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1.  Introduction 

During the 1930s, three mode controllers with proportional, integral and derivative (PID) feedback control action become 

commercially available. Before it was first used for 

control schemes, despite the advanced search in control engineering. Now PID controller is almost popular in almost all proce

industries till date, according to Astrom and Hagglund,

of PID control used in practice here, we look at four popular structures. The ideal PID (eq 1) mainly used for academic purpo

also known as parallel structure with derivative filter because the derivative mode is usually as derivative filter.

																																															
Mostly parallel eq (2) and series eq (3) used in process industries.

																																															
																																															

Despite of this structures, there exists another form that used in IMC design which consist of filter in series
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based on a process reaction curve. The direct syn
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 Smith,
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The method of tuning controller parameters that are Kc, �� and ��are very important because the accuracy and performance of 
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2
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3
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4
Astrom and Hagglund,

based on a process reaction curve. The direct synthesis approach is applied to obtain controller parameter in IMC

Chain and Fruehauf,
8
. Panagopoulus et al..,

9
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n controller by desired set point response. Haung et al..,
11

 Panda 

tuning rules based on desired close loop response. 
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Figure 1: IMC basic structure 

 

A close look into the literature for IMC design (See figure 1) with a time delay process for SISO system direct that Rivera et al.,14 

used Pade approximation for exponential term present in denominator of ������ , in 2002, Chen and Seaborg,
5
 used Taylor series and 

superior performance using Maclaurin series observed by Lee,13;15. They obtained PID parameters for both stable as well as unstable 

system. But first order plus dead time (FOPDT) system with high 
 � �! gives a negative value of  � . Lee et al..,

15
 faced some problem 

while deriving the analytical solution of controller parameters for IPDT process from ������ because s term in the denominator 

disappears at s=0. Then they converted IPDT process in the FOPDT form by considering pole very near to origin of s plane also there 

tuning formulae are long and need tedious computation.  

Based on above facts Panda et al..,
16

 suggests IMC- PID parameter synthesis using Laurent series. Laurent series express holomorphic 

function and having the advantage that it is a generalized form of Maclaurin which generalize form of Taylor series. It can get rid of 

the singularity problem using Laurent series, which arises due to Taylor or Maclaurin series. So the remaining paper is orchestrate as: 

In section 2 mathematical development of the true controller using Laurent series. PID controller parameter for various processes are 

obtained in section 3. Results are discussed in part 4. Simulation results for Level Process using Laurent series controller are discussed 

in section 5. Grounded on this paper conclusion is passed at the closing. 

 

2. Principle 
For SISO stable process, the closed loop transfer function for negative feedback system can be written as, 

Servo case: 

																																																																						"	# � 	 $%$&

�$%$&                                                          (5) 

Regulatory case: 

																																																																					"' � 	 $(

�$%$&                                                           (6) 

The main objective designing controller is to provide robust performance for stable systems. Depending on this object, closed loop 

transfer function based on IMC design procedure (Morari and Zafiriou, 1989)
17

 becomes, 

 

                                                        
"
' �	 $%$&�)&


�$&�)&*$%+$,-                                                    (7) 

With Gm as process model and 

																																																																			���.� � 	 
$%/                                                              (8) 

Where ��+ is invertible part of process is transfer function and ���  is non invertible part of system. To make ���.�realizable a filter 

F(s) is introduced so that ���.�  becomes 

 

																																																																						���.� � 	 

$%/*�-0*�-                                               (9) 

Where 
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																																																																						0*�- � 	 
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-2                                                  (10) 

n should be selected such that ���.�is realizable. 

Next, consider desired closed loop response as 
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This can be compared with the complementary sensitivity function as 

 

																																																									"# � 	 $&6789$%
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By solving eq (11) and (12) true controller can be expressed equally as 

 

																																												������ � 	 $&�)&:*�-
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This true controller can be approximated by an approximation series in a complex s plane, by expanding near the vicinity of s≈ 0. 

Panda,
16

 uses Laurent series for approximation instead of Taylor or Maclaurian series. Using Laurent series singularity problems 

which arise in IPDT process in Taylor or Maclaurian series can be wielded. 

