ISSN 2278-0211 (Online)

Extended Pair of Vague Filters in Residuated Lattices

K. Reena
Research Scholar, Department of Mathematics, Nirmala College for Women, Coimbatore, India
I. Arockiarani
Associate Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, India

Abstract

: The focus of this paper is to develop the theory of vague filters on residuated lattices. Characterizations of vague filters in residuated lattice are established. We discuss some properties of vague filters in terms of its level subsets. Also the notion of extended pair of vague filter is introduced and characterize their properties.

Keywords: vague filter, extended pair of vague filter, distributive lattice.

1. Introduction

The notion of residuated lattices is initiated in order to provide a reliable logical foundation for uncertain information processing theory and establish a logical system with truth value in a relatively general lattice. The concept of fuzzy set was introduced by Zadeh (1965) [19]. Since then this idea has been applied to other algebraic structures. Since the fuzzy set is single function, it cannot express the evidence of supporting and opposing. Hence the concept of vague set [6] is introduced in 1993 by W.L.Gau and Buehrer. D.J. In a vague set A , there are two membership functions: a truth membership fucntion t_{A} and a false membership function f_{A}, where t_{A} and f_{A} are lower bound of the grade of membership respectively and $t_{A}(\mathrm{x})+f_{A}(\mathrm{x}) \leq 1$. Thus the grade of membership in a vague set A is a subinterval $\left[t_{A}(\mathrm{x}), 1-f_{A}(\mathrm{x})\right]$ of $[0,1]$. Vague sets is an extension of fuzzy sets. The idea of vague sets is that the membership of every elements which can be divided into two aspects including supporting and opposing. With the development of vague set theory, some structure of algebras corresponding to vague set have been studied. R.Biswas [3] initiated the study of vague algebras by studying vague groups. T.Eswarlal [5] study the vague ideals and normal vague ideals in semirings. H.Hkam, etc [13] study the vague relations and its properties. Quotient algebras are basic tool for exploring the structures of algebras. There are close correlations among filters, congruences and quotient algebras. In this paper, we introduce the concept of vague filters and we discuss some properties of Vague filters in terms of its level subsets. Also by introducing the notion of extended vague filters, it is proved that the set of all vague filters forms a bounded distributive lattice.

2. Preliminaries

2.1. Definition 2.1: [17]

A residuated lattice is an algebraic structure $\mathrm{L}=(\mathrm{L}, \vee, \wedge, *, \rightarrow, 0,1)$ satisfying the following axioms:

1. $(\mathrm{L}, \vee, \wedge, 0,1)$ is a bounded lattice
2. $(\mathrm{L}, *, 1)$ is a commutative monoid.
3. $(*, 1)$ is an adjoint pair, i.e., for any $x, y, z, w \in L$,
i. if $x \leq y$ and $z \leq w$, then $x * z \leq y * w$.
ii. if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \rightarrow \mathrm{z} \leq \mathrm{x} \rightarrow \mathrm{z}$ then $\mathrm{z} \rightarrow \mathrm{x} \leq \mathrm{z} \rightarrow \mathrm{y}$.
iii. (adjointness condition) $x * y \leq z$ if and only if $x \leq y \rightarrow z$.

In this paper, denote L as residuation lattice unless otherwise specified.

2.2. Definition 2.2: [20]

Let $\mathrm{U} \neq \varphi$. A mapping $\mathrm{f}: \mathrm{U} \rightarrow[0,1]$ is called a fuzzy set. Let f and g be fuzzy sets on U . Then tip- extended pair of f and $\mathrm{g}[19,20]$ can be defined by
$f^{g}(\mathrm{x})=\left\{\begin{array}{cc}f(x), & x \neq 1 \\ f(1) \vee g(1), & x=1\end{array}\right\}$
$g^{f}(\mathrm{x})=\left\{\begin{array}{ll}g(x), & x \neq 1 \\ g(1) \vee f(1), & x=1\end{array}\right\}$.

