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Numerical Solution of a Nonlinear Differential Equation Governing MHD 
Boundary Layer Flow of Viscous Incompressible Fluid Past a Stretcing Plate 

 
 

 

 

 

 

 

 

1. Introduction 
The flow past a stretching plate is of great importance in many industrial applications such as polymer industry to draw plastic films 
and artificial fibers. In the process of drawing artificial fibers the polymer solution emerges from an orifice with a speed which 
increases from almost at the orifice up to a plateau value at which it remains constant. The moving fiber, which is of great technical 
importance governs the rate at which the fiber is coded and this in turn affects the final properties of t he yarn. Crane [iii] investigated 
boundary layer flow past a stretching sheet whose velocity is proportional to the distance from the slit. Carragher [iv] reconsider the 
problem of Crane [iii] to study heat transfer and calculated Nusselt number for the entire range of Prandtl number Pr.   
 
2. Formation of the Problem 
Two dimension flow of a viscous incompressible and electrically conducting fluid past a linear stretching plate under the transversely 
applied magnetic field has been considered. It is assumed that induced magnetic field is negligible in comparison to applied magnetic 
field. Let x-axis be along the moving plate and y-axis to be perpendicular to the direction of motion of the plate. If u and v are the 
magnetic components along these directions, respectively, then under the usual boundary layer approximations, MHD steady flow is 
governed by 

  
u v 0
x y
 

 
 

      (2.1) 

  
22
0

2

B uu u uu v
x y y

  
   

   
    (2.2) 

where u, v are velocity components in x and y directions respectively,  is the kinematic viscosity. 
The relevant boundary conditions are 
  y = 0, u = mx, v = 0 m > 0                  (2.3) 
  y  , u = 0,   =  – c    
To solve this problem, we define the following dimensionless variables: 

  
y uh x hy ,  u = , x = , v = 
h h




 
 

Substituting all these dimensionless variables in equations (2.1) and (2.2), we have the following equations in dimensionless form 
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u v 0
x y
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 

      (2.4) 
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    (2.5) 

where 
2 2
0B hM = 


, the magnetic field parameter.   

and boundary conditions are as follows 
y = 0, u = mx, v = 0 m > 0                    (2.6) 
y  , u = 0,   =  – c 
 where dash has been dropped for convenience 
setting the similarity solution of the form 
  u = mxf ()      (2.7) 

where  = 
y

y

 

 
Substituting u into the equations (2.4) and using the boundary condition (2.6), we have 
   v  =  – m f {f(0) – f()}     
                             = – m yf()                                                             (2.8) 
Using u and v in Equation (2.5), we have 

  2 1m f ( ) f ( )f ( ) f ( ) Mf ( )
y

               (2.9) 

with boundary conditions 
  y = 0, f = 0, f  = 1     (2.10) 
  = 1,  f   0 

Here y > 1 so by applying magnitude analysis, 
1   1
y

 . 
 
Therefore,

 
the

 
term

 
involving

 

1
y  

may
 
be

 
neglected

. 
Thus

, 
we

 
have

 
the

 
following

 
boundary

 
value

 
problem 

     
                   2m f ( ) f ( )f ( ) Mf ( ) = 0       

  
                           = 0, f = 0, f  = 1      (2.11) 
  = 1,  f   0 
 
 The nonlinear differential equation in boundary value problem (2.11) has singularity at   = 0. Therefore, it requires special 

attention. To overcome this difficulty, we solve the boundary value problem (2.9) through (2.10) by considering m = 
1
y

 = M. Now, 

the boundary value problem (2.9) through (2.10) reduces to  
  2f ( ) = f ( ) f ( )f ( ) f ( )             (2.12) 
     = 0, f = 0, f  = 1                          
                            1, f  = 0,  
For the sake of numerical solution, we convert this nonlinear boundary value problem into its equivalent initial value problem by 
applying shooting method. The guess for f(0) by shooting method has been obtained by the formula 

                      i 1 i 2
i i 2 i 2

i 1 i 2

M M
M M f (1) f (M ;  1)

f (M ;  1) f (M ;  1)
 

 
 

    
 

 

and the results of this iterative scheme have to be listed in the following table: 
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i Mi Error 
0 0 0 
1 0.5 0.5 
2 0 0 
3 0 0 
4 0 0 
5 0 0 

Table 1 
 

where Mi are guesses for M = 5f(0) + 164f(0) + 250.  
Thus, f(0) =  – 1.6027 or  – 13.1973. Taking f(0) =  – 1.6.027, we then follow the initial value problem equivalent to the boundary 
value problem (2.9) through 92.10): 
  f() – f () – f()f() + f () 
      = 0, f = 0, f  = 1,  f  =  – 1.6027      (2.13) 
This initial value problem is solved for f(), f () by Rubge-Kutta method of order four employing C+ computer programming in. 
Trends of f() and f () has been shown in Figure 1 and 2 respectively. 
 
