

ISSN 2278 – 0211 (Online)

Kinetic Models Evaluation in Methanol Production for Improved Process Design

Minister E. Obonukut

Research Student, Department of Chemical and Petroleum Engineering, University of Uyo, Uyo, Nigeria

Etim N. Bassey

Professor, Department of Chemical/Petrochemical Engineering, Akwa Ibom State University, Ikot Akpaden, Nigeria Benjamin R. Etuk

Associate Professor, Department of Chemical and Petroleum Engineering, University of Uyo, Uyo, Nigeria

Abstract:

The work aimed to evaluate kinetic models of methanol synthesis for improved design of the process. Graaf's and Kubota's models were chosen based on their goodness of fit to the respective kinetic data. Polymath was used to fit published experimental data to these kinetic models and evaluate kinetic parameters. The statistical results from Polymath show that Graaf's model fits to the data well when the partial pressure of CO_2 in the feed was low and to a reasonable extent when it was high with $R^{2\approx} 0.83$ and 0.52 respectively, with scattered residuals. Kubota's model fits to the data well only when the partial pressure of CO_2 was high with $R^{2\approx} 0.59$ with scattered residuals but poorly fits when it was low with $R^{2\approx} 0.106$ (far from unity). The combined model was the best fit model and it described methanol synthesis kinetics most appropriately with $R^{2\approx} 0.88$ irrespective of CO_2 partial pressure range.

Keywords: Methanol, Kinetic Models, Graaf's Model, Kubota's Model

1. Introduction

Kinetic modeling is an important tool in the design and optimization of chemical synthesis processes. Kinetic studies aid in reactor design and are important means to gain a better insight of the overall process so that it can be modified for optimum operating conditions and better yields. A detailed knowledge of the reaction scheme can often lead to betterment of the production process resulting in appreciable profits (Schack, *et al*, 1989).Synthesis of methanol is one such industrially important process that deserves attention. Methanol is one of the prime candidates for providing liquid fuel and a feedstock in chemical industries from natural gas.

Methanol can be made from a wide array of feedstocks, making it one of the most flexible chemical commodities and energy sources available today. This includes biomass, coal, natural gas, agricultural and timber waste, solid municipal waste, and a number of other feedstocks. Natural gas can be converted directly or indirectly to methanol. While natural gas is most often used in the global economy, methanol has the distinct advantage of 'polygeneration' - whereby methanol can be made from any resource that can be converted first into synthesis gas.

Methanol synthesis occurs via three reactions namely: hydrogenation of carbon monoxide, hydrogenation of carbon dioxide and water gas shift reactions. There had been a number of studies on methanol synthesis kinetics involving Cu-based catalysts for decades but controversies still remain regarding the reaction mechanism. One of the major concerns had been the role of CO_2 in methanol production. Initial kinetic studies on methanol synthesis by Natta, (1955) and Leonov, *et al.* (1973) considered only CO and H₂ as the main reactants and neglected any contribution from CO_2 (Bussche and Froment, 1996). Since then a number of kinetic models had been proposed in the literature and kinetic parameters had been evaluated, each based on a different set of assumptions regarding the reaction pathway and reaction conditions. Leonov*et al.* (1973)were the first to present a kinetic model for methanol synthesis over a $Cu/ZnO/Al_2O_3$ catalyst. However, they did not consider the effect of CO_2 in the feed. Later Klier*et al.* (1982) and Villa *et al.* (1985) proposed models which included the CO_2 terms but did not treat CO_2 as the main reactant. The model proposed by Villa *et al.* (1985) was developed based on the scheme that methanol was produced from only CO and a CO_2 adsorption term was included since CO_2 adsorbs strongly at high concentrations.

Takagawa and Ohsugi (1987) derived empirical rate expressions for the three methanol synthesis reactions under a wide range of experimental conditions. Graafet al. (1990) derived a kinetic model taking into account both CO and CO₂ hydrogenation and the water

gas shift reaction. They derived 48 reaction schemes by assuming different elementary steps to be rate limiting and then selected the best possible kinetic model using statistical discrimination. McNeil *et al* (1989) developed a carbon dioxide hydrogenation rate expression based on mechanistic information reported in literature in contrast to the earlier models based on empirical expressions. Skrzypek, *et al*(1991) derived their kinetic model based on the reactions: $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$ and $CO + H_2O \rightleftharpoons CO_2 + H_2$ and they have shown through their experiments that methanol synthesis prefers CO_2 in spite of CO as a carbon source.

