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Abstract:

In this paper we introduce necessary and sufficient conditions for non-differentiable minimax fractional problem with
generalized convexity and applied these optimality conditions to construct one parametric dual model and also discussed duality
theorems. We obtained duality theorems for two parameters-free models of a nondifferentiable minimax fractional programming
problem, involving generalized convexity assumptions. we established sufficient optimality conditions and duality theorems for
nondiffertiable minimax fractional programming problem under (F, a, p, d) convexity assumptions. we discussed the optimality
conditions and duality results for nondifferentiable minimax fractional programming under o-univexity.

1. Introduction

Necessary and sufficient conditions for generalized minimax programming were developed first by Schmitendorf [12] Tanimoto [13]
defined a dual problem and derived duality theorems for convex minimax programming problems using schmitendorf’s results.

Yadav and Mukherjee [14] also employed the optimality conditions of Schmitendorf [12] to construct the two dual problems and
derived duality theorems for differentiable fractional minimax programming problems. Chandra and Kumar [3] pointed out that the
formulation of Yadav and Mukherjee [14] has some omissions and inconsistencies, and they constructed two new dual problems and
proved duality theorems for differentiable fractional minimax programming. Liu et al. [10,11], Liang and Shi [9] and Yang and Hou
[15] paid much attention on minimax fractional programming problem and established sufficient optimality conditions and duality
results.

Lai et al. [8] derived necessary and sufficient conditions for non-differentiable minimax fractional problem with generalized convexity
and applied these optimality conditions to construct one parametric dual model and also discussed duality theorems. Lai and Lee [7]
obtained duality theorems for two parameters-free models of a non-differentiable minimax fractional programming problem, involving
generalized convexity assumptions. Ahmad and Husain [1,2] established sufficient optimality conditions and duality theorems for
nondiffertiable minimax fractional programming problem under (F, a, p, d) convexity assumptions, thus extending the result of Lai et
al. [8] and lai and Lee [7]. Jayswal [5] discussed the optimality conditions and duality results for nondifferentiable minimax fractional
programming under o-univexity. Yuan et al. [93] introduced the concept of generalized (c, a, p, d)-convexity and focused their study
on a nondifferentiable minimax fractional programming problems. Recently, Jayswal and Kumar [4] established sufficient optimality
conditions and duality theorems for a class of nondifferentiable minimax fractional programming involving (c, a, p, d) -convexity.

In this paper, but they not consider this is multiobjective fractional minimax under the concept of generalized convexity i.e (F, P)
convexity. Hence in this chapter to fill gap by developing some theorems and duality theorems in nondifferentiable minimax fractional
programming under (F, P) convexity.

1.1. Definition

A functional E XXXXxR" >R (whereX C Rn) is 2 said to be sublinear in its third argument, if for all
(x,x,)e XXX,

E (x,x,a, +a,)<FE (x,x,a,)+E (x,x,;a,), Va,,a,eR"

F, (x,x,;aa)=a F, (x,x,;a)Voae R,a>0, Vae R" (21
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1.2. Formulation

Let R" denote the T] -dimensional Euclidean Space and left Rj be its nonnegative orthani.

In this chapter, we consider the following non differentiable minimax multiobjective fractional programming problem.
1

f, (x,y)+<Xx,Ax >2

min sup
xeR" er

(FP)

[SRICH

h, (x,y)-<x,Bx>
subject tO gj(X)SO,

Where f. 5 h.: R"XR™ — R and g¢:R" — R? are continuous differentiable functions, Y is a compact subset of R™, and
ERLT g p

A and B are nxn positive semidefinite matrices. The problem (FP) is nondifferentiable programming problem if either A or B is
nonzero. If A and B are null matrices, then the problem (FP) is a usual minimax fractional programming problem.

Let ’Cp = {X eR": g; (X) < 0} be the set of all feasible solutions of (FP). For each (X, y) € R"XR™, we define

N | =

fi (X, y)+<X,AX> (3.1)

o, (x,y)=

N | =

h, (x,y)-<x,Bx>
L 1
Assume that for each (x, y)e R"xY, f(x,y)+ < x, Ax >?20 andh, (x,y)-<x,Bx>2>0.
Denote

1 1

_ _ f.(x,y)+ <x,Ax >? f, (x,z)+<x,Ax >?
vy, (x)=ye Y: Y = sup =’

— 5 ZeY 5

h,(x,y)—-<x,Bx >? h,(x,z)- <x,Bx >?

