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1. Introduction 
The server failures which lead to, service interruptions are quite common in many real life situations. It is well known that 
performance measures of unreliable queuing systems are heavily influenced by server failures. For this reason, unreliable queuing 
systems have been investigated extensively over the decades. The early works with interruptions are due to Thirurengadan (1963) 
[14], Mitrany and Avi-Itzhak (1968) [13], and references therein. Recently, Choudhury and Ke (2012)[2], Choudhury and Tadj (2011) 
[3], Dimitriou (2013) [4], Dimitriou and Langaris (2010) [5], Falin (2010) [6], Ke (2004,2005,2006, 2006a)[7,8,9,10], Ke et al. (2009) 
[11], Lee et al. (2011) [12], Yang et al. (2002)[15], and others considered the unreliable queueing systems with various features 
wherein one of the underlying assumptions is that a failed server is sent for repair at the repair shop and present customers in the 
system should wait for the server to be repaired without being served.In most of the queueing models with server breakdowns, the 
server sent for repair will be provided with only one type of repair facility. But there are situations the breakdown server will be 
provided with different types of repair facility according to the behavior of the interrupted customers. In the present work the authors 
consider a MX/G/1 queueing model in which, if the server fails the customer in service may stay in the service facility with probability 
(1-q) to continue the remaining service or may join the head of the queue and opts for a new service with probability (q) after repair. 
Accordingly the repair times of the service follow two different heterogeneous distributions. The steady state behavior of the model is 
analysed using supplementary variable technique. Because of the complexity only very few article are available with two types of 
repair. 
 
2. Mathematical Analysis of the System 
 
2.1. Model Description 
 
2.1.1. Idle Period 
A cycle starts, whenever the system empties and the server is turned off and stays idle in the system. The idle period ends as soon as a 
batch of customers arrives for service. The time during which the server stays idle in the system is called idle period. 
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2.1.2. Arrivalpattern 
Customers arrive in batches in accordance with the time homogeneous Poisson process with group arrival rateλ . The batch size Xis a 
random variable with probability distribution kgkX  )Pr( , k=1, 2, 3…i.e) The probability that a batch of k units arrive in an 

infinitesimal interval (t, t+h) is ).(hOg k   
 
2.1.3. Busy Period 
Busy period starts at the end of each idle period. The customers are served, one at a time according to the order of their arrivals. It is 
assumed that the service times follow general distribution S(x), density function s(x) of finite moments E(Sk), k=1, 2 and Laplace 
Stieltjes Transform S*(θ ). 
 
2.1.4. Breakdowns and Repair Period 
The server is subject to breakdown at any time while serving customers. It is assumed that the life time of the server follows 
exponential distribution with rateα. The breakdown server is immediately sent for repair to a repair facility. Whenever, the server fails 
the customer in service, either stays in the service facility for the server to return from repair facility to complete the remaining service 
with probability (1-q) or joins the head of the queue to repeat the service, with probability q. The corresponding repair times of the 
server respectively follow heterogeneous general distributions R1(y) and R2(y) with density functions r1(y), r2(y) of finite moments E 
(Ri

k),i,k=1,2.The server returning from repair facility is considered as good as new. The server continues this type of services until the 
system becomes empty. i.e) the server is turned off only when the system becomes empty again. The busy period and breakdown 
period constitute completion period. The system will be turned on again when a new arrival occurs. The completion period and idle 
period will constitute a cycle. 
The arriving customers always join the system and form a single waiting line based on the order of the batches. It is further assumed 
that the customers within a batch are pre-ordered for service. The customers are served one by one according to the order in the queue. 
The system is denoted by MX/G/1/BREAKDOWN/TWO TYPES OF REPAIR. 
 
The steady-state system size equations under the steady-state condition are analysed by using supplementary variable technique. The 
PGFof the system size is obtained in a closed form so that various performance measures can be derived from it. 
 