Let f(s) be an analytic function in unit circle|> − >0| < B  , let z be any point inside circle with radius r and z0 is center. With s0 and 

z0 as poles C is a positively oriented circle of radius r. 

                                    


�+C � 	 


�+C� D 


+E/EF5/5F

G � 	∑ *C+C�-I
*�+C�-I

JKL�                                              (14) 

Because 
C+C�
�+�� < 1 , this series results in a uniform convergence. Then, 

 																																	M N(�)�+C O� = 	∑ M 
 N(�)(�+C�)I4; O�� (> − >0)KPJKL�P                                     (15)  

Or 

Q(>) = 	 12ST U Q(�)� − > O�P  

                = ∑ 
�VK M 
 N(�)(�+C�)I4; O�� (> − >0)KP + ∑ 
�VK M 
 N(�)(�+C�)/I4; O�� 
(C+C�)IPJKL
JKL�  

                 = ∑ (> − >0)K + ∑ WI(C+C�)IJKL
JKL�                                                                      (16) 

 

where0 < |> − >0| < B and 																																														XK = 	 
�VK M N(�)(�+C�)I4; O�P (for j= 0,1,2,…)                                 (17) 

and 																																														YK = 	 
�VK M N(�)(�+C�)/I4; O�P        (for j= 1,2,…..)                          (18) 

These two series can be sum and written as 

 

                                Q	(>) = 	∑ ZK(> − >0)KJKL+J                                                             (19) 

where 																																														ZK = 	 
�VK M N(�)(�+��)I4; O�P        (for j= 0,±1,±2,…)                       (20) 

Here only Y
, X� and X
 are determined as 																											Y
 = Q(>) = 	 
(\+
)! limC→C� b 3,/;3C,/; c(> − >0)\Q(>)de�LC�#��                    (21) 

The  Y
coefficient can be determined using residue theorem, as for f(s) having an m
th

 order pole and XK can be determined as 

 																																													Qf(>0) = f!�VK M N(�)(�+C�)24; O�P                                                     (22) 

whereQfis nth derivative of f(z). As ������should be in the realizable form for implementation purpose, so comparing it with eq(2) 

gives 

 

																																														������ = 	 N(�)� =	 (;4g5)�(5)(;4g5)� = 	 ∅(�)�(
�i�)                                       (23) 

where 
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                                                             j = k��                                                             (24) 

This true controller can be expanded using Laurent series as 

	������ =	 1�(j� + 1) l m ZK(�)KJ
KL+J

n 
                                                     = 


�(i��
) o…+ ∅(0) = ∅q(0)� + ∅"(�)�s�! +⋯ u           (25) 

Comparing the coefficient of the s terms of eqs (25) and (2) gives 																																																	� = 	X� = 	∅"(0) = 	Qq(0) + jQ(0)                                  (26) 

 																																																				v&�� = 	Y
 = ∅(0) = Q(0)                                                   (27) 

 																																											��� =	X
 = ∅"�! =	 N"(�)��iNw(�)�                                                 (28) 

where 																																																											��(�) = 	 ∅(�)�(i��
)                                                          (29) 

 

                                              ∅(�) = (j� + 1)Q(�)                                                        (30) 

fromeqs (26)-(28) Kc,  ��and �� can be computed. 

 

3. PID Tuning Parameter 

Panda,
16

 gives analytical expressions for PID parameters for various process as shown in Table1. 

 

 Transfer Functions  

 

1 

 

	�x+�%���� + 1  

	� = ��	�(y +  �) , �� = (�� + j) +  ��2(y +  �), 
�� =  ��2(y +  �)�� z(�� − j) −  �3 | + j����  

2  

	�x+�%�(��
� + 1)(���� + 1) 
	� = ��	�(2y +  �) , �� = (��
 + ��� + j) + 2y� −  ��2(y +  �), 

��
= z(��
��� + (��
 + ���)j) −  ��6(2y +  �)| (2y +  �) − ��(y� −  ��2 )(2y +  �)��  

3  

	�x+�%����(X� + 1) 
	� = ��j(�� + j)	�(y +  �) , j�� = (X + j) +  ��2(y +  �), 

y�� = ��c2Xj(y +  �) +  ��j��d2(y +  �)(X + j + j�) + 2 �� + (X + j + j�) +  ��2(y +  �) 
 

Table 1: Analytical expression for PID controller parameters for standard transfer functions 

 

3.1. Selection of λ 

 Here section of λ is based upon suggestion of Luyben,
18

to make the closed loop response faster. 

