
 www.ijird.com May, 2015 Vol 4 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 133

Denial of Service Forwarding Anomalies in Bloom Filter

1. Introduction
IN-PACKET Bloom- filter -based forwarding has been pro-posed as a solution for several problems in the current Internet, including
routing-table growth and scalable multi-cast [1], denial-of-service (DoS) resistant forwarding [2], and information-centric network
design [3], [4]. Its use has also been proposed for data centers [5], [6] and as an enhancement for Multi-Protocol Label Switching
(MPLS) [7]. There are several implementations, including one for NetFPGA.
The idea behind in -packet Bloom -filter-based forwarding is relatively simple: The delivery tree is stored in the packet header as a set
of forwarding- hop identifiers (FHIDs), which can be either nodes, links, or in–out interface pairs on the delivery tree. The set of the
FHIDs in the delivery tree is encoded as a Bloom filter [10] data structure, which enables efficient testing of set membership. Network
nodes forward packets by checking which potential FHIDs, e.g., outgoing links, are in the Bloom filter.
In comparison to standard IP routing-table lookup or solutions that use Bloom filters to encode routing tables [11] or destination
addresses [12], [13], in-packet Bloom-filter -based for-warding requires little computation at the routers. It can also scale to much
larger numbers of multicast groups than the cur-rent IP multicast protocols because the network nodes do not need to store any per-
group or per-flow state.
These properties make it attractive to use the same protocol for both unicast and multicast.
Existing Bloom-filter-based protocols have proposed three security mechanisms: 1) limiting the number of items stored in the Bloom
filters; 2) centralizing Bloom filter computation and making forwarding-hop identifiers secret; 3) using cryptographically computed
per-flow forwarding-hop identifiers.
However, perhaps surprisingly nobody until today has thoroughly evaluated the security of these proposals. In this paper, we start this
work by analyzing the denial-of-service resistance of the existing Bloom-filter-based forwarding architectures. Many variations of
such protocols have been proposed in the literature (see Section II). Since no single protocol has yet been standardized, the analysis in
this paper aims to cover all the different variants of encoding the delivery tree in to the in-packet Bloom filter. To do this, we have
created a unified connectivity-graph model that makes it possible to analyze different protocol variants with a single model.
We evaluate the effectiveness of the security mechanisms against denial-of-service attacks using three different attacks. First, we show
that static link-identifiers can be reverse-engineered. This was hypothesized in [2]. However, our paper is the first to show this is
actually the case. Second, we show that distributed packet-flooding attacks can get around the pro-posed security mechanisms in
existing literature. Third, some protocol variants are vulnerable to attacks that prevent nodes from leaving a multicast group. These
attacks show that most of the abstract security claims presented in the literature do not hold under detailed analysis.
The attacks are distributed. That is, they require the attacker to have access to a botnet consisting of at least hundreds of compromised
computers. This is a reasonable assumption be-cause real DoS attacks on the current Internet are commonly launched from botnets. It

 ISSN 2278 – 0211 (Online)

R. Mary Rifo Nisha
M.E. Student, Department of Computer Science and Engineering

PET Engineering College, Vallioor, India
P. Krishna Kumar

Associate Professor, Department of Computer Science and Engineering
PET Engineering College, Vallioor, India

Abstract:
Bloom-filter-based forwarding has been suggested to solve several fundamental problems in the current Internet, such as
routing-table growth, multicast scalability issues, and denial-of-service (DoS) attacks by botnets. The proposed protocols are
source-routed and include the delivery tree encoded as a Bloom filter in each packet. The network nodes forward packets based
on this in-packet information without consulting routing tables and without storing per-flow state. DDoS attacks does not seek to
breach data integrity or privacy; they can be conducted without the requirement of identifying vulnerabilities to exploit the
application.

Keywords: Multicast, network protocols, network-level security and protection

 www.ijird.com May, 2015 Vol 4 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 134

is also estimated that a large portion (16%–25%) of Internet hosts belong to botnets [14]. Moreover, the abstract security claims made
about the Bloom-filter-based protocols cover distributed denial-of-service attacks.
Our work shows that Bloom-filter-based forwarding needs further improvements on security before deployment on open networks.
However, it should be noted that the security mechanisms proposed in the literature do increase the cost of DoS attacks and, thus, they
may be useful in combination with further security solutions.