2.3. Theorem 2.3: [17, 16]

In each residuated lattice L, the following properties hold for all $x, y, z \in L$:

1. $(\mathrm{x} * \mathrm{y}) \rightarrow \mathrm{z}=\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})$.
2. $\mathrm{z} \leq \mathrm{x} \rightarrow \mathrm{y} \Leftrightarrow \mathrm{z} * \mathrm{x} \leq \mathrm{y}$.
3. $x \leq y \Leftrightarrow z * x \leq z * y$.
4. $\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})=\mathrm{y} \rightarrow(\mathrm{x} \rightarrow \mathrm{z})$.
5. $x \leq y \Rightarrow z \rightarrow x \leq z \rightarrow y$.
6. $\mathrm{x} \leq \mathrm{y} \Rightarrow \mathrm{y} \rightarrow \mathrm{z} \leq \mathrm{x} \rightarrow \mathrm{z}, y^{\prime} \leq x^{\prime}$.
7. $\mathrm{y} \rightarrow \mathrm{z} \leq(\mathrm{x} \rightarrow \mathrm{y}) \rightarrow(\mathrm{x} \rightarrow \mathrm{z})$.
8. $y \rightarrow x \leq(x \rightarrow z) \rightarrow(y \rightarrow z)$.
9. $1 \rightarrow \mathrm{x}=\mathrm{x}, \mathrm{x} \rightarrow \mathrm{x}=1$.
10. $x^{m} \leq x^{n}, \mathrm{~m}, \mathrm{n} \in \mathrm{N}, \mathrm{m} \geq \mathrm{n}$.
11. $x \leq y \Leftrightarrow x \rightarrow y=1$.
12. $0^{\prime}=1,1^{\prime}=0, x^{\prime}=x^{m}, \mathrm{x} \leq x^{n}$.
13. $x \vee \mathrm{y} \rightarrow \mathrm{z}=(\mathrm{x} \rightarrow \mathrm{z}) \wedge(\mathrm{y} \rightarrow \mathrm{z})$.
14. $x * x^{\prime}=0$.
15. $x \rightarrow(\mathrm{y} \wedge \mathrm{z})=(\mathrm{x} \rightarrow \mathrm{y}) \wedge(\mathrm{x} \rightarrow \mathrm{z})$.

2.4. Definition 2.4: [20]

A non-empty subset F of a residuated lattice L is called a filter of L if it satisfies

1. $x, y \in F \Rightarrow x * y \in F$.
2. $x \in F, x \leq y \Rightarrow y \in F$.

2.5. Theorem 2.5: [20]

A non-empty subset F of a residuated lattice L is called a filter of L if it satisfies, for any $x, y \in L$,

1. $1 \in \mathrm{~F}$.
2. $x \in F, x \rightarrow y \in F \Rightarrow y \in F$.
2.6. Note 2.6: [20]

A fuzzy set A on a residuated lattice L is a mapping from L^{\prime} to $[0,1]$

2.7. Definition 2.7: [20]

A fuzzy set A of a residuated lattice L is called a fuzzy filter, if it satisfies, for any $x, y \in L$

1. $\mathrm{A}(1) \geq \mathrm{A}(\mathrm{x})$.
2. $\mathrm{A}(\mathrm{x} * \mathrm{y}) \geq \min \{\mathrm{A}(\mathrm{x}), \mathrm{A}(\mathrm{y})\}$.
2.8. Theorem 2.8: [20]

A fuzzy set A of a residuated lattice L is a fuzzy filter, if and only if it satisfies, for any $x, y \in L$,

1. $\mathrm{A}(1) \geq \mathrm{A}(\mathrm{x})$.
2. $\mathrm{A}(\mathrm{y}) \geq \min \{\mathrm{A}(\mathrm{x} \rightarrow \mathrm{y}), \mathrm{A}(\mathrm{x})\}$

2.9. Definition 2.9: [3]

A Vague set A in the universe of discourse S is a Pair $\left(t_{A}, f_{A}\right)$ where $t_{A}: \mathrm{S} \rightarrow[0,1]$ and $f_{A}: \mathrm{S} \rightarrow[0,1]$ are mappings (called truth membership function and false membership function respectively) where $t_{A}(x)$ is a lower bound of the grade of membership of x derived from the evidence for x and $f_{A}(\mathrm{x})$ is a lower bound on the negation of x derived from the evidence against x and $t_{A}(\mathrm{x})+f_{A}(\mathrm{x})$ $\leq 1 \forall x \in S$.

2.10. Definition 2.10: [18]

Let δ be a mapping from $[0,1] \times[0,1]$ to $[0,1] . \delta$ is called a t-norm (resp. s-norm) on $[0,1]$, if it satisfies the following conditions: for any $x, y, z \in[0,1]$

1. $\delta(\mathrm{x}, 1)=\mathrm{x}(\operatorname{resp} . \delta(\mathrm{x}, \mathrm{o})=\mathrm{x})$,
2. $\delta(x, y)=\delta(y, x)$,
3. $\delta(\delta(x, y), z)=\delta(x, \delta(y, z))$,
4. if $x \leq y$, then $\delta(x, z) \leq \delta(y, z)$.