• For FOPDT system: λ=max(0.2��, 1.7 �) 

• For SOPDT system: λ=max(0.2��, 0.25 �) 
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3.2. Selection of β 

Normally β is equal to �� , where k is a constant (k = 0:1) and �� is derivative time. Thus, the appearance of ��  term in ϕ(s) makes it 

difficult to get exclusive solution of Kc,  ��and �� . To make the response faster and stable Panda, 
16

 consider β as 

β= α(0.25)max(��,  �) 

with the help of these parameters λ, β and eqs(26) to (30), the PID parameters can be evaluated 

4. Result and Analysis 

Here for implementation �����
 structure is used from eq.(2). The performance of Panda,
16

 controller is compared with Lee.et 

al.,
13;15

,Chein and Fruehauf,
8
 and Chen and Seaborg,

5
 controller using the following examples: 

 

Example 1 ~+�.���(� + �) 
Example 2 2x+�(10� + 1)(5� + 1) 
Example 3 0.2x+�.���  

Example 4 0.0506x+���  

Example 5 (�� + 2� + 0.25)(�� + 0.5�� + 15�� + 14� + 4) 
Table 2: Examples 

 

4.1. PID Parameters 

For the above process we calculate PID parameters for Lee.et.al
13;15 

controller(i.e IMC-MAC) which used Maclaurin series, Chein and 

Fruehauf 
8
 controller (i.e IMC-CF), Chen and Seaborg 

5
 controller (i.e IMC-SEB) and Panda 

16
 controller (i.e. IMC-LAU) with proper 

selection of standard controller and λ. 

For IMC-MAC, IMC-CF and IMC-SEB we used standard controller (eq.1) and for IMC-LAU we used parallel structure (eq.2). The 

closed loop controller parameters for selected examples are given in Table (3). 

 

Example IMC-LAU IMC-MAC 

 	�  �� �� y 	�  �� �� y 

Ex 1 1.5871 1.0713 0.0650 0.425 1.5501 1.0463 0.0423 0.425 

Ex 2 1.9407 14.8583 3.2229 1.414 1.9081 14.6083 3.0280 1.414 

Ex 3 0.3551 30.5976 1.8057 12.58 0.4952 38.7959 2.1675 12.58 

Ex 4 1.4014 31.6091 1.8609 10.2 2.3883 30.8141 1.7404 10.2 

Ex 5 63.9848 2.7865 0.5727 0.2 62.8367 2.7365 0.5332 0.2 

 

Example IMC-CF IMC-SEB 

 	�  �� �� y 	�  �� �� y 

Ex 1 2.0455 1.1250 0.1111 0.425 1.3666 0.8084 -0.028 0.425 

Ex 2 6.2138 15 3.3333 1.414 11.7970 5.02889 1.5570 1.414 

Ex 3 0.1229 32.56 3.2795 12.58 0.3554 41.44 1.0862 12.58 

Ex 4 0.1515 26.4 2.6591 10.2 1.7323 33.6000 0.8807 10.2 

Ex 5 6.1111 2.75 0.5455 0.2 298.3232 0.8095 0.2607 0.2 

Table 3: Closed loop controller parameters 

4.2. Closed Loop Response 

Depending upon the closed loop parameters the response for selected examples are drawn here. 

1. FOPDT: For the FOPDT process Panda 
16

 uses first order filter to design a controller. The presence of β term make the 

response little bit faster compared to IMC-MAC. If the λ increases, then  �� approaches �� and 	�  and �� almost vanishes 

and controller reduces to integral controller. 
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2. SOPDT: For computation of controller for SOPDT process both IMC-LAU and IMC-MAC uses second order filter. Given 

SOPDT example is overdamped process. For the SOPDT process, Chen and Seaborg 
5
 uses Taylor series expansion (i.e x+�%� 	≈ 1 −  ��). 

3. IPDT: According to Chein and Freuhauf 
8
 and Luyben

18
 many chemical processes can be converted into integrator plus dead 

time processes. For IPDT process Lee et al..
15

 faces the problem due to s=0, the denominator vanishes. So they modeled 

IPDT process to FOPDT form by choosing unstable pole near zero. But for IMC-LAU no such arrangement is required. 