 Notation 
The following notations are used to discuss the model 
N (t)= The system size at time t 
 = Group arrival rate 
X= Groupsize random variable 

kgkX  )Pr( , k=1, 2, 3… 
X(z)= Probability generating function of X. 
The notations of random Variables (RV), Cumulative Distribution Function (CDF), Probability Density Function (PDF), Laplace-
Stieltjes Transform (LST) and its kth momentsused to model the queueing system are listed below  
 

 RV CDF PDF LST kth moment 
Service time S S(x) s(x) S*(θ) E(Sk) 
Repair time R1 R1(x) r1(x) R1

*(θ1) E(R1
k) 

Repair time R2 R2(x) r2(x) R2
*(θ) E(R2

K) 
Table 1 

 

Where ))(()()(
00

* xFdedxxfeF xx 





    

Let )(,)( 0
1

0 tRtS and )(0
2 tR denote the remaining service time and remaining repair time at time t. Further the states of the system 

are denoted by the RV Y (t) at time t. 
i.e., Y (t) = 0,1,2,3 respectively denotes, the server is in idle, busy, repair mode with and without customer in service facility 
(remaining service time, remaining repair time). The supplementary variables are introduced in order to obtain a bivariate Markov 
Process  )(,)( ttN   where N (t) denotes the system size random variable and  )(,)(,)(,0)( 0

2
0

1
0 tRtRtSt  according asY(t) 

= 0,1,2,3 respectively  
 Let  0)(,)(Pr)(  tYntNtR n

 

 1)(,)(,)(Pr),( 0  tYdtxtSxntNdttxP n
 ,  1n  

 ,)(,)(Pr),,( 0
1, xtSntNdttyxB n     2)(,)(0

1  tYdtytRy ,  1n  
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 3)(,)(,)(Pr),( 0
22,  tYdtxtRxntNdttxB n

,  1n  

Then, )(0 tR denote the probability that the system is empty at time t. 

),( txPn denotes the probability that there are n-customers in the system at time t, the server is busy and the remaining service time x 
lies in the interval  txx ,  

),,(1, tyxBn denotes the probability that there are n-customers in the system at time t, the server is under repair, the remaining repair 
time y lies in the interval  tyy ,  and the customer whose service is terminated due to breakdown has to complete the remaining 
service time x. 

),(2, txB n
denote the probability that there are n-customers in the system at time t, the server is under repair and the remaining repair 

time x lies in the interval  txx ,  and the customer whose service is terminated due to breakdown joins the head of queue to 
repeat the service. 
Further )0(,)0,0(,)0( 2,1, nnn BBP denote the probability that there are n customers in the system at the termination of service time 
and repair times respectively. 
Assuming that at steady-state, probabilities are independent of time t, we have 

, ),,(),,(lim 1,1, yxBtyxB nnt



)(),(lim 2,2, xBtxB nnt




, 

)(),(lim xP
dx
dtxP

x nnt






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),,(),,(lim 1,1, yxB
dx
dtyxB

y nnt






)x(B

dx
d)t,x(B

y
lim 2,n2,nt







,
 

nnt
RtR 


)(lim ,

 
0)),(),,(),((lim 2,1, 













txB

t
tyxB

t
txP

t nnnt  
 
 
2.2. The System Size Distribution  The following steady-state equations are obtained for queueing system, using supplementary variable technique, and following the 
argument of Cox (1955)[1], 

 Idle state 
)0(10 PR       

 Busy state 





 

1

1
1 )()()0()()()(

n

k
kknnnn gxPxsPxPxP

dx
d

  )()0()0,()( 2,1,0 xsBxBxsgR nnn   , 1n   

 Breakdown state 







1

1
1,1,1, ),(),(),(

n

k
kknnn gyxByxByxB

dy
d 

 
),()()1( 1 yrxPq n 1n  







1

1
2,2,2, )()()(

n

k
kknnn gxBxBxB

dx
d  ,  

)()( 2
0

xrdwwPq n


 , 1n  The L.S.T of the steady-state equations are obtained by using the definition of Laplace- Stieltjes 

Transformation and its properties. The L.S.T of the density functions are defined in the previous table. The remaining notations of the 
L.S.T are listed below 
 
 
 
 
 
 
 
 