A kinetic model for methanol synthesis was presented by Askgaard, *et al.* (1995) and the kinetic parameters were evaluated using gas phase thermodynamics and surface science studies. They found that the calculated rates when extrapolated to actual working conditions compared well with the measured rates. Froment and Buschhe (1996) conducted experiments and developed a steady state kinetic model based on a detailed reaction scheme assuming CO_2 to be the main source of carbon in methanol. Their model described the effects of temperature, pressure, and gas phase composition on methanol production rates even beyond their own experimental conditions. In another kinetic study by Kubota, *et al.* (2001), kinetic equations for methanol synthesis were developed assuming CO_2 hydrogenation to be the predominant reaction. The authors found their equations to be reasonably accurate since the yield values obtained from their equations and those from experiments conducted in a test plant compared well.

Setinc and Levec (2001) proposed a kinetic model for liquid phase methanol synthesis and showed that methanol production is proportional to the CO₂ concentration and not to the CO concentration. Rozovskii and Lin (2003)proposed two reaction schemes to build the theoretical kinetic models which could fit the experimental data well. They used two different gas phase compositions, one enriched with CO₂ and the other with CO to test the applicability of their models. They found that both the schemes proved to be effective when dealing with a CO₂ enriched mixture, but, the kinetic model based on scheme I did not match with the experimental data well when using a CO enriched mixture. Lim *et al.* (2009) developed a comprehensive kinetic model consisting of 48 reaction rates based on different possible rate determining steps. They showed through parameter estimation that, among the 48 rates, surface reaction of a methoxy species was the rate determining step for CO hydrogenation, hydrogenation of a formate intermediate was the rate determining step for the water-gas shift reaction. However they used a Cu/ZnO/Al₂O₃/Zr₂O₃ catalyst.Grabow and Mavrikakis (2011) had developed a comprehensive micro kinetic model using density functional theory calculations to deal with the uncertainties regarding the reaction mechanism and nature of active sites.Table 1, summarizes the various kinetic models, proposed in the literature along with the experimental reaction conditions and authors.

Operating Condition	Kinetic Model	Author, Year
500-550K; 20-30MPa	$r_{CH_{3}OH} = \frac{f_{co}f_{H_{2}}^{2} - f_{CH_{3}OH}/K_{2}^{!}}{\left(A + Bf_{CO} + Cf_{H_{2}} + Df_{CH_{3}OH}\right)^{3}}$	Natta, (1955)
N/A	$r_{CH_{3}OH} = \frac{Ae^{\frac{-E}{RT}\left[P_{CO}^{m}P_{H_{2}}^{n}\left(1-P_{CH_{3}OH}/P_{CO}P_{H_{2}}^{2}K_{2}^{\perp}\right)\right]}}{1+De^{\frac{-E}{RT}}P_{CO_{2}}/P_{H_{2}}}$	Bakemeier, <i>etal.</i> , (1970)
493-533K; 40-55atm	$r_{CH_3OH} = k \left(\frac{P_{CO}^{0.5} P_{H_2}}{P_{CH_3OH}^{0.66}} - \frac{P_{CH_3OH}^{0.34}}{P_{CO}^{0.5} P_{H_2} K_2^*} \right)$	Leonov, <i>et al.</i> , (1973)
498-523K; 75 atm	$r_{CH_{3}OH} = const. \frac{K_{redox}^{3} (P_{CO_{2}}/P_{CO})^{3} (P_{CO}P_{H_{2}}^{2} - P_{CH_{3}OH}/K_{2}^{*})}{\left[1 + K_{redox} (P_{CO_{2}}/P_{CO})\right]^{3} (F + K_{CO_{2}}P_{CO_{2}})^{n}} + K^{1} (P_{CO_{2}} - (1/K_{1}^{*})) (P_{CH_{3}OH}P_{H_{2}O}/P_{H_{3}}^{3})$	Klier, <i>et al.</i> , (1982)
N/A	$r_{CH_3OH} = \frac{f_{cof_{H_2}}^2 - f_{CH_3OH}/K_2^*}{\left(A + Bf_{co} + Cf_{H_2} + Gf_{co_2}\right)^3}, r_{RWGS} = \frac{f_{co_2}f_{H_2} - f_{cof_{H_2}}OK_3^*}{M^2}$	Villa, et al., (1985)
483-518K; 15-50 bar	$r_{CH_{3}OH} = \frac{f_{CO}f_{H_{2}}^{2} - f_{CH_{3}OH}/K_{2}^{*}}{\left(A + Bf_{CO} + Cf_{H_{2}} + Gf_{CO_{2}}\right)^{3}}, r_{RWGS}$ $= \frac{f_{CO_{2}}f_{H_{2}} - f_{CO}f_{H_{2}O}K_{3}^{*}}{M^{2}}$ $r_{CH_{3}OH}^{*} = \frac{k_{3}K_{CO_{2}}\left(C_{CO_{2}}C_{H_{2}}^{3/2} - C_{CH_{3}OH}C_{H_{2}O}/C_{H_{2}}^{3/2}K_{eq_{3}}\right)}{\left(1 + K_{CO}C_{CO} + K_{CO_{2}}C_{CO_{2}}\right)\left(C_{H_{2}}^{1/2} + \left(K_{H_{2}O}/K_{H_{2}}^{1/2}\right)\right)C_{H_{2}O}}$	Graaf, <i>et al.</i> , (1988)