2. Problem Statement
This section gives an overview of the Bloom-filter-based for-warding proposals. Section II-A provides background information on
Bloom filters, and Section II -B surveys the proposed protocols. (For readers not previously familiar with the concepts, a brief tutorial
is provided in Appendix A.) Section II-C discusses the previous work on denial-of-service attacks and countermeasures in this family
of protocols.

2.1. Bloom Filters
Bloom filter [10] is a probabilistic space-efficient data structure for storing sets. Its basic operations are membership testing and
element addition, but not element removal. Bloom filter is implemented as a bit array with fixed length and a small number of
hash functions that map data items to indexes in the bit array. A data item is added to the set by computing the hash functions
on it and setting the corresponding bits in the bit array to 1.

2.2. Bloom-Filter-Based Multicast Forwarding
Three methods have been proposed for Bloom-filter-based multicast forwarding: 1) using Bloom filters in the multicast routers to
reduce the space required for storing the multicast forwarding table; 2) source routing where the multicast de-livery-tree is encoded as
a Bloom filter in the packet headers (e.g., [1] and [3]); and 3) storing the list of receivers in the packet header as a Bloom filter.

2.3. Known DoS Problems and Solutions
Multicast enables the sender to reach a large number of receivers even though it only sends each packet once. The use of Bloom filters
creates a probabilistic element in packet for-warding; packets may be forwarded over links they were not intended as well as over the
intended links. (However, false negatives, i.e., packets not forwarded over intended links, are not possible.) These two—traffic
amplification and potential for false positives—create potential security problems.

3. Reverse-Engineering Attack
We will now start with the security analysis of Bloom - filter forwarding. In Section III-A, we explain how different variants of the
link identifiers can be modeled in a uniform way. The model will be used in all the following sections including Section III-B, in
which we show that an attacker with a botnet is able to reverse-engineer the supposedly secret link identifiers.

3.1. Connectivity Graph
As seen in Section II-C, the data items stored in the Bloom filter do not need to be just link identifiers. They could equally identify the
nodes on the path, the links on the path, or the incoming–outgoing interface pairs on the path. Moreover, the identifiers could be
symmetric, i.e., the same regardless of the direction in which the packets travel, or they could be directional, i.e., different in the
upstream and downstream directions. All these variants provide sufficient information for the forwarding nodes to pass the packet
onto the next-hop node. To avoid confusion, we will use the term FHID to denote all these different types of identifiers. This paper,
however, focuses on directional identifiers because they give stronger sender access control. (Symmetric identifiers would be suitable
for groups in which all members are allowed to send.)

Table 1: Connectivity Graph Sizes in Two Different Network Topologies

3.2. Reverse-Engineering FHIDs
The secrecy of forwarding-hop identifiers is critical to the security of Bloom-filter forwarding. For this reason, we first investigate the
difficulty of reverse- engineering the identifiers. If the attacker knows all the FHIDs, it can flood specific targets with packets.

 www.ijird.com May, 2015 Vol 4 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 135

Moreover, even partial knowledge of the secret identifiers may enable the attacker to create routing loops or cause flow duplication
intentionally
The attacker is thus able to reverse-engineer most FHIDs at the core of the network, but fewer of those close to the network edge. This
means that the attacker is able to create routing loops or amplifying routes in the core network. On the other hand, the reverse-
engineering attack does not seem to enable the flooding of arbitrary edge nodes. Periodic updating of the identifiers can make the
attack somewhat more difficult because the attacker will have to repeat the reverse- engineering regularly. We can nevertheless
conclude that it is wrong in principle to assume that the identifiers can be kept secret.

4. Injection Attack
This section presents a form of injection attack against Bloom- filter- based multicast. We show that if the attacker has control over
just one node that can send to a target, then a significant portion of the botnet will be able to send packets to the target. Section IV-A
explains the basic principle of the attack, and the following sections show that it is possible under increasingly stringent security
assumptions.

4.1. Basic Injection
The target has subscribed to a data flow from a compromised node, the bot . These packets are sent with the path filter in the
packet header. The goal of the attacker is to enable another bot to also send to the target . If this succeeds with , the attacker
can try to do the same for all nodes in the botnet.

 (1)

4.2. Injection with Permutations
The injection attack becomes more interesting if the for-warding nodes permute the Bloom filters. The secret permutations certainly
make it impossible to combine the filters with
(1). For example, when each router in Fig. 4 permutes the filter, cannot use to send packets to because the bits of will be in
a wrong order when they reach the point where the two paths meet. In order for them to be permuted into the right locations, the filter
would have to traverse the path from to the meeting point.