)(),(lim xPtxP nnt



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Probability Distribution L.S.T 
)x(Pn  dx)x(Pe)θ(P n

0

xθ*
n 


  

)y,x(B 1,n  )y,θ(B *
1,n  

)y,θ(B *
1,n  dy)y,θ(Be)θ,0(B 111 **

1,n
0

yθ
1

**
1,n 


  

)(2, xBn  )θ(B *
2,n  

Table 2 
 
Thus the L.S.T of the equations with respect to x are given by, 

)()0()()()0()( *
1
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 (2)     )()()0()(
1

1

*
2,

*
2,2,

*
2, 






n

k
kknnnn gBBBB  )()( *
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0
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And the L.S.T of the equation (2) with respect to y are given by, 
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**
1,

*
1,1

**
1,1

11  nnn BBB    

)()()1(),( 1
*

1
*

1

1
1

**
1,

11  RPqgB n

n

k
kkn  






1n  (4)
 

   )()()0()(
1

1

*
2,

*
2,2,

*
2, 






n

k
kknnnn gBBBB   )()( *

2
0

 RwPq n


 , 1n    

2.3. Probability Generating Functions  
Now to obtain the partial PGF’s of the number of customers in the system, the following partial PGF’s are defined  
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The partial PGFS are obtained by multiplying the corresponding equations with suitable powers of z and following some algebraic 
manipulations. 
The identity 










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k
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n zbzabaz is used to derive the PGF’s. 

Multiplying the equation (3) by suitable powers of z and adding  to0n  we get, 
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    (5) where ))(1()( zXzwX      (5.1) 
At )( zw X we get, 

 ))(()0,()0,( *
2

*
2 zwRzqPzB X     (6)  

Substituting the value of )0,(2 zB in equation (5), 
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At 0θ  , 1)(* R we get 
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Next to determine the PGF ),,( 1

**
1

1 zB , equation (4) is used,
 Multiplying the equation (4) byzn and adding  ton 1  we get, 
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At )(1 zwX in equation (9), we get  
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Substituting the value of )0,,(*
1 zB in equation (9) we get, 
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At 0θ1  , 1)(1* R and ,0  
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Similarly multiplying the equation (1) by suitable powers of z and adding over  ton 1  the PGF of the system size when the server 
is busy is obtained. 
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Substituting for 01 )0( RP  ,for )0,0,(1**
1 zB and )0,(*

2 zB from equations (10) and (8) respectively, we get 
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At 0θ  the equation (13) leads to, 
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Substituting (14) in (13) we get, 
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At ))(( zwh X  equation (15) gives, 
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Substituting (16) in (14) we get 
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Thus the partial PGF’s of the system size of the model are listed by 
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To derive the total PGFP(z) of the system size distribution, the following generating functions are considered. 
Let )(zPcomp = The PGF of the system size when server is busy or in breakdown state 
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(From equations (19) and (20))  

0)( RzPI  gives the probability that server is idle state 
 Therefore, the total Probability Generating Function (PGF) of system size distribution (P(z)) at steady-state is given by 
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Then P(z) can be written as, 
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(21) 

where ))))((())((()( * zwhSzzwhzD XX    
 ))))(((1))((( **

2 zwhSzwqRz XX      (21.1) 
 
2.3. Stability Condition 
The total PGF of the system size distribution of the unreliable MX/G/1 queueing system with two types of repair is obtained in terms 
of the unknown R0 in the equation (21). 
R0 can be evaluated using the normalizing condition  

1)1( P implies, )(lim1
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   (Using L’ Hospital rule)   (22) 

Using the results  
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( the  prime ( ’) symbol denotes the derivative of the function) 
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Thus the equation (22) implies 
   10R  
Therefore the total PGF of thesteady-state system size probabilities of the present model is given by, 
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WhereD(z) is given in equation (21.1) 
The equation (24) shows that the probability of the steady-state system size probabilities exist if 1 so that 1)1(  . Thus 

1  is the stability condition of the model. 
 
3. Performance Measures  
In this section, some useful performance measures of the proposed model including the mean queue length are calculated. 
 
