is 65,614.

METHODS	NO OF LOGICAL ELEMENT S USED	DELAY	AREA
WINDOW MONITERING CONCURRENT BIST	104/38,000	5.550ns	262,248
SRAM	115/38,000	2.875ns	65,651

Table 6: .Comparison Table for 64K ROM for window monitoring concurrent bist and SRAM cells.

For 64K ROM, the number of logical elements used in window monitoring concurrent BIST is 104 out of 31,000. The number of logical elements used in SRAM cells is 115 out of 38,000. The propagation delay obtained in window monitoring concurrent BIST is 5.550ns. The propagation delay obtained in SRAM cells is 2.875ns. The area obtained in window monitoring concurrent bist is 262,248. The area obtained in SRAM cells is 65,651.

8. Conclusion

The window monitoring concurrent BIST and input vector monitoring concurrent BIST using SRAM cells have been implemented on QUARTUS II 9.1. The propagation delay for 64K ROM will be shown in SRAM cells is2.875ns. It is therefore seen that the online build- in- self test using SRAM cells is superior with respect to delay and area when compared to window monitoring concurrent BIST. The online –build- in self-test will reduce more delay when compared to offline BIST. Accumulator based compaction method is used to reduce the delay, area and hardware requirements.

9. References

- 1. I.Voyiatzis, "On reducing alising in accumulator-based compaction", in Proc. Int. Conf. DTIS., Mar.2008, pp.1-12.
- 2. I.Voyiatzis, A.Paschalis, D.Gizopoulos, N.Kranitis and C.Halatsis, "A Concurrent BIST Architecture based on a self-testing RAM", IEEE Trans.Rel., Vol.54, no.1, pp.69-78, Mar.2005.
- 3. I.Voyiatzis and C.Halatsis, "A Low-Cost Concurrent BIST scheme for increased dependability", IEEE Trans. Dependable Secure Comput, Vol.2, No.2, pp.150-156, Apr.2005.