N={1,2,...... pl, Jx) = (€ gx)=0} (3.2)

k, (x)=<(s. .)€ NxRimes I<s<n+1,t=(t . t, ... t)e R® +
with 50—, y:(yl Ty y) VeV, i=12, ... s }

Since f; and h; are continuously differentiable and Y is a compact subset of R™, it follows that for each
x e T, Y, (x")#0 . Thus forany 3. € y, (x "), we have a positive constant * _ 0. (x°, 7. ).
1 1 1

1.3. Dual Formulation

To unify and extend the dual models, we need to divide {1, 2, ...... p} into several parts. Let J o (0 <o<L I') be a partition of {1,
2, . p}, thatis,
r
J,nly=6.for a#f. ¢ J, = (.20 p) 3.2.1)
a=0

We note that for (p)-optimal x,

> peg (x)=0,0=01,...r (32.2)
jE JOc

Dual Formulation is as follows

s 1
Z tf (z,y,)+<z, A, >? +z wg (z)
i=1

Ely

max sup - -

(s, t }N’)e k(z) (z, Mj ,u, V)e H(s, to y) t, (hi (z,; ))— <z,A, >

i=1

Where H(S, t, )7) denotes the set of all (Z, Mj ,u, V) e R" XRin xR"xR"
Satisfying
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[Z ’ (hmzii)— <2,Bz >2HV [i G (2 3+ Au) e Y uigj<z>]

i=1

—[iti(fi (z,7,)+ <z, Az >2j+zujgj(z)jv( ¢ (hi(z,yi)—BV)j:O,

i=1 €Jo

»

Zujgj(z)ZO , oo=1,2,..... r

.jEJ(X

T,y =6 , for a%B, UJ, ={1,2,...p)

1.4. Necessary and Sufficient Conditions for Lemma (Weak Duality)
Let x be a feasible solution for (p), and let (Z,},L, u,v,s,t, 57) be a feasible solution for (3.2.12) suppose that there exist

F’e’q)O’b()’p() and (I)a’baapas(x:la 27 ----- r such that

F[x,z;[zS t (h(Z,Yi))— <z,Bz> j]

\% (z t(f(z,¥,)+Au)+ Zujgj(z)j—[iti (f(z,¥))+<z,A,>2 +3 ujgj(z)J

N[ =

i=1 Ty i=1

v (Z t, (h(z, 7)) - Bv)j >—p,[6x, 2)[

s

= b,(x,2) ¢O((Z t, (h(z,y,))- <z Bz >2]] (Z t, [f(x,yi )+ < X, Ax >z]+ z ujgj(z)]

i=1

_(i t, [f(z,?i )+ <z, Az >2j+ 2 u;g; (Z)] g x [i 4 {h(x’?i )7 B >2]] =
. 1
~b,(x,2) 0, ((z t (h(X, Y. ))_ <z,Bz >2}J (z M;g; (Z)J <0 (3.2.5)

i je ](X

i=1
1
= F (x, z )t (h(z, Y ))— <z,Bz >2j (z ug; (Z)J (3.2.6)
jE€Jy

i=1

»

<-p.llox, )|, a=1,2,..r
Further, assume that

az20= ¢,(a)=20, a=1,2,....r (3.2.7)

0,(a)20=>a=20 (3.2.8)

b,(x,z)>0, b,(x,z)20, a=1,2,....r 3.2.9)
Iy

Pot+ D Py 20 (3.2.10)
a=1

Then

s L
! thi(f(z,yi)+<Z,AZ>2]+Zujgi(z)

f, (x,y)+ <x,Ax >2 PR
| s L
h,(x,y)—-<x,Bx >? zti(h(Z,Vi))—<Z,AZ>2

i=1

su
yeyY

(3.2.11)
Proof: Supposed to contrary that

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 26



www.ijird.com February, 2016 Vol 5 Issue 3

M-

1
f, (x,y)+<x, Ax >? <| =

1 s
t, (fi (z,y,)+<1z, Az >2J+Zujgj(z)

sug T - FJOL
a h, (x,y) —<x,Bx>? Zti (hi(z,?i))—<z,Bz >?2
i=1
(3.2.12) ¢t
en we get