3. Heat Transfer 
 Under the usual boundary approximation, the heat transfer between stretching plate and the fluid is governed by 

                      
2

2
p

T T k Tu  + v  = 
x y C y
  
   

       (3.1) 

with boundary conditions 
  y = 0, T = Tp 
  y  , T = T      (3.2) 
Defining dimensionless temperature field 

   
p

T T
 = 

T T








 

We have the equation (3.1) and boundary conditions (3.2) in dimensionless form as follows: 

  
2

2
r

1u  + v  = 
x y p y
   
  

    (3.3) 

where Pr is Prandtl number. 
 y = 0,  = 1 
y  ,   = 0 

Using the transformation  =  
y

y

 where y is the value of y  , we have, 

           
2

r2

d d + y P f ( )  = 0
dd 

 



 

 = 0,  = 1        (3.4) 
               ,    0        
In the process of solving boundary value problem (3.4) numerically, we get the following tri - diagonal system of linear equations 

11 1

22 2

33 3

44 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9

2 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 =  0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2 0

     
         
     
         
     
  

     
       
     
        








 
 
 
 
 
 
 



 

where i  = 1+0.05y Prfi and  i  = 1 – 0.05y Prfi. 
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we reduce it into initial value problem. Let 
 2 3 4

( iv )y y yf ( y ) f ( 0 ) y f ( 0 ) f ( 0 ) f ( 0 ) f ( 0 )
2 ! 3 ! 4 !

          

           
 

2 3
2

4

y yf ( y ) 0 y + f (0 ) ( m (f (0 ) f (0 )f (0 )
2 ! 3 !
y                   +  m (f ( 0 )f (0 ) f ( 0) f (0 ) f ( 0 )f (0 ))
4 !

      

      

 

                   
2 3 4y y yy + f ( 0 ) m m ( 2 f ( 0 ) f ( 0 ) f ( 0 ) )

2 ! 3 ! 4 !
        

 

 
        2 3 4y y yy + f ( 0 ) m m f ( 0 )

2 ! 3 ! 4 !
       

        3 2 4y y yy m m f ( 0 )
3 ! 2 ! 4 !

           
   


 

Therefore, when y = 1, we  

         
  f(1)  1 1 11 m m f ( 0 )

6 2 2 4
           
   

  

Physically, m is stretching factor of plate, taking m = 1 for our convenience, then we have 

 7 13f (1) f (0)
6 24

    

according to shooting method, let m0 = 0.6 and m1 = 0.7 be two guesses for f(0), the next approximation m2 for f(0) is calculated 
applying the following iterative formula 
 i 1 i 2

i i 2 1 i 2 1
i 1 1 0 1

m mm m ( y ( x ) y ( m ;  x )) ;    i  =  2 ,  3 ,  4 ,  
y ( m ;  x ) y ( m ;  x )

 
 




   


  

2 0 1
1 0

0.7 0.6m 0.6 (y(1) y(m ;  x ))
y(m ;  1) y(m ;  1)


   


 

where 
y(m1 ; 1) = f(m1; 1)  

               
1 13 0.7 1.167 0.379 1.564
6 24

       

and 
  y(m0 ; 1) = f(m0; 1)  
                                            1 1 3 0 . 6 1 . 1 6 7 0 . 3 2 5 1 . 4 9 2

6 2 4
     

 

                                     m2 0 . 7 0 .60 .6   ( 0 1 . 4 9 2 )
1 .5 6 4 1 .4 9 2


   


 

   =  – 2297 
Simlarly, 
   m3 =  – 1.2308  
Hence, the guess for f(0) has been given in the following table by virtue of shooting method. 
 

Iteration Approximation of f Error 
1     m0 
2     m1 
3     m2 
4     m3 
5     m4 
6      m5 

0.7 
0.8 

-1.9663 
-1.9708 
-1.9663 
-1.9663 

0.000 
0.1 

1.1663 
0.0045 
0.0045 
0.0000 

Table 2:Guess for f(0) 
 

Stretching factor m = 1 and magnetic field parameter  M = 2 so that the differential equation (2.11) reduces to 
 2f (y) = f (y) f (y)f (y) 2f (y)        (2.13) 
together with initial conditions 
 y = 0, f = 0, f = 1, f = – 1.97  
To apply Runge-Kutta method, first we split the given initial value problem into the following three initial value problems of order 
one. 
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0 0

d f d u =  f  =  u ( ,  f ,  f ,  f )                                  =  f  =  ( ,  f ,  f ,  f )
d d
f (0 )  =  f  =  0                                                  u (0 )  =  u  =  f (0 )  =  1

       
 

  
          2

0 0 0 0

0

d  =  f  = f f f 2 f  =  w ( ,  f ,  f ,  f )
d

( 0 )  =   =  f ( 0 )  =  1 .9 6 6 3

        


  

 

Taking h = 0.1,  we calculate the following: 