483-513K;	$\frac{K_{f}^{!}K_{CH_{3}OH}K_{H_{2}}^{2}K_{H_{2}O}^{2}K_{CO}(P_{CO}P_{H_{2}}^{2}-P_{CH_{3}OH}/K_{eq})}{K_{eq}}$	McNeil, <i>et</i>
2.89-4.38MPa	$V = \frac{\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} K_{CH_3OH} K_{H_2}^{3/2} K_{H_2O} K_{CO} P_{CO} P_{H_2}^{3/2} + K_{CO_2} P_{CO_2} + K_{H_2}^{1} P_{H_2}}{K_{CH_3OH} K_{H_2}^{1/2} K_{H_2O} K_{CO} P_{CO} P_{H_2}^{3/2} + K_{CO_2} P_{CO_2} + K_{H_2}^{1} P_{H_2}}$	<i>al.</i> ,(1989)
	$K_{f}^{\parallel}K_{H_{2}}K_{H_{2}O}K_{CO_{2}}K_{CH_{3}OH}[P_{CO_{2}}P_{H_{2}} - P_{CH_{3}OH}P_{H_{2}O}/(K_{eq}^{\parallel}P_{H_{2}}^{2})]$	
	$+\frac{1}{K_{\mu_{2}}^{1/2}K_{\mu_{2}}^{1/2}K_{CO_{2}}K_{CH_{2}OH}P_{CO_{2}}P_{\mu_{2}}^{1/2}+K_{CO_{2}}^{\parallel}P_{CO_{2}}^{2}+K_{H_{2}O}P_{H_{2}O}^{3}}$	
Operating	Kinetic Model	Author, Year
Condition		
460-550K;	r ₁	Skrzypek et al.,
30-90 bar	$= k_1 K_{H_2}^2 K_{CO_2} \left[\frac{P_{H_2}^2 P_{CO_2} - (P_{CH_3OH} P_{H_2O} / K_{eq_1} P_{H_2})}{2} \right]$	(1991)
	$\left[\left(1 + K_{H_2} P_{H_2} + K_{CO_2} P_{CO_2} + K_{CH_3OH} P_{CH_3OH} + K_{CO} P_{CO} \right)^3 \right]$	
	r_2	
	$= k_2 K_{H_2} K_{CO_2} \left[\frac{P_{H_2} P_{CO_2} - (P_{CO} P_{H_2O} / K_{eq_1} P_{H_2O})}{\frac{P_{H_2} P_{CO_2} - (P_{CO} P_{H_2O} / K_{eq_1} P_{H_2O})} \right]$	
	$\left[\left(1 + K_{H_2} P_{H_2} + K_{CO_2} P_{CO_2} + K_{CH_3OH} P_{CH_3OH} + K_{CO} P_{CO} \right)^2 \right]$	
483-563K; 1-4 bar	$r_{+} = k_{-11} K_{5}^{-3/2} K_{8}^{-1} K_{9} K_{10} K_{11} \left(\frac{P_{H_{2}}}{P_{0}}\right)^{3/2} \left(\frac{P_{CO_{2}}}{P_{0}}\right) \theta_{*}^{2}$	Askgaard <i>et al.</i> , (1995)
	$r_{-} = k_{-11} K_{5}^{-3/2} K_{8}^{-1} K_{9} K_{10} K_{11} \frac{1}{\kappa} \frac{P_{CH_{3}OH} P_{H_{2}O}}{\frac{3}{4} \frac{1}{1}} \theta_{*}^{2}$	
452 5528	$R_{G} P_{H_{2}}^{/2} P_{0}^{/2}$	
453-553K; 15-51 bar	$\begin{bmatrix} r_{CH_{3}OH} \\ \vdots \\ $	Bussche and Froment
	$= \frac{\kappa_{5a}\kappa_{2}\kappa_{3}\kappa_{4}\kappa_{H_{2}}\rho_{CO_{2}}\rho_{H_{2}}\left[1 - \left(\frac{1}{K^{*}}\right)\left(\frac{1}{F_{20}}\rho_{CH_{3}0H}/\rho_{H_{2}}\rho_{CO_{2}}\right)\right]}{\left[1 + \left(\frac{1}{K^{*}}\right)\left(\frac{1}{F_{20}}\right)\left(\frac{1}{F_$	(1996)