3.1. The Server is in Busy State 
The probability that the server is busy ( BusyP ) and expected number of customer( BusyL ) in the system when the server is busy are 
obtained, 
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For the further simplifications we note the following results, 
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3.2. The Server in Breakdown State 
The probability that the server is in breakdown state of type i( BRiP )i=1, 2 and the expected number of customers in the corresponding 

state of type i( BRiL ), i=1,2 are obtained by, 

1BRP Probability that the server is in breakdown state and the customer is waiting in the service facility to complete the remaining 
service time
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 Substituting for BusyP from the equation (25) we have,
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2BRP Probability that the server is in breakdown state and the customer rejoins the head of queue 
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Thus the probability that the system is in breakdown state BRP  and the mean queue length BRL are given by  
21 BRBRBR PPP   
21 BRBRBR LLL   

 
2.3. Mean System Size 
 The average system size (L) of the model is given by  
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Using the following results 

2
1 ))1((2

)1(
)(
1

D
D

zD
z

dz
d

z










 



 

  1
* )))((())(( zXX zwhSzwh

dz
d



 

)(
)()())()1(1))((( *

**

11 qqS
qSqSREqXE







  

)(
)()())()1(1))((( *

**

1 qqS
qSqSREqXEL










)()1(2
)1(

* qSq
D

 
              (31) 

 The Expected Waiting Time in System E(W) 
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4. Particular Cases 
The Steady-state results of M/G/1 and MX/M/1 queueing models with two types of repair are obtained in this section. 
 
4.1. Markovian Queueing System MX/M/1 with two Types of Repair 
The PGF ))(( 1// zP R

MM X
 of the corresponding Markovian queueing system with two types of repair and the excepted system size 
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4.2. M/G/1queueing system with two types of repair

 The PGF )(1// zP GM
R X of the M/G/1 queueing system with two types of repair can be obtained by putting zzX )( in equation 

(23) we get 
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5. Numerical Analysis 
In this section, we study the influence of the system parameters on some significant performance measures through numerical results 
for the model MX/ G/ 1 with server Breakdown where the unreliable server is provided with two types of repair facilities. The 
distributions considered for different random variables are listed in the following table. 
 

Random 

Variables 

(Y) 

Distribution 

F(Y) 

Mean 

E(Y) 

Second order 

moments 

E(Y2) 

Service 

Time 

Two-stage 

hyper- 

exponential 

 

21

1)( 
bbSE 

 
10  b

 2
2

2
1

12 2)(


bbSE 
 

Repair 

time 

R1 Erlang-2 type 1
1


 
2

12
3



 
R2 Deterministic 2

1


 
2

2

1


 

Life time of 

the server 

Exponential 

with 

parameter (a) 

a
1

 
2

2
a

 

Batch size 

(X) 

Geometric 

(Geo(p)) 
p1

1

 
2)(

2
pi

p


 
Table 3 

 
The influences of q, and  on   
i. System size probabilities when the server is in different states, 

ii. The mean queue length (L) and 
iii. Expected waiting time of a customer (E(W)) 
Are analysed through numerical values. 
The common parameters for all the tables are .2,3,12,15 2121    
The Table 4 values and Figure 2 show that the mean queue length L and hence expected waiting time E(W) both increase with  and 
Figure1 represents probabilities for M/G/1 model. 

 
    BusyP  BRP  L E(W) 
4 0.5612 0.3118 0.2494 1.9555 0.4888 

4.5 0.6314 0.3507 0.2806 2.6927 0.5983 
5 0.7015 0.3897 0.3118 3.7969 0.7593 

5.5 0.7717 0.4287 0.3429 5.6065 1.0193 
6 0.8419 0.4677 0.3741 9.0606 1.5101 

6.5 0.9120 0.5067 0.4053 18.0952 2.7838 
Table 4: )32.0,4.0,2,0(  bqp   
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Figure 1: λ Vs Probabilities 

 

 
Figure 2: λ Vs L and E (W) 

 
In table 5, it is found that the mean system size increases with q where q is the probability with which the customers join the waiting 
line to repeat the service (from the beginning) soon after the breakdown. This is verified for MX/M/1 model.The graphical 
representation is shown in Figures 3 and 4. 
 