s 1 1
z t, [hi(z,?i)—< z,Bz >2] (fi (X, y)+ < x, Ax >2]
i=1

s 1 1
<(Z t, (fi (z, V) +<z,Az>>+) ujgj(Z)JJ[hi(X, y) - < x, Bx >2],‘v’ye Y
i=1

jelo
(3.2.13)
Further, this implies

iti (hi (z,y,)—<z,Bz >2j (iti (fi (x,Y,; ))+ < X, AX >2J

i=1 i=1

<(iti (fi (2,¥,)+<z, Az >2H+zujgj(z) (iti (hi(x,Yi)—< X, Bx >2D

i=1 €Jy
(3.2.14)
Hence, we have

s 1 s 1
> (hi(z,?i)—< z, Bz >2J > {fi (X,V,) +<x, Ax >2 +ijgj(x)J
i=1 i=1

€l

—{Z t, [fi (z,7,)+ < z, Az >2j+ z ujgj(z)] [Z t, [hi (x,¥,)- < x, Bx >2D
<£Zsti[hi(z’yi)_<z’]3z>2]] (Z Mjgj(X)J (3.2.15)

€y

s 1
Using the fact that Z t, (hi (z,y,)—<z,Bz >2J > (0 and

i=1

Zujgj (x)< 0 and the last inequality, we have

Elo
ZS t, [hi(z,yi)— <z,Bz >2J {i t, [fi (x,¥,) +<x, Ax >2]+Z ujgj(x)]
i= i=1 o
s 1 s 1
—{Zti [fi (z,y )+<z,Az >2J+ > ujgj(z)] [Zti [hi (x,y,)—-<x,Bx >2B<0
i=1 ko i=1

(3.2.16)
From (3.2.5), (3.2.8), (3.2.9) and (3.2.16), we get

F(x,z;[i t (hi(z,Yi ))— <z,Bz >;]JV [i t (fi (z,y,)+ Au)+ Z ujgj(z)]

i=1 i=1 €lo

—(iti (f(z.y))+<z,A,>>+ X pjgj(z)J

i=1 EJo

1 (Zt (hi(z,yi)—BV)j<—p0||6(x,z)||2 (3.2.17)

i=1
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Using

s 1
>t (hi (2,5,) - <z, Bz >2] > 0 (324),(3.2.7),(3.2.9),

i=1

»

Weget _p_(x,2) 0, t, [hi(z,?i)— <z,Bz >2][Z uig, (z)j] a=12,..r

i= j€lo

(3.2.18)
From (3.2.6), we have

F[x, Z;ZS: t, (hi(z,yi)_ <z,Bz >2]( Y wVe, (Z)]J 3.2.19)

€ty
<-p x| L a=12, .1
on adding (3.2.17) and (3.2.19) and making use of sub linearity of F and (3.2.10), we have

[X’Z;{Z; t; [hi(z,yi)— <z,Bz >2]V[ZS: t, (fi (Z,Vi)+Au)+Z:ujgj(z)J]J

i=1

(Zt (f (z.V,)+<z, Az>2]+2ug (z)J (Z (h(z, 7, )—Bv)j<0

€Jy i=1

(3.2.20)
Which contradicts (3.2.3).
This completes the proof.

1.5. Theorem (Weak Duality)
Let x be a feasible solution for (FP) and let (z, L,u,v,s, t, §) be a feasible solution for (3.2.12). Suppose that there exists

F,0,0,,b,,p,20d 0, , b, ,p,,.00=12.... r
Such that

bo(x,z)q)o(iti[h (z,5,) - <z, Bz >2jj[ g tl[fi (X,¥,) + < x, Ax >2j+z ujgj(x)]

1

_Zslti(f (z,V,)+<z,Az >? +Zug (Z)]Xiti(hi(x,?i)—<x,Bx>2]<0

€Ty

= F[x,z;zsti (hi(z,Yi))—<z,Bz>

_Zt[f (z,V,)+<z, Az >? +zug(z)] (itl(h (z,5,) - BV))S—pOHG(x,Z)”z’

i=1 €ly

S

jV[ f(zy)+Au)+Zug(x)}

i=

-b,(x, z) q)a(i ti[h (z,y,)—<z,Bz >2j Z ug, (Z)jJ
= F(x,z;iti (h,(z,¥,))- <z Bz >2Mz Ve, (z)j

i=1 I
—p.||6x, z)|| o=12,...r (3.2.21)
Further, assume that (3.2.8), (3.2.9) and (3.2.10) are satisfied, then