3. Vague Filters on Residuated Lattice

3.1. Definition 3.1:

A Vague set A of L is called a vague filter of L, if for any $x, y \in L$:

1. $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$
2. $\quad V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$

3.2. Theorem 3.2:

Let A be a vague filter of L . Then, for any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$: if $\mathrm{x} \leq \mathrm{y}$, then $V_{A}(\mathrm{x}) \leq V_{A}(\mathrm{y})$.

> Proof:

Since $\mathrm{x} \leq \mathrm{y}$, it follows that $\mathrm{x} \rightarrow \mathrm{y}=\mathrm{I}$. Since A is a vague filter of L , we have $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$ and $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ for any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$. Therefore $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)=\min \left(V_{A}(\mathrm{I}), V_{A}(\mathrm{x})\right) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{x})\right)=V_{A}(\mathrm{x})$. Therefore $V_{A}(\mathrm{x}) \leq V_{A}(\mathrm{y})$.

Theorem 3.3:

Let A be a vague se t on L. Then A is vague filter of L , if and only if, for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L} V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ and $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow\right.$ $\left.(\mathrm{x} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)$.

> Proof:

Let A be vague filter of L, obviously $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ and $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ and $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \quad \min \left(V_{A}(\mathrm{y} \rightarrow(\mathrm{x} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)$ holds for any x , $\mathrm{y}, \mathrm{z} \in \mathrm{L}$. Taking $\mathrm{x}=\mathrm{I}$ in $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow(\mathrm{x} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)$, we have $V_{A}(\mathrm{z})=V_{A}(\mathrm{I} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow(\mathrm{I} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)=$ $\min \left(V_{A}(\mathrm{y} \rightarrow \mathrm{z}), V_{A}(\mathrm{y})\right)$. Since $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ holds, and so A is a vague filter of L .

3.4. Theorem 3.4:

Let A be a vague set on L . Then A is a vague filter of L , if and only if, for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$, A satisfies if $\mathrm{x} \leq \mathrm{y}$, then $V_{A}(\mathrm{x}) \leq V_{A}(\mathrm{y})$ for any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$ and $V_{A}(\mathrm{x} * \mathrm{y}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$.

- Proof:

Assume that A is a vague filter of L , obviously if $\mathrm{x} \leq \mathrm{y}$, then $V_{A}(\mathrm{x}) \leq V_{A}(\mathrm{y})$ holds for any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$. Since $\mathrm{x} \leq \mathrm{y} \rightarrow(\mathrm{x} * \mathrm{y})$, we have $V_{A}(\mathrm{y}$ $\rightarrow(\mathrm{x} * \mathrm{y})) \geq V_{A}(\mathrm{x})$. By Definition 3.1 (2), it follows that $V_{A}(\mathrm{x} * \mathrm{y}) \geq \min \left(V_{A}(\mathrm{y}), V_{A}(\mathrm{y} \rightarrow(\mathrm{x} * \mathrm{y}))\right) \geq \min \left(V_{A}(\mathrm{y}), V_{A}(\mathrm{x})\right)$. Conversely, assume that if $\mathrm{x} \leq \mathrm{y}$, then $V_{A}(\mathrm{x}) \leq V_{A}(\mathrm{y})$ and $V_{A}(\mathrm{x} * \mathrm{y}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$ holds for any $\mathrm{x}, \mathrm{y} \in$ L. Taking $\mathrm{y}=\mathrm{I}$, we get $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$. As $\mathrm{x} *(\mathrm{x} \rightarrow \mathrm{y}) \leq \mathrm{y}$, thus $V_{A}(\mathrm{y}) \geq V_{A}(\mathrm{x} *(\mathrm{x} \rightarrow \mathrm{y}))$. Therefore $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{x} \rightarrow \mathrm{y})\right)$. Hence A is a vague filter of L .

3.5. Remark 3.5:

A vague set on L is a vague filter of L, if and only if, for any $x, y, z \in L$: if $x \rightarrow(y \rightarrow z)=I$ then $V_{A}(z) \geq \min \left(V_{A}(x), V_{A}(y)\right)$.