	$\begin{bmatrix} \mathbf{I} + (K_{H_20}/K_8K_9K_{H_2})(P_{H_20}/P_{H_2}) + \sqrt{K_{H_2}P_{H_2}} + K_{H_20}P_{H_20} \end{bmatrix}$ <i>Proces</i>	
	$= \frac{1}{\left[1 + \left(K_{H_{20}}/K_{8}K_{9}K_{H_{2}}\right)\left(P_{H_{20}}/P_{H_{2}}\right) + \sqrt{K_{H_{2}}P_{H_{2}}} + K_{H_{20}}P_{H_{20}}\right]}$	
473-548K; 4.9MPa	$R_{M} = \frac{K_{M} [P_{CO_{2}} P_{H_{2}} - P_{CH_{3}OH} P_{H_{2}O} / K_{M} P_{H_{2}}^{2}]}{r^{2}}$	Kubota, <i>et al.</i> , (2001)
	$\begin{bmatrix} 1 + K_{CO_2}P_{CO_2} + K_{H_2O}P_{H_2O} \end{bmatrix}^2$	
	$R_{R} = \frac{K_{R}[P_{CO_{2}} - P_{CO}P_{H_{2}O}/K_{R}P_{H_{2}}]}{1 + K_{CO}P_{CO_{2}} + K_{H_{2}O}P_{H_{2}O}}$	
473-513K;	1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 +	Setinc and Levec,
34-41 bar	$r_{Me} = A_{Me} e^{\left(\frac{mu}{RT}\right)} \frac{\cos_2\left(\frac{mu}{RT}\right) - \frac{\cos_2\left(\frac{mu}{RT}\right)}{\left(1 + A_{We} e^{\left(\frac{E_W}{RT}\right)} C_{We}\right)^2}$	(2001)
	$(-F_{H,0}) = \begin{pmatrix} C & -C \\ C & -C \end{pmatrix}$	
	$r_{H_20} = A_{H_20} e^{\left(\frac{-H_20}{RT}\right)} \frac{(C_{H_2} - C_{H_{2,eq}})}{(L_{H_2} - C_{H_{2,eq}})}$	
5107	$\left(1 + A_W e^{(RT)} C_{H_2 0}\right)$	D 1" 11'
513K; 5.2MPa	$k_{3}P_{H_{2}}\left(1-\frac{P_{M}P_{H_{2}O}}{K_{DOD}P_{3}^{3}P_{CO}}\right)$	(2003)
	$r = \frac{(1 - F(M) - H_2 - CO_2)}{1 + K_{-2}P_{H_2O} + (K_{-2}P_{H_2O}/K_1P_{CO_2})}$	
523-553K;	$k_{A}K_{CO}K_{H_{2}}^{2}K_{CH_{3}OH}(P_{CO}P_{H_{2}}^{2}-P_{CH_{3}OH}/K_{PA})$	Lim, <i>et al.</i> ,
ЗМРа	$ (1 + K_{C0}P_{C0}) (1 + K_{H_2}^{0.5}P_{H_2}^{0.5} + K_{H_20}P_{H_20}) + (1 + K_{C0_2}P_{C0_2}) $	(2009)
	$r_{B} = \frac{k_{B}K_{CO_{2}}K_{H_{2}}^{0.5}(P_{CO_{2}}P_{H_{2}} - P_{CO}P_{H_{2}O}/K_{PB})/P_{H_{2}O}}{(4 + K_{2} + K_{$	
	$\frac{(1 + K_{CO}P_{CO})(1 + K_{H_2}^{W_2}P_{H_2}^{W_2} + K_{H_2O}P_{H_2O}) + (1 + K_{CO_2}P_{CO_2})}{k_c K_{co} K_W K_{cu} ou (P_{co} P_{H_2}^3 - P_{cu} ou P_{H_2O})/P_{H_2O}}$	
	$r_{c} = \frac{1}{(1 + K_{c0}P_{c0})(1 + K_{H_{2}}^{0.5}P_{H_{2}}^{0.5} + K_{H_{2}0}P_{H_{2}0}) + (1 + K_{c0}P_{c0})}{(1 + K_{H_{2}}^{0.5}P_{H_{2}}^{0.5} + K_{H_{2}0}P_{H_{2}0}) + (1 + K_{c0}P_{c0})}$	