Figure 1

Fig. 5. Solving (partially) the composite permutation between two bots by turning 0-bits to 1-bits.
The second relation enables the packet to traverse from there to the target. Now, the attacker can compute the following filter from the
composite permutations and filters that it already knows:

 (2)
It is clear that satisfies the first subset relation. It also satisfies the second relation

 (3a)

 (3b)

 (3c)
 (3d)

 (4)

This filter clearly satisfies the two subset relations required for an injection. However, it is not obvious from the above formula how
the attacker is able to calculate its value. The key insight is that the attacker can set all of the unknown bits to 1. This is done using
(5b) and (6b), where the symbol denotes bitwise NOT operation (i.e., bitwise complement)

 www.ijird.com May, 2015 Vol 4 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 136

 (5a)

 (5b)

 (6a)

 (6b)

The right sides of (5b) and (6b) are known to the attacker, and it can calculate the left sides because the bits whose mapping in the two
composite permutations is unknown are zeroed out.

4.3. Injection with Unknown Topology
The key idea is that we can estimate the number of FHIDs in a path by counting the 1-bits in the filter. We can also deter-mine the
approximate number of common FHIDs in two paths by computing their dot product (i.e., the number of 1-bits in the bitwise AND).
Generally, the value of the dot product of two Bloom filters, which share common elements and thus have approximately bits at
corresponding positions, follows the hypergeometric
Probability distribution

 (7)

The distribution has the mean value . By calculating several dot products after periodic identifier updates
and comparing the dot products to the mean values for different , the attacker can determine the length of the shared paths with ever
increasing confidence.

4.4. Injection with Flow-Specific FHIDs
Our analysis thus far has covered FHIDs that are static or periodically updating and the same for all data flows. We now turn to flow-
specific identifiers. They are implemented by including some flow-specific information from the packet headers in the input to the
Bloom-filter hash functions (e.g., the z-Formation [2]). The flow-specific information can be a sender or multicast-group identifier, or
there can be a special identifier space for naming the flows. For unicast flows, both endpoint names could be used in a way similar to
the TCP connection identifiers. The reasoning behind this defense mechanism is that the FHIDs and Bloom filters for different flows
will be independent of each other. Consequently, the attacker cannot reverse-engineer FHIDs by computing the bitwise AND of path
filters or concatenate paths with the bitwise OR. It might thus appear that flow-specific identifiers prevent the attacks discussed so far
in this paper. This is unfortunately not the case.

5. Resubscription Attack
The final attack presented in this paper targets the distributed filter discovery defined by Särelä et al. [19]. The path Bloom filter is the
bitwise OR of the FHIDs on the path. Recall that, in the distributed path discovery, this value is computed by sending a join packet
from the subscriber to the publisher. The join packet starts with an all-zero filter, and the FHIDs are added to it hop by hop.
The problem with the distributed filter discovery is that nothing forces the subscriber to start the join packet off with an empty filter. A
malicious subscriber may set the initial filter in the join packet to any filter value that it knows. For example, when some honest
subscribers leave the multicast group, the malicious subscriber can observe this as a change in the Bloom filter of the received
multicast packets. It can then send a join packet with the old multicast filter as the initial filter value. This will prevent any nodes from
leaving the multicast group.

6. Discussion
One lesson from the attacks described in this paper is that the Bloom filters and their operations are not secure crypto-graphic
constructs. It is possible to analyze and combine them in various unexpected ways in order to derive information and new filters that
are useful in attacks. The correlation attack suggested by Rothenberg et al. [2] can be implemented, and we have seen other, even
more effective attacks that combine for-warding paths in clever ways.
The natural question to ask at this point is whether any variant of Bloom-filter forwarding escapes the attacks presented in this paper.
Some do. If the FHIDs and filters are computed by a trusted topology manager as a function of unique flow identifiers that are chosen
by the topology manager, then the filters for all flows are independent of each other and cannot be combined with bitwise operations
as required by the reverse- engineering or traffic-injection attacks. Moreover, if the FHIDs are updated frequently, that minimizes the
impact of the resubscription attack. Unfortunately, the flow-specific identifiers require the for-warding nodes to compute the hash
functions for each packet, which has serious implications on the forwarding performance. The cryptographic computation would
completely negate the original argument that Bloom-filter forwarding is efficient be-cause only simple bitwise operations on the filters
are needed at each forwarding hop.