. 1
3 t | f, (z,y,)+<z, Az>> |+ z
SUP f, (X, y) +<x, Ax>? Zl[( yi) j ;})u]gj()

1= 1
yey h, (x,y) —<x,Bx >? t, (hi(z,?i))—<z, Bz >?2

i=1

»

(3.2.22)
Proof: The proof is similar to that of the above theorem.
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1.6. (Strong Duality)
Assume that x  is an optimal solution for (P) and ng(x*), je J(x") are linearly independent. Then there exist

(s*, t, S/*)e k(x*) and (x*, u*, u’, V*) € H(s*, t, 5/*) such that (x*, u*, u,vi,s,t, }7*) is an optimal solution for

(3.2.12). If, in addition, the hypotheses of any of the weak duality (Theorem 3.2.1 or Theorem 3.2.2) hold for a feasible point
(z,u,u,v,s,t,§)thenthe problems (FP) and (4.18) have the same optimal values.

Proof: By (3.2.1) Lemma there exist (s",t", 3" )e k(x") and (x,u,u,v)e H(s',t,§") such that

(X*, M* , 11* R V* R S*, t* , S/*) is a feasible for (3.2.12), optimality of this feasible solution for (3.2.12) follows from Theorems (3.2.1)

or (3.2.2) accordingly.
Theorem: (3.2.4) (Strict converse duality). Let x* and (z,U,u,v,s,t,y) beoptimal solutions for (p) and (3.2.12), respectively.

Suppose that v g, (x"), je J(x *) are linearly independent and there exist F, 6, (I)O, bo, Py and q)(x,bu,pu, o= 1, 2, ..... T
such that

F (x z; (ZS: t; (hi (z,; ))— <z,Bz >;n \% (ZS: t, (fi (z,; ))+ Au+ X ujgj(z)j

i=1 i=1

X[Z t(f (2. 7))+ <z, Az>? +Zug(z)] (Zti(hi(z,yi))—BVJ

i=1 i=1

»

>

ol
= b,(x, 2) q)o[i t; (h (z,y,)—<1z,Bz >2J] [ZS: t, (fi (x,¥,)+<x,Az >2]+ >opg(x )]

j€lo

_iti(f (z,y,)+<z, Az >? +2Hg (Z)J[i i(hi(X*’Vi)—<X*,BX*>2JJZO
i=1

i=1

(3.2.23)
s 1
b, (x",2) 0, [ t, h (z,y,)—<z, BZ>2] Zujgj(z)jJSO
i=1 €y
s 1
( oz 2 (h,(z.¥))-<z, Bz>2N ujvgj(z)j (3.2.24)
i= €l
p.fox’, z)H a=1,2,...r
Further, assume (3.2.7), (3.2.9) and (3.2.10)
¢,(a)20=2a>0 (3.2.25)

then x =z, that is, z is an optimal solution for (p).
Proof: Supposed to contrary that x* 7 z. From the strong duality theorem (3.2.3), we know that

. 1
Dt (fi (z,y,)+<z,Az >2J+Zujgj(z)
i=1

1
fo(x",y)+<x’, Ax" >?2 _

Squ l . jEJla
T h (x,y)-<x",Bx  >2 t. | h (z,y,)-<z, Bz >2J
i=1
(3.2.26)
Then, we get

s 1 1
Zti (hi(z,?i)—< z,Bz >2J[fi (x", y)+< x, Ax" >2J

i=1

s 1 1
S[Z ti(fi (z, y,)+<z,Az >2]+ > pjgj(z)J[h(x*,y)—< x, Bx’ >2)Vye Y
i=1 el
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(3.2.27)
Further, this implies

s 1 s 1

>t [hi (z,y,)-<z,Bz >2J[Z t, [fi (x",y,)+<x", Ax’ >2JJ

i=1 i=l1
s 1

< [z ti(fi (z, ¥,)+<1z,Az >2j+ Zujgj(z)J (3.2.28)
i=1 €y

s 1
X (Zti(hi(x*,yi)—<x*,Bx*>2]J,V yeY
i=1

Hence, we have

s 1 s I
(Zti (hi(z,?i)—<z,Bz >2D (Zti (fi (x,y,)+<x, Ax’ >2]+ z ujgj(x*)j

i=1 i=1 EJo

s 1 s 1
—[Z t, [fi (z,V,)+<z,Az >2J+(Z ujgj(z)n[z t, {hi(x*,?i)—< x ", Bx’ >2D
i=1 i=1