4. Higher Order Process: The given example of Higher Order Process results into large overshoot due to strong lead term. Thus 

to compensate it the actual process transfer function is reduced to SOPDT system using Skogestad's rule 
6
 as 

 

                                                      �� = 	 �.����(�.����
)�/F.s�5(���
)(�.����
)                                          (31) 

Based on this reduced model (31) and neglecting the numerator zero controller parameters are obtained. 

The closed loop response for above process are shown in fig.(2) also the performance and robustness are shown in Table(4) and 

Table(5). 

 

Example Set Point Load disturbance 

Ex 1 

  

Ex 2 

  

Ex 3 
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Ex 4 

  

Ex 5 

  

Figure 2: Closed loop response of an example processes using a PID controller (solid line (-) represents response of Panda
16

 

controller, dashed line (--) interprets response of Lee et al..13 controller, dashed dot line (-.) corresponding to Chein and Fruehauf 8 

controller and dotted line(..) belongs to Chen and Seaborg5 controller) 

 

Example IMC-LAU IMC-MAC IMC-CF IMC-SEB 

 IAES IAER IAES IAER IAES IAER IAES IAER 

Ex 1 7.1971 6.8336 7.2811 6.8325 6.1724 5.5855 7.7858 5.9969 

Ex 2 38.7295 76.553 40.0707 76.5515 24.011 24.1416 31.9328 4.7255 

Ex 3 33.6673 88.0762 21.3268 78.9229 72.640 96.3561 36.0177 90.796 

Ex 4 29.4615 22.7762 23.5392 12.9788 90.868 55.0401 19.9327 19.409 

Ex 5 7.0599 0.4355 7.1066 0.4356 53.475 4.1558 13.4184 0.0347 

Table 4: Performance parameters of close loop controller 

 

Example IMC-LAU IMC-MAC IMC-CF IMC-SEB 

 GM PM GM PM GM PM GM PM 

Ex 1 7.7759 74.8540 8.3300 72.7531 4.4 76.8634 4.5219 61.4801 

Ex 2 4.7314 71.2618 6.7415 72.1484 1.9102 42.5602 1.7371 20.2172 

Ex 3 3.4146 49.2533 2.5261 51.2453 9.4207 53.1287 3.3264 52.8216 

Ex 4 4.1612 56.1481 2.5456 49.8856 37.1769 49.6126 3.3084 51.3139 

Ex 5 3.0926 64.9861 4.2061 67.4103 42.5169 87.8673 1.2022 5.2781 

Table 5: Robustness parameters of close loop controller 

 

5. Simulation 

From the above discussion we conclude that IMC- LAU gives better response, performance and robustness than other three 

controllers. We further extend this discussion to real time simulation results of Level process using IMC-LAU controller. The 

experimental setup of level process is shown in fig. (3) 
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Figure 3: Experimental setup of level loop 

 

The empirical modeling of the above process is done using LabVIEW and System Identification Toolbox. We get the transfer function 

of above process as 																																													�� =	 ��.���/F.F;s5���.����                                                          (32) 

 

  

Figure 4 

 

The closed loop response of above process is shown in fig.(4) From the closed loop response we get TR=1.242 sec, TS=2.0092 sec 

which shows close loop response of system is faster also by varying 	y  we can get more faster response. Due to IMC-LAU controller 

GM is 9.4523 and PM is 104.8135 also IAES is 4.9483 is achieved. 

 

6. Conclusion 

IMC-LAU controller consists of zero in numerator of ������  due to which (1) controller become faster and (2) required order of filter 

for proper realization of ������  gets reduced. Also IMC-LAU has extra parameter i.e. β than IMC-MAC controller which helps to 

select proper PID algorithm form and make the response faster. Singularity problem which persist in IMC-MAC is effectively handle 

by Laurent series specially in integrating process. IMC-LAU gives much better responses in case of IPDT processes than IMC-MAC, 

IMC-CF and IMC-SEB. One can choose faster or sluggish response by selecting proper value of y  . IMC-LAU controller is stable, 

robust and can be implemented easily on real time processes. 
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