Table 1: Summary of Kinetic Models Proposed in Literature for Methanol Synthesis

www.ijird.com

2. Methodology

Kinetic models proposed by researchers were selected based on their efficacy in describing methanol synthesis kinetics. The validity and effectiveness of the models were tested by determining how well they fit the experimental data compared to other proposed models. Two models were evaluated. The first (Graaf's) Model based on the reaction scheme which considers CO to be the primary reactant in methanol synthesis. The second (Kubota's) Model based on the fact that methanol was formed from only carbon dioxide and not carbon monoxide. An extensive set of rate versus partial pressure data for a reaction carried out using Cu/ZnO/Cr₂O₃ catalyst at relevant temperature and pressure was used for testing the goodness of fit of these models. In this study, experimental data reported by Calverley (1989) were used.

Multiple non-linear regression techniques in Polymath were used to fit the models to the experimental data in order to determine the kinetic parameters and the goodness of fit of the models. The goodness of fit of the kinetic models was then evaluated by comparing the rates obtained from the model with those reported by Calverley. The statistical information and plots reported in the Polymath results wereused to judge the quality of the developed model. While testing and comparing the models, the following points (sourced from Polymath Help Documentation) were used as guidelines in determining the goodness of fit of the developed kinetic model:

- R^2 and R^2_{adj} : R^2 and R^2_{adj} are the correlation coefficients which determine if the model represents the experimental data precisely or not. A correlation coefficient close to unity indicates an adequate regression model. They can also be used for comparing various models representing the same dependent variable.
- Variance and Root-mean-square-deviation (Rmsd): A small Variance (< 0.01) and Rmsd usually indicate a good model. These parameters can be used for comparing various models representing the same dependent variable.
- Graph: If a plot of the calculated and measured values of the dependent variable shows different trends, it signifies an inadequate model.
- Residual plot: The residual plot showing the difference between the calculated and experimental values of the dependent variable as function of the experimental values were used as a measure of goodness of fit of the model. A randomly distributed residual plot is an indication of goodness of fit of a model. If the residuals show a clear trend, it is indicative of an inappropriate model.
- Confidence Intervals: The 95% confidence intervals should be smaller and should have the same sign as the respective parameter values for a statistically good model.

The statistical results from Polymath form the basis for comparison of the kinetic models. Four main comparisons were used in this study. They include:

- Graaf's model vs. Kubota's model for low CO₂ partial pressure data
- Graaf's model vs. Kubota's model for high CO₂ partial pressure data
- Combined model vs. Graaf's model for entire range of data
- Combined model vs. Kubota's model for entire range of data

This comparative study was used to select the model that fits the experimental data best and describes methanol synthesis kinetics most appropriately.

3. Results and Discussion

A wide range of data including both low and high CO_2 inlet partial pressures was chosen for regression so that the applicability of the kinetic models could be validated properly. The statistical features obtained by fitting Graaf's model to low inlet CO_2 partial pressure data and Kubota's model to high inlet CO_2 partial pressure data are presented in Figures 1a and 2a respectively. The values of the methanol production rate obtained experimentally were found to be very close using the two models. Figure 1a shows that the model proposed by Graaf which was based on CO being the primary reactant, fit to the data well where CO_2 feed partial pressures was very low. The experimental and estimated rates matched each other quite closely. Furthermore, the residual plots which show the deviation between the experimental values and the corresponding values calculated from the models were examined. For a good fit, the residuals should be randomly distributed and not follow a clear trend around the line of err = 0. The residual plots generated as a result of fitting Graaf's and Kubota's models to the kinetic data are shown in Figures 1b and 2b respectively. Figure 1b shows scattered residuals thereby confirming the hypothesis that CO and not CO_2 is the primary reactant for methanol synthesis. Figure 2a shows a comparison of experimental and calculated values of rate for Kubota's model at high CO_2 partial pressure data.

Figure 1b: Residual Plot Generated by Fitting Graaf's Model to Low CO₂ Inlet Partial Pressure

For CO_2 enriched feed, Kubota's model that was derived assuming CO_2 to be the main reactant, provided an effective kinetic description of the methanol synthesis process. As shown in Figure 2a, the rates estimated from Kubota's model are in good agreement with the experimental rate values. Figure 2b shows scattered residuals thereby confirming the hypothesis that CO_2 and not CO is the primary reactant for methanol synthesis.

Figure 2a: Experimental and Predicted (by Kubota's model) Methanol Production Rate

Figure 2b: Residual Plot Generated by Fitting Kubota's Model to High CO₂ Inlet Partial Pressures

As shown in the Figures 1b and 2b, the residuals are distributed in a random manner around the line of err = 0 and did not follow a clear trend indicating the goodness of fit of the two models. In order to compare the effectiveness of each model for the given range of data (i.e., interchanging the data), the two models were fitted to low and high inlet CO₂ partial pressure data and the residuals are presented in Figure 3 for Kubota's model at high inlet pressure and Figure 4for Graaf's model at low inlet pressure.