q   BusyP  BRP  L E(W) 
0.25 0.7777 0.4444 0.3333 8.9785 1.3467 
0.35 0.7925 0.4444 0.3481 9.4275 1.4141 
0.45 0.8074 0.4444 0.3629 10.1918 1.5287 
0.55 0.8222 0.4444 0.3777 11.2010 1.6801 
0.65 0.8370 0.4444 0.3925 12.4593 1.8689 
0.75 0.8518 0.4444 0.4074 14.0095 2.1014 
0.85 0.8666 0.4444 0.4222 15.9302 2.3895 

Table 5: )1,4,2,4.0(  bp   
 

 
Figure 3: q Vs Probabilities 
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Figure 4: q Vs L and E(W) 

 
One can note from Table 6 that the system becomes significantly congested for higher breakdown rate . Figures 5 and 6 show its 
graphical representation. The parameters for the Tables 2 and 3 are same as in Table 4 for MX/G/1 model 
 

    BusyP  BRP  L E(W) 
2.5 0.5845 0.2922 0.2922 3.0102 0.8027 
3 0.6429 0.2922 0.3507 3.8579 1.0287 

3.5 0.7013 0.2922 0.4090 5.0789 1.3543 
4 0.7596 0.2921 0.4674 6.9293 1.8478 

4.5 0.8179 0.2921 0.5258 10.0021 2.6672 
5 0.8763 0.2921 0.5842 16.0151 4.2706 

5.5 0.9346 0.2920 0.6425 32.8203 8.7520 
Table 6: )32.0,25.2,4.0,4.0(  aqp   

 

 
Figure 5: αVs Probabilities 

 

 
Figure 6: α Vs L and E(W) 
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The similar effects of  , q  and  on L for Poisson arrival queueing model (M/G/1) and the Markovian queueing model MX/M/1 are 
presented in tables 4 and 5. 
 

4 )32.0,0(  bp  

  Q 
 
  

0.2 0.4 0.6 0.8 1 

2 2.3756 1.9555 1.9824 2.1343 2.3497 
2.5 2.7042 2.4912 2.6967 3.0451 3.4933 
3 3.2589 3.3066 3.7987 3.7987 3.7987 

3.5 4.1206 4.5778 5.6271 5.6271 9.5757 
5.4  

   q 
  0.2 0.4 0.6 0.8 1 

2 3.0815 2.6927 2.8250 3.1211 3.5189 
2.5 3.7319 3.6825 4.1667 4.9033 5.8901 
3 4.8665 5.3799 6.6344 8.5743 11.641 

3.5 6.8718 8.6704 12.3522 20.054 44.721 
Table 7: Mean queue length with respect to α and q 

 
4 )1,4.0(  bp  

Q 
  0.2 0.4 0.6 0.8 1 

1 5.4927 4.3086 4.1324 4.2259 4.4444 
1.25 5.7836 4.9821 5.0665 5.4166 5.9179 
1.5 6.4233 6.0114 6.4448 7.1972 8.1986 
1.75 7.4385 7.5184 8.5066 9.9984 12.051 

5.4  
q 
  0.2 0.4 0.6 0.8 1 

1 7.1821 6.0155 6.0127 6.3505 6.8750 
1.25 8.0407 7.4799 8.0071 8.9583 10.254 
1.5 9.6336 9.8959 11.402 13.734 17.140 
1.75 12.323 14.095 17.982 24.721 37.932 
Table 8: Mean queue length with respect to α and q 

 
6. Conclusion 
This paper analyses a MX/G/1 queueing model in which the breakdowns occur according to a Poisson process and the breakdown 
server is sent to the repair facility. The customer being served may decide either to stay in the service facility to complete the 
remaining service time after the server is fixed or joins the head of queue to repeat the service from the beginning. Accordingly the 
repair times are assumed to follow different distributions. The steady state solutions for the model are obtained in a packed form to 
evaluate the performance measures easily.  Numerical computations are provided to study the effect of parameters on system 
performance measures which validates the analytical results. 
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