o

< [ZS: t; [hi (z,y;,)—<1z,Bz >2J( )y j.ngj(x*)jJ (3.2.29)

il

S l *
Using the fact that {Z t, (hi (z,V,)—<z,Bz >2 j} > () and > },ngj (X ) < 0 and the last inequality, we have
€y

in1
s 1 s 1
(z t, [hi(z,?i)— <z,Bz >2]J [z t, (fi (x,y,)+<x,Ax >2]+ z ujgj(x*)]
i=1 i=1
s 1 s 1
DI [fi (z,y;) +< Z’AZ>2J+ 2 ngj(Z)J[zti (hi(X*aVi)_< x', Bx" >2DS0
i=1 o i=1

From (3.2.9), (3.2.23), (3.2.25) and (3.2.30), we get

F| x’, Z;(Zslti (hi (z,y, ))— <z,Bz >2D \Y (Zslti (z,y,)+Au++ % ujgj(Z)j

i=l1

S S

| >t (f (2, ¥.))+ <z, Az STy P ujgj(z)J v [Z t; (h, (2.7, ))—BVJ

i=1 i=1

(3.2.31)

N 2
<—py|lo(x", 2)|

s 1
Using Z t, (hi (z,V,)-<z,Bz >2j >0, (3.2.4),(3.2.7) and (3.2.9)
i=1

1
Weget  —p (x",27) %[2 t; (b (z, Y, )-< z,Bz2] ( z ujgj(ﬂj =0
Elo

I=1

o=12,...r (3232

s 1
F [x' , Z; z t, (hi (z,, ))— <z,Bz >2j (JEZJ ujgj(z)J
i=1 M
<-p,|locx", z)||2 Lo =1,2,...1 (3.2.33)
From (3.2.24), we have on adding (3.2.31) and (3.2.33) and making use of sub linearity of f and (3.2.10) we have

F (x z; (Z t;(h,(z.¥,))-<z Bz >5D \% (Z t(f (2.)+Au)+ glpujgj(z)j

i=1 i=1
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»

i=1 i=1

_( O ujg#Z)Jv( 3 (hi<z,vi>)—BVJ<0

(3.2.34)
Which contradicts (3.2.3). This completes the proof.

Theorem 3.2.5 (Strict Converse Duality):
Let x and (Z, W, u, v,s,t, 5’) be optimal solutions for (FP) and (3.2.12), respectively. Suppose that

ng(x*), je J(x") are linearly independent and there exist F 0,0,,b,, P, and O by, Pe 0 =1,2..... r such that

S L S l
b,(x", z) q)o[z t, [hi(z,yi)— <z,Bz >2D[z t, {fi (x,y,)+<x,Ax’ >2j+ > ujgi(x*)J
i=1

i=1 €l

S l . L
_ Z t, (fl (z, ?1)4‘ <z,Az>?+ > ngJ(Z)](z t, (hi(x*’yi)_ < X*, Bx® >2]J< 0
i=1 el s

S

s 1
= F(X*,Z;Zti (h;(z,¥,))-<z Bz >zjv (Zti (f (z.¥))+Au+ X ujgj(z)j
i=1 el

i=1

i=1 €Jo i=1

- iti [fi (z,5)+<2z,Az> - T ng,(2) V(ZS: t, (h, (2.7, )—Bv)j < —p0||e(x*, z)||2,

»

b, (x",2) 0, [Z t, (hi (z,V,)-<z, Bz >2M_z ujgj(z)n <0
2

i
:F(x*,z; t; (h; (z,¥,))-<z Bz >2] Mngj(Z)j

i=1 jely
<-p, e(x*,z)H2 L o=1,2,....1 (3.2.35)

Further, assume (3.2.7), (3.2.9) and (3.2.10)
0,(a)20= a>0 (3.2.36)
then x =z, that is, z is an optimal solution for (p).