1.90E-2	0					
2.80E-2						
3.70E-2						
4.60E-2			Ŭ			
5.50E-2			0			
6.40E-2				0		
7.30E-2				c)	
8.20E-2						
0 rex	p -rcalc					

Figure 3: Residual plot generated by fitting Kubota's model to low CO2 inlet partial pressure

Figure 4: Residual Plot Generated by Fitting Graaf's Modelto High CO₂ Inlet Partial Pressure

Figure 5 (Line column chart) shows a comparison of experimental values of rate and those calculated by Graaf's model and Kubota's model when CO_2 partial pressures were negligibly small in the feed. Line column charts have been used to represent the data since it is easier to read the data with these plots. The trend in Figure 5 shows that Graaf's model fits better to the experimental data than Kubota's model when CO_2 is in negligible amounts in the feed indicating that CO is the primary reactant in methanol synthesis than CO_2 when the partial pressure of CO_2 in the feed is low. Thus, the rates calculated by Graaf's model followed the experimental data points very closely leaving the rates calculated by Kubota's model far behind.

Figure 5: Experimental and Predicted Methanol Production Rate at Low CO₂ Inlet Partial Pressure.

Figure 6: Experimental and Predicted Methanol Production Rate at High CO₂ Inlet Partial Pressure.

Figure 6 shows a comparison of experimental rate values and rate values estimated from Graaf's and Kubota's models when the CO_2 partial pressures were high in the feed. It can be observed that in this case, Kubota's model provides a better kinetic description of the process. Kubota's model that was based on treating CO_2 as the primary reactant does not match the low CO_2 content data at all (see Figure 5)

However, when CO_2 content in the feed is high, both Graaf's and Kubota's models fit to the experimental data satisfactorily. The rates calculated by Graaf also followed the experimental data points closely, though not as close as the rates estimated by Kubota's model. This feature was also observed by Kubota in his study. The Kubota's model fits to the experimental results better when CO_2 amounts were higher in the feed. In order to observe the combined effect of CO and CO_2 in methanol synthesis irrespective of CO_2 partial pressure in the feed, the authors proposed a model (combined model) and investigated it using the regression software. The combined model is simply the combined rate expression obtained by summing Graaf's and Kubota's Equations (see table 1) to get equation 1

$$r = \frac{k_{M} \{ P_{CO_{2}} P_{H_{2}} - P_{CH_{3}OH} P_{H_{2}O} / (K_{M} P_{H_{2}}^{2}) \}}{\{ 1 + K_{CO_{2}} P_{CO_{2}} + K_{H_{2}O} P_{H_{2}O} \}^{2}} + \frac{k K_{CO} \Big[f_{CO} f_{H_{2}}^{3/2} - f_{CH_{3}OH} / (f_{H_{2}}^{1/2} K_{eq}) \Big]}{(1 + K_{CO} f_{CO} + K_{CO_{2}} f_{CO_{2}}) \Big[f_{H_{2}}^{1/2} + (K_{H_{2}O} / K_{H_{2}}^{1/2}) f_{H_{2}O} \Big]} \dots \dots \dots 1$$

The parameters in equation 1 were fitted to the entire range of experimental data including low as well as high CO_2 inlet partial pressures. Figure 7a shows a comparison of experimental values of rate and rates estimated from the combined model. The graph shows a good agreement between the experimental and predicted data and the residuals plot (Figure 7b) shows no trend indicating that the model fits the experimental data.

Figure 7a: Experimental and Predicted (by Combine d's model) Methanol Production Rate

Figure 7b: Residual Plot Generated by Fitting Combined Model to the Entire CO₂ Inlet Partial Pressure

Four main comparisons were carried out in this study. The data set used for fitting to the combined model was also fitted to Graaf's and Kubota's model separately. The comparison of the experimental rate values and those estimated from the combined kinetic rate expression as well as from Graaf's and Kubota's models is shown in Figure 8.

Figure 8: Comparison of Experimental Methanol Production Rate and those Estimated from the Combine d's, Graaf's and Kubota's models

Having seen how the results of each model fitted with the experimental data, the authors intend to present how the kinetic parameters were evaluated along with the methanol production rates presented earlier with the help of Polymath.

Kinetic Parameter Evaluation: The statistical features obtained by fitting Graaf's model to low inlet CO₂ partial pressure data and Kubota's model to high inlet CO₂ partial pressure data are summarized in Table 3.

MODEL	PARAMETERS							
	\mathbf{R}^2	R ² adj	Variance	Rmsd	Residuals	95% Confidence Intervals		
Graaf	0.79	0.72	1.5*10 ⁻⁴	0.00286	scattered	positive, smaller		
Kubota	0.59	0.55	5.3*10 ⁻⁵	0.00187	scattered	positive, smaller		
Table 3: Polymath Results of Fitting Graaf's and Kubota's Model								

un Kesuus of Fitting Graaf's ana Kubota's Model

The statistical features listed in Table 4 are used as indicators of the quality of the regression models. They are explained as follows:

- R^2 and R^2 adj which are close to unity suggest that the models satisfactorily represent the kinetic data
- Variance and Rmsd which are sufficiently small indicate that both the models represent the data accurately
- Residuals as shown in Figure 1b and 2b which are randomly distributed, did not follow a particular trend signifying the models are statistically appropriate
- Confidence intervals are small but positive for both the models. The models are statistically stable since the confidence intervals are much smaller than the respective absolute values of the parameters.