 1 0 0 0 0

0

k = hu( , f , f , f )
    = hf  = 0.1

 


             1 0 0 0 0

0

= hν(η , f , f , f )
    = hf  = 0.197

 
 

l
        

1 0 0 0 0
2

0 0 0 0

r = hw( , f , f , f )

   = h(f f f +2f ) = 0-3

 

    

 1 1 1

1

k rh
2 0 0 0 02 2 2 2

0 2

k = hu η + , f + , f  + , f  + 

    = h(f  + ) = 0.0902

 



l

l
            

 1 1 1

1

k rh
2 0 0 02 2 2 2

r
0 2

= hν η + , f + , f  + , f  + 

    = h(f  + ) = 0.182

 

 

ll

 

              

 
       

1 1 1

1 1 1 1

k rh
2 0 0 02 2 2 2

2 r k
0 0 0 02 2 2 2

r =  h w η + , f + , f  +  , f  +  

   =  h f f f + 2 f +  

   =  0 .1 (0 .8 1 2 7 0 ( 1 .8 2 )(0 .0 5) 1 .8 03) 0 .2 73 3 7

 

     

   

l

l l

 
 2 2 2

2

k rh
3 0 0 02 2 2 2

0 2

k = hu η + , f + , f  +  , f  +  

    =  h(f  +  ) =  0.0909

 



l

l
            2 2 2

2

k rh
3 0 0 02 2 2 2

r
0 2

= hν η + , f + , f  +  , f  +  

    =  h(f  +  ) =  0.18296

 

 

ll  

            
 
       

2 2 2

2 2 2 2

k rh
3 0 0 0 02 2 2 2

2 r k
0 0 0 02 2 2 2

r =  hw η + , f + , f  + , f  +  

    =  h f + f + f + +2 f + 0.25616

 

   

l

l l

 

 4 0 0 3 0 3 3

0 3

k = hu η + h, f +k , f  + , f  + r
    = h(f  + ) = 0.081704

 



l
l

  
 4 0 0 3 0 3 0 3

0 3

= hν η +h, f +k , f  + , f  + r
    = h(f  + r ) = 0.171384

 

 

l l

 
          4 0 0 3 0 3 3

2
0 3 0 3 0 3 0 3

r =  hw η + h , f + k , f  +  , f  +  r

   =  h ((f + ) (f + r )(f +  k ) +  2(f  +  ))  =  0 .24574

 

  

l

l l  
1

1 0 1 2 3 46
1
6

f  =  f  +  (k  +  2k  +  2k  +  k )                              
    =  0  +  (1 .0 +  2   0.0902 +  2  0 .0909 +  0 .081704)
    =  0 .24065

 

1
1 0 1 2 3 46

1
6

1
6

f  =  f  +  (  +  2 +  2  +  )
    =  0  +  ( 0.197  +  2 ( 0 .182 )  +  2 ( 0 .18296) 0 .171384)
    =  1  +  ( 1 .0983)
    =  0 .81695

 

   



l l l l

 

  

1
1 0 1 2 3 46

1
6

1
6

f  = f  + (r  + 2r  + 2r  + r )
    = 1.97 + (0.03 + 2  0.27337 + 2  0.25616 + 0.24574)
    = 1.97 + (1.6048)
    = 1.70253

 

  





 

By applying the same procedure, we solve the following initial value problem again to get the values at y = 0.2 
 2f (y) = f (y) f (y)f (y) 2f (y)           (2.15) 
 f(0.1) = 0.24065, f(0.1) = 0.81695, f(0.1) = –1.70253     (2.16) 
Finally, we list the solution at the points 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 in the following table: 
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 f f f 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0000 
0.24065 
0.3.1554 
0.37554 
0.42260 
0.45850 
0.48470 
0.50230 
0.51210 
0.5171 
0.513 

1.0000 
0.81695 
0.65637 
0.52011 
0.40241 
0.29960 
0.20955 
0.12867 
0.0548 
-0.0138 
-0.881 

-1.97 
-1.70253 
-1.44910 
-1.24644 
-1.08350 
-1.94380 
-1.84230 
-0.78430 
-0.7063 
-0.654 
-0.629 

Table 3 
Numerical solution of differential equation (2.10) when u0k = 0.2 
 

 
Figure 1: Velocity function f(y) 

 

 
Figure 2: Graph of f(y) 
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4. Discussion and Conclusions 
In this paper, we solved a non linear boundary value problem numerically. This problem arises in the manufacturing of plastic film 
and sheet, and in paper making industries. This problem has been solved to get closed form solution in several variants, Naseem [v] 
and [vi]. 
First we convert this non linear boundary value problem into two point boundary initial value boundary value problem and then by 
application of fourth-order Runge-Kutta method, we obtained the solution. We observed that the problem has been solved easily. The 
horizontal and vertical components can be seen in Fig. 1 and Fig 2 respectively 
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