1.7. Optimality Theorem
The following result from Lai and Lee [10] is needed in the sequel.

1.7.1. Necessary Optimality Theorem

Let X be an optimal solution for (FP) satisfying (x', Ax)>0, (x, Bx)>0 and let V gJ (X*), jE J (X*) be linearly independent,

then there exist (s, t", §)e k(x'), v e R,,u,ve R" and },L*E RE such that

2 (VE 6T+ Au= v (Vh (7, 7)) = BV) )+ 2T Ve (x) =0 @D

i=1

1

f. (x*,?i )+ <x", Ax’ >% —V*(hi (x*,Yi )— <x",Bx" >;] =0,1=1,2,....s

(4.2)
> nig,(x) = 0. @3)
teR:, Yt =17 eY (x), i=12, .5 (4.4)

i=1

1
<u, Au ><1, <u,Bv><1, <x",Au>= <x,Ax" >?
1
<x ,Bv>= <x ,Bx >2 (45
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It should be noted that both the matrices A and B are positive definite at the solution X in the above lemma. If one of
< Ax",x"> and < Bx", x" > is zero, or both A and B are singular at x', then for (s, t", §)e k(x '), we can take

Z?(X*) .ith any one of the following (i) — (iii) holds.

*

(<Ax™, x">>0, <Bx', x " >=0

s * 1
Z t,Vf, (x*,yi)+A—Xl—v: Vhi(x*,Vi), Z |+ < (V1 B)Z, z>2<0
= <Ax",x">?

>

ii)<Ax*,x*>=O, <BX*, x" >0

* 1

Bx =
z>+<Bz,z,>%2<0

= | Dt VI (x",y,)-v;| Vh (x",¥,) -
i=1 *

<Bx",x" >

S

*

(i) < Ax",x >=0, <Bx',x >=0
s 1 1
[Z tf(Vfi (X*,?i)—v*Vhi(x*,?i))], z+<(vB)z,z,>> +<Bz,z2>2<0

i=1

(4.6)

1.7.2. Sufficient Optimality Conditions
In this section, we present three sets of sufficient optimality conditions for (p) in the frame work of generalized convexity.

Let . X x X x R" — R be sublinear functional, ¢,, ¢, :R - R, O6:R"XR" - R", and p ,b, : X xX - R, -
Let P, P, be real numbers.

Theorem (4.3.1): Let X € T, be a feasible solution for (FP), and there exist v eR,.(s,t,§)ek(x),u,ve R" and

M* € RE satisfying (4.1)-(4.5). Suppose that there exist F, 9, 0,,b,,p, and ¢,,b,,p, such that

F (x, x"; Z G(VE (x 7))+ Auj— vi(Vh (x, 7)) -Bv)2 —p, [ocx, x")||2

i=1

b,(x,x") q;o( Z tf(fi (x, 7))+ < x,Au>-v'(h, (x,¥,))- < x,Bv >)j 4.7

i=1
_ZS: t;‘(fi (x.¥)+<x,Au>-v (h (x",¥,)-<x",Bv >))Z 0
i=1

—b1<x,x*>¢l[2p uﬁgj<x*>]so (4.8)

= F( ) “ng(x*)J <-p, o xOf
j=1

Further, assume that

a>20= ¢,(a)20 4.9)
0,(a)20= a0 (4.10)
b,(x,x) 20, b, (x,x)>0 4.11)
Po+p, 20 (4.12)

then x " is an optimal solution of (FP).

Proof: Suppose to the contrary that x" is not an optimal solution of (FP), then there exists X € T, such that

S

f, (x,y)+<x, Ax >

1

1
sup f (x, y)+<x, Ax > (4.13)
yeY

< sup
yeY

[SEE
S

hi(X, Y)—<X,BX> hi(X*aY)_<X*,BX*>

We note that
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1 1
f,(x,y)+<x’, Ax" >?2 f,(x,y,)+<x,Ax >?2 . (4.14)

sup T —=V
< hi(x*’ Y)_<X*,BX* >2 hi(X*ayi)_<X*, BX* >2
fory, e Y(x) , i=1,2,..08

1 i
fi (X’?i)+<X’AX >T < Sup fi (X’y)+<X’AX>T (415)
hi(x,Vi)—<x,Bx>E hi(x,y)—<x,Bx>E
Thus, we have

fi (x,y)+<x,Ax > (4.16)