The equilibrium constants for CO and CO₂ hydrogenation reactions at the reaction temperature were calculated by Rahman using the THERMOSOLVER software (Rahman, 2012). They were found to be $3.88*10^{-4}$ atm.h⁻¹ for CO hydrogenation and $7.7*10^{-5}$ atm.h⁻¹ for CO₂ hydrogenation reaction. The parameter values obtained from the fitting procedure are shown in Table 4.

Model						
Graaf						
Parameter	Value					
$k ((atm.h)^{-1})$	0.0111					
KCO (atm ⁻¹)	0.0086					
$\text{KCO}_2 (\text{atm}^{-1})$	0.0533					
Kwh	7.449					
	Kubota					
Parameter	Value					
$\text{KCO}_2 ((\text{atm})^{-1})$	0.036					
$KH_2O(atm)^{-1}$	1.727					

 Table 4: Kinetic Parameters for Graaf's and Kubota's Model

NOTE: $Kwh = KH_2O/KH_2$

The results of fitting the four comparisons are tabulated in Table 6. The statistical parameters listed in Table 6 as well as the trend in Figure 9 indicate that the combined model is the best fit model.

Low CO ₂ Partial Pressure										
Parameter						95 %				
Model	\mathbf{R}^2	R ² adj	Variance	Rmsd	Residuals	Confidence				
						Intervals				
Graaf	0.83	0.75	$1.9*10^{-4}$	0.00286	scattered	positive,				
						smaller				
Kubota	0.106	-0.67	$8.5*10^{-4}$	0.0071	follow a trend	smaller				
	High CO ₂ Partial Pressure									
Parameter			8			95%				
	\mathbf{P}^2	P ² odi	Varianco	Dmad	Desiduals	Confidence				
Model	N	K auj	variance	Kilisu	Residuals	Intervals				
Graaf	0.52	0.50	$1.5*10^{-4}$	0.00274	scattered	positive,				
						smaller				
Kubota	0.59	0.55	$5.3*10^{-5}$	0.00187	scattered	positive, smaller				
		l	Entire C	O. Partial Pro	essure Range	sinanci				
Parameter					cisure Runge	95%				
	\mathbf{R}^2	R ² adj	Variance	Rmsd	Residuals	Confidence				
Model		Ū				Intervals				
Combined	0.87	0.82	1.5*10 ⁻⁴	0.0022	Scattered	Positive,				
Combined	0.07	0.02	1.5 10	0.0022	Seattered	Smaller				
Kubota	0.61	0.54	$2.6*10^{-4}$	0.0033	scattered	Positive,				
						Smaller				
Entire CO ₂ Partial Pressure Range										
Parameter	\mathbb{R}^2	R ² adj	Variance	Rmsd	Residuals	95% Confidence				
Model						Intervals				
~		0.00-00-	4			Positive.				
Combined	0.8769	0.82587	8.58*10**	0.005038	scattered	Smaller				
Croof	0.6914	0.2071	9 125*10 ⁻⁴	0.002814	saattarad	Positive,				
Graai	0.0814	0.2971	8.135*10	0.003814	scattered	Smaller				
Table 7. Vingtic Parameter obtained from fitting the Combined Model										

 Table 7: Kinetic Parameter obtained from fitting the Combined Model

Based on the results (Table 7), it can be concluded that the combined rate expression which includes both CO and CO_2 hydrogenation rate terms describes methanol synthesis kinetics in the best possible manner. It was also attempted to fit the combined model separately to low and high inlet CO_2 partial pressure data, however, there were not enough data points in the two ranges to achieve proper regression results.

4. Conclusion

The work involved evaluation of various kinetic models proposed in literature for methanol synthesis and selecting the most appropriate model using regression techniques. Polymath software was the non-linear regression tool used in fitting different models to published experimental data collected at a temperature of 558 K and pressures of 50 and 100 atm over a Cu/ZnO/Cr₂O₃ catalyst. The result of fitting reveals that the combined model including both CO and CO₂ hydrogenation rate terms is the best fit model. Sucha modified kinetic model that can describe methanol synthesis kinetics satisfactorily should prove to be very useful in kinetic studies of methanol leading to a better understanding of the process for improvements in yields and profits.

