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1. Introduction 
Mond and Jaya Kumar (2) have introduced the notion of V-invexity for a vector function and discussed its application to a class of 

constrained multiobjective optimization problems. Bector (1) developed sufficient optimality condition and established duality results 

under V-invexity under differentiality assumptions.  

But no serious attempt made in utilizing the recent develop concept like Duality for multi objective fractional minimax programming 

problem. Hence in this paper an attempt is made to fill the gap by developing some theorems and methods to solve multi objective 

fractional minimax under vector η -convexity and there by derive duality results for certain generalized multi objective fractional 

programming problems.  

 

2. Definition 
The following some definitions are used for further discussion.  

 

2.1. Definition 

Let R
n
 denote the n-dimensional Euclidean space and R

n
 be its non-negative orthant.Let X0 ⊂  R

n
 and 
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for p = 1 and u)(x,ηu)(x,θu)(x,η i=  the above definition reduces to the usual definition of convexity.  

 

2.2. Definition 
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0 RX:

gi

fi
→

 is said to be Vector η – Pseudo convex if there exist function 
n

00
RXxX: →η and 
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2.3. Definition 

A vector function P
0 RX:
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fi
→

 is said to be 

Vector η -quasi convex if there exist functions { },0/RXxX:andRXxX:
00i

n

00

+→φ→η  

i = 1, 2, 3… p such that for each x, u ∈ X0 and for i = 1, 2, 3, …p  
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2.4. Definition 

A vector function P
0

i

i RX:
g

f
→

 is said to be Vector η- strictly pseudo convex if there exist function n

00
RXxX →=η  

and   

φi : X0 x X0→ R
+
 / {0}, i = 1, 2…, p such that for each x, u ∈ X0 ,  

X ≠ u, and for i = 1, 2, .., p, 
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2.5 Definition 

A programming problem (FP) will be called a vector Vector convex programming problem if each of the functions 

...p2,1,i,
g

f

i

i = 2,...m1,j,h and j = involved in it is a v-convex function.  

  

3. Formulations 

 

 3.1. Consider the Following Minimax Programming Problem 

 (FP) 









≤≤∈ (x)g

(x)f
minmax

i

i

pi1Xx 0

 

 subject tohj(x) < 0, j = 1, 2, …, m    --------- (1) 

where 
...m2,1,jR,X:handp...,2,1,iR,X:

g

f
0j0

i

i =→=→  are differentiable function and X0 ⊂  R
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 is open.  

 

3.2. The problem (FP) is Equivalent to the Following Problem (EP) Formulated as Follows 

 (EP) min q 

 p...,2,1,iq,
(x)g

(x)f

i

i =≤    ----------- (2) 

 hj (x) < 0 , j = 1, 2, …., m    ----------- (3) 

 x ∈ X0      ----------- (4) 

 

3.3. Dual Problem 

Consider the dual (FD) to the equivalent problem (EP) is stated as follows: 

(FD)  Maximize V 
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− i = 1,2, …., p    ---------- (6) 

µj hj (u) >0, j = 1, 2, 3,. ,m      --------- (7) 
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     --------- (8) 

 u ∈ X0 , µ∈ R
m

+ , v∈ R, λ∈ R
P

+, λ ≠0  ----------- (9)  
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4. Necessary and Sufficient Optimality Conditions 

 

4.1. Theorem (Necessary Optimality Condition) 

Let X
0∈ X0 be (FP) – optimal with the corresponding (FP) – Optimal value of q

0
 , let an appropriate constraint qualification hold for 

(EP). Then these exist λ0∈R, 
+
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Proof: -It follows directly by writing the necessary optimality condition to the problem (EP) 0
iλ ∈ +

pR , µ0
j ∈ +

mR such that the 

following conditions hold.  
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We observed that the conditions 10 to 15 hold. 

Which completed proof of the theorem. 

We now establish sufficient optimality condition under vector η – pseudo convexity.  

 

4.2. Theorem (Sufficient Optimality Condition) 

 Let (x
0
, q

0
, λ0

, µ0
) with x

0∈ X0 , q
0∈ R, λ0∈ +

pR  and µ0∈ +
mR  satisfy relations 3.10 to 3.15 at x

0
,  

let  
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 be vector η quasi convex with respect of η.Then x
0
 is (FP) – optimal with the corresponding 

optimal objective value equal to q
0
.  
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Proof: -Let S and T denote the set of feasible solutions of (FP) and (EP) respectively. 

 Let x ∈ S be arbitrary. From (3) and (12) we have  

 µj
0
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0 
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) for j = 1, 2, …, m   --------(16) 
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 (21) together with (11) gives  
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Hence (22) give that for all (x, q)∈ T 
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Hence the proof. 

 

5. Duality Theorems 

 

5.1. Weak Duality Theorem 

Let (x, q) ∈T and (u, v, λ, µ) ∈ w.Let w denote the set of all feasible solutions of (FD).  Let 
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 )(xhµu)(x,φ(x)hµu)(x,φ jj

m

1j
jjj

m

1j
j ∑≤∑

==

 --------- (25) 

 (25) along with (24) yields  

  0u)(x,η(u)hjµ
m

1j
j ≤∑ ∇

=

  --------- (26) 

 (25) and (26) yield  

  0u)(x,η
(u)gi

fi(u)
λ

p

1j
j ≥








∇∑

=

  ---------- (27) 

 (27) along with the fact that the vector function 














p

p
p

1

1
1

g

f
λ,...

g

f
λ  is vector η -pseudo convex gives that there exists 

functionsθi : X0 x X0→ R
+
 / { 0 }, i = 1, 2, …, p such that  









∑≥








∑

== (u)g

(u)f
λu)(x,θ

(x)g

(x)f
λu)(x,θ

i

i
i

p

1i
j

i

i
i

p

1i
j

 ------------ (28) 

 (28) together with (2) and (6) gives  

i

p

1i
ii

p

1i
i λu)(x,θVλu)(x,θq ∑≥∑

==

   ---------- (29) 

 for all (EP) – feasible and (FD) – feasible solutions.  

 But ,0i)u,x(
p

1j

i
>λθ∑

=

therefore, for all (EP)- feasible  
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This proves the theorem. 

 

5.2. Strong Duality Theorem 

Let )EP(beT)q,x( ∈  - optimal at which an appropriate constraint qualification holds.  

Then there exist λ  and µ  such that ),,q,x( µλ is (FD) – feasible and the corresponding objective values of (EP) and (FD) are 

equal.If also, the hypothesis of theorem 5.1 hold,  
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Proof: - Since (x
0
, q

0
) is (EP) – optimal, therefore,  

there exists (λ*
 , µ*

) such that (x
0
, q

0
, λ0

, µ0
) is (FD) – optimal. 

 Also for j = 1, 2, …m, µj
0
 hj (x

0
) < 0 and  µj

0
 hj (u)>0, 

 therefore, µj
0
 hj (x

0
) < 0 <µj

0
 hj(u) for j = 1, 2, …m. 
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Hence proved. 
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