 www.ijird.com May, 2015 Vol 4 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 137

All the defense mechanisms that do not require per -packet hash computation at the forwarding nodes are less secure against the
injection attack. Two proposed mechanisms standout be-cause they can significantly reduce the probability of two paths meeting in a
way that allows a bot to participate in the injection attack. First, inbound–outbound interface pairs are a better FHID type than node or
link identifiers because they result in a larger connectivity graph and more independent paths across the network. Second, the hop-
count-dependent FHIDs proposed in LIPSIN restrict meeting points of two paths and to be at the same distance from the
beginning of the two paths. This will, however, work only if the filters are computed by a trusted topology manager so that the
attacker cannot tamper with the hop count used for filter creation. Moreover, the defense is fully effective only if ingress filtering is
deployed to prevent the attacker from setting nonzero initial hop counts in the packets that it sends. Both of these defense mechanism
increase the number of bots needed for an overwhelming flooding attack, but their effectiveness depends on the circumstances such as
the exact network topology and routing.

7. Conclusion
Our central conclusion is that Bloom- filter-based multicast is resistant to distributed packet flooding only under very stringent
assumptions, i.e., when the link identifiers (or other for-warding-hop identifiers) are flow-specific and cannot be forged by the end-
hosts. In practice, this requires per-packet crypto-graphic computation at the forwarding nodes and trusted infrastructure for
discovering the Bloom filters, which would negate many of the advantages of the proposed Bloom-filter-based protocols. The protocol
variants that do not implement these security mechanisms suffer from distributed DoS vulnerabilities comparable to the current
Internet. This paper can be seen as a reminder that broad security claims should be presented with extreme care and that vague claims
are often shown false after a more careful study.

8. Acknowledgment
I would like to thank my guide Prof. P .Krishna Kumar for assisting me in this paper work.

9. References

i. M. Ain, S. Tarkoma, D. Trossen, and P. Nikander, “Conceptual architecture of PSIRP including subcomponent descriptions,”
PSIRP project, Deliverable D2.2, 2008.

ii. CAIDA, La Jolla, CA, USA, “The CAIDA AS relationships dataset,” Jan. 20, 2010 [Online]. Available:
http://www.caida.org/data/active/as-relationships/

iii. L. Gao, “On inferring autonomous system relationships in the In-ternet,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 733–
745, Dec. 2001.

iv. S. Ruj, M. Stojmenovic, and A. Nayak, “Privacy Preserving Access Control with Authentication for Securing Data in
Clouds,” Proc. IEEE/ACM Int’l Symp. Cluster, Cloud and Grid Computing.

v. 5. C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward Secure and Dependable Storage Services
in Cloud Computing,” IEEE Trans. Services Computing, vol. 5, no. 2, pp. 220-232, Apr.- June 2012.

vi. J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy Keyword Search Over Encrypted Data in Cloud
Computing,” Proc. IEEE INFOCOM, pp. 441-445, 2010.

vii. X. Boyen, “Mesh Signatures,” Proc. 26th Ann. Int’l Conf. Advances in Cryptology (EUROCRYPT), pp. 210-227, 2007.
viii. D. Chaum and E . V. Heyst, “ Group Signatures,” Proc. Ann. Int’l Conf. Advances in Cryptology (EUROCRYPT), pp.

257-265, 1991.
ix. H.K. Maji, M. Prabhakaran and M. Rosulek, “Attribute-Based Signatures: Achieving Attribute-Privacy and Collusion-

Resis- tance,” IACR Cryptology ePrint Archive, 2008.
x. H.K. Maji, M. Prabhakaran and M. Rosulek, “Attribute-Based Signatures,” Topics inCryptology-CT-

RSA,vol.6558,pp.376-392,2011.
xi. A. Beimel, “Secure Schemes for Secret Sharing and Key Distribu- tion,” PhD thesis, Technion, Haifa, 1996.

xii. A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” Proc.Ann. Int’l Conf. Advances in Cryptology
(EUROCRYPT), pp. 457-473,2005.

xiii. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based Encryption for Fine-Grained Access Control of Encrypted
Data,” Proc. ACM Conf. Computer and Comm. Security, pp. 89-98, 2006.

xiv. S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute Based D a t a Sharing with Attribute Revocation,” Proc. ACM Symp.
Information, Computer and Comm. Security (ASIACCS), pp. 261-270, 2010.