1

2

- <v' for i=1,2,.... S
h,(x,y,)-<x,Bx >?
it follows that

1 1
f, (x,y,)+<x, Ax >2—V?[hi(x,?i)—<x,bx >2J<O for i=1,2,....s

4.17)
From (4.2), (4.4), (4.5) and (4.17), we get

ZS: t‘:(fi (X,¥,)+<x,Au—> V*(hi(x,yi)—< X, Bv >))

-1
< i tf(fi (x,y)+<x",Au> —V*(hi (x",y,)-<x,Bv >)) (4.18)
on the other hlazrlld, from (4.3), (4.9) and (4.11), we have
-b, (x,x") 0, (Zp: ujgj(x*)Jgo (4.19)
it follows from (4.8) that -
F[x X Zp: p‘;ng(x*)] < -p, ||9(x, x*)”z
From (4.1), the sub lirjlgarity of F, and (4.12), we get
F (x, x 3 6 (VE (x. 7))+ Au—v (Vh (x".F,) - BV)] >~ p, [ocx. x|

i=1

(4.20)

“4.2.1)
Then by (4.7), we have

b,(x,x") ¢0( z t(f (x.7)+ <x,Au>-v (h,(x.7,))- < x.Bv >)J

i=1
—ZS t; (fi (x",¥)+<x,Au>-v (h (x",¥)-<x",Bv >)) >0 (4.22)
i=1

From (4.10), (4.11) and the above inequality, we obtain

S

z t?(fi (X, ¥;)+ <x,Au > —v*(hi(x,?i))— < x,Bv >)

i=1

S (LT F < x AU -y (h (x LT - < x LBy )20 (4.23)
i=1

which contradicts (4.18). Therefore, X" is an optimal solution for (FP) . This completes the proof.
3.2. Theorem: Let X € T, be a feasible solution for (FP), and there exist v* e R,,(s,t;,y)e K, (x),u;,v,eR"

and },Ljf € RE satisfying (4.1)-(4.5). Suppose that there exist F, 9, ¢,,b,.p, and ¢,,b,,0,,p, such that

F, [x, x: Y 6(VE (L T+ Au-v (Vh (x". 7)) - BV))) > —p, [ocx. x|

i=
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S

= b,(x,x") ¢0( > tj(fi (x, 7))+ < x,Au>-v (h;(x,¥,))- < x,Bv >)) 4.7)

i=1
—i t; (fi x,y,)+<x,Au>-v (hi (x",y,)-<x,Bv >)) >0 (4.24)
i=1

or equivalently,

s

bo(x,x*)q)o( z tf(fi (xX,¥,)+ <x,Au > —V*(hi(x,Yi))— < Xx,Bv >)j

i=1

—ZS: t'f(fi (x,y,)+<x,Au> —V*(hi(X*,?i )-<x ,Bv >))S 0 (4.25)
i=1

»

i=1

= F (x, X' z t; (Vfi (x",y,)+Au-— V*(Vhi (x",y,)—Byv, ))j <-p, HG(X, X*)H2

_bl(x’X*)¢1[i H;gj(x*)jﬁo (4.26)
j=1

p

= F(x,x*; zungJ(x*)J < -p, [ocx. x|

j=1
Further, assume that (4.9), (4.11), (4.12) and

a<0=0¢,(a)<0 (4.27)

are satisfied, then X" is an optimal solution of (FP) .

Proof: Suppose to the contrary that x* is not an optimal solution of (P) . Following the proof of theorem (4.7), we get
z t; (fi (X,¥,)+<x,Au>-v, (hi (x,y,)—-<x,Bv >))

i=1
< Zslfi ((X*,?i)+ <x', Au> —vf(hi(x*,yi)— <x ,Bv >))
i=1

(4.28)
Using (4.11), (4.25), (4.27) and (4.28), we have

E (x, x'; Zs:tj (Vfi (X*,Vi)-i—Au—V*(Vhi(X*,Vi)—BV)))< -P, HB(X, X*)H2
- (4.29)
= F [x, x*;zs: t?(Vfi (x,V,)+Au - V*(Vhi(x*,?i)—BV))J+ iu?ng(x*) <0
=1

i=1

On the other hand, (4.1) implies
s P,

F, [x,x"‘; > tj‘[Vfi (x,y)+Au-v (Vh, (x",¥,)=-Bv)+ ujvgj(x*)}] =0
i=1

i=1

(4.30)

Hence we have a contradiction to inequality (4.29). Therefore, X" is an optimal solution for (P) . This completes the proof.
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