5. References

- i. Askgaard, T. S., Norskov, J. K., Ovesen, C V and Stoltze P.(1995). A Kinetic Model of methanol synthesis, Journal of Catalysis 156, 229-242.
- ii. Bakemeier, H., Laurer, P.R. and Schroder, W. (1970). Kinetic Studies of Methanol Synthesis Chem. Eng. Prog. Symp. Ser. 66 (98), 1
- iii. Bussche, K. M. V. and Froment, G. F.(1996). A Steady-State Kinetic Model for Methanol Synthesis and the Water Gas Shift Reaction on a Commercial Cu/ZnO/Al₂O₃ Catalyst. Journal of Catalysis 161, 1-10
- iv. Calverley, E.M. (1989). A Study of the Mechanism and Kinetics of the Synthesis of Methanol and Higher Alcohols over Alkali Promoted Copper/Zinc Oxide/Chromia Catalysts. Open Access Dissertation and Theses Paper 1913.
- v. Froment, G.F, and Bischoff, K.B, (1996). Chemical Reactor Analysis and Design. 2nd Ed., New York: Wiley.
- vi. Graaf, G. H., Scholtens, H., Stamhuis, E. J and Beenackers, A. A. C. (1990). Intra-Particle Diffusion Limitation in Low Pressure Methanol Synthesis. Chem. Eng. Sci. 45 (4), 773-783
- vii. Graaf, G. H, Stamhuis, E. J. and Beenackers, A. A. C. (1988). Kinetics of Low Pressure Methanol Synthesis. Chem. Eng. Sci. 43 (12), 3185-3195
- viii. Grabow, I.C and Mavrikakis, J. P. (2011). Mechanism of Methanol Synthesis on Cu through CO₂ and CO hydrogenation. ACS Catal., 1, 365-384
- ix. Klier, K., Chatikavanij, V., Herman, R. G. and Simons, G. W. (1982) Catalytic Synthesis of Methanol from CO/H₂: IV Effects of Carbon dioxide. Journal of Catalysis, 74: 343-360
- x. Kubota, T., Hayakawa, I., Mabuse, H., Mori, K., Ushikoshi, K. Watanabe, T. and Saito, M. (2001). Kinetic Study of Methanol Synthesis from Carbon dioxide and Hydrogen. Appl. Organometal. Chem., 15, 121-126.
- xi. Leonov, V. E., Karavaev, M. M., Tsybina, E. N. and Petrischeva, G. S. (1973). Methanol synthesis kinetic. Kinetics Katal. 14: 848[in English].
- xii. Lim, H. W, Park, M, Kang, S, Chae, H., Bae, J. W. and Jun, K. (2009). Modeling of the Kinetics for Methanol Synthesis using Cu/ZnO/Al₂O₃/ZrO₃ Catalyst: Influence of Carbon Dioxide during Hydrogenation. Ind. Eng. Chem. Res. 48 (23), 10448-10455.
- xiii. McNeil, M. A., Schack, C. J., Rinker, R. G. (1989). Methanol Synthesis from Hydrogen, Carbon monoxide and Cabon dioxide over a CuO/ZnO/Al₂O₃ Catalyst II: Development of a Phenomenological Rate Expression. Applied Catalysis 50(1): 265-285
- xiv. Natta, G. (1955). Direct Catalytic Synthesis of Higher Alcohols from CO and H₂. Catalysis. (P. H. Emmett, Ed.) New York: Reinhold, pp. 131-114, 349.
- xv. Rozovskii, A. Y. and Lin, G. I. (2003). Fundamentals of Methanol Synthesis and Decomposition. Topics in Catalysis Vol. 22 pp.137-150.
- xvi. Schack, C. J., McNeil, M. A. and Rinker, R. G. (1989). Methanol Synthesis from Hydrogen, Carbon monoxide and Carbon dioxide over a CuO/ZnO/Al₂O₃ Catalyst I: Steady-state Kinetics Experiments. Applied Catalysis, 50(1):247-263.
- xvii. Setinc, M. and Levec, J. (2001). Dynamics of Mixed Slurry Reactor for the Three-Phase Methanol Synthesis. Chem. Eng. Sci. 56: 6081-6087
- xviii. Skryzpek, J., Lachowska, M. and Moroz, H. (1991) Kinetics of Methanol Synthesis over Commercial Copper/Zinc Oxide/Alumina Catalyst. Chem. Eng. Sci. 46(11):2809-2813.
- xix. Takagawa, M. and Ohsugi, M. (1987). Study on Reaction Rates for Methanol Synthesis from Carbon monoxide, Carbon dioxide and Hydrogen. Journal of Catalysis, 107: 161-172.
- xx. Villa, P., Forzatti, P., Buzzi-Ferraris, G., Garone, G. and Pasquon, I. (1985) Ind. Eng. Chem. Process Des. Dev. 24: 12