3.6. Remark 3.6:

A vague set on L is a vague filter of L, if and only if, for any $x, y, z \in L$:
if $a_{n} \rightarrow\left(a_{n-1} \rightarrow \ldots \rightarrow\left(a_{1} \rightarrow \mathrm{x}\right) \ldots ..\right)=\mathrm{I}$, then $V_{A}(\mathrm{x}) \geq \min \left(V_{A}\left(a_{n}\right), \ldots \ldots ., V_{A}\left(a_{1}\right)\right)$

3.7. Theorem 3.7:

A vague set on L is a vague filter of L, if and only if, for any $x, y, z \in L$, A satisfies Remark 3.5 and $V_{A}((x \rightarrow(y \rightarrow z)) \rightarrow z) \geq$ $\min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$.

> Proof:

If A is a vague filter of L then Remark 3.5 holds. Since $\left.V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow \mathrm{z}) \rightarrow \mathrm{z}\right) \geq \min \left(V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow(\mathrm{y} \rightarrow \mathrm{z})), V_{A}(\mathrm{y})\right)$. As $(\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow(\mathrm{y} \rightarrow \mathrm{z})=\mathrm{x} \vee(\mathrm{y} \rightarrow \mathrm{z}) \geq \mathrm{x}$, by Theorem 3.2 we have $V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \geq V_{A}(\mathrm{x})$. Therefore, $V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$. Conversely, suppose $V_{A}((\mathrm{x} \rightarrow(\mathrm{y} \rightarrow \mathrm{z})) \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{x}), V_{A}(\mathrm{y})\right)$ is valid. Since $V_{A}(\mathrm{y})=V_{A}(\mathrm{I} \rightarrow \mathrm{y})=V_{A}(((\mathrm{x} \rightarrow \mathrm{y}) \rightarrow(\mathrm{x} \rightarrow \mathrm{y})) \rightarrow \mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$. Hence by Definition 3.1, A is s vague filter of L .

3.8. Theorem 3.8:

Let A be a vague set on L . Then A is a vague filter of L , for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$, A satisfies Definition $3.1(1)$ and $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{x}\right.$ $\rightarrow \mathrm{y}), V_{A}(\mathrm{y} \rightarrow \mathrm{z})$).
$>$ Proof:
Assume that A is vague filter of L. Since $(\mathrm{x} \rightarrow \mathrm{y}) \leq(\mathrm{y} \rightarrow \mathrm{z}) \rightarrow(\mathrm{x} \rightarrow \mathrm{z})$, it follows from Theorem 3.2 that $V_{A}((\mathrm{y} \rightarrow \mathrm{z}) \rightarrow(\mathrm{x} \rightarrow \mathrm{z})) \geq$ $V_{A}(\mathrm{x} \rightarrow \mathrm{y})$. As A is a vague filter, so $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow \mathrm{z}), V_{A}((\mathrm{y} \rightarrow \mathrm{z}) \rightarrow(\mathrm{x} \rightarrow \mathrm{z}))\right.$). We have $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{y} \rightarrow \mathrm{z})\right.$, $V_{A}(\mathrm{x} \rightarrow \mathrm{z})$). Conversely, if $V_{A}(\mathrm{x} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{y} \rightarrow \mathrm{z})\right.$) for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$, then $V_{A}(\mathrm{I} \rightarrow \mathrm{z}) \geq \min \left(V_{A}(\mathrm{I} \rightarrow \mathrm{y}), V_{A}(\mathrm{y} \rightarrow \mathrm{z})\right)$ that is $V_{A}(\mathrm{z}) \geq \min \left(V_{A}(\mathrm{y}), V_{A}(\mathrm{y} \rightarrow \mathrm{z})\right)$. Hence by definition 3.1 A is a vague filter of L .

3.9. Theorem 3.9:

Let A be a vague set on L. Then A is a vague filter of L, if and only if, for any $\alpha, \beta \in[0,1]$ and $\alpha+\beta \leq 1$, the sets $U\left(t_{A}, \alpha\right)(\neq \varphi)$ and $\mathrm{L}\left(1-f_{A}, \beta\right)(\neq \varphi)$ are filters of L , where $\mathrm{U}\left(t_{A}, \alpha\right)=\left\{\mathrm{x} \in \mathrm{L} / t_{A}(\mathrm{x}) \geq \alpha\right\}, \mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)=\left\{\mathrm{x} \in \mathrm{L} / 1-f_{A}(\mathrm{x}) \geq \beta\right\}$.
> Proof:
Assume A is a vague filter of L , then $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$. By the condition $\mathrm{U}\left(t_{A}, \alpha\right) \neq \varphi$, it follows that there exist a $\in \mathrm{L}$ such that $t_{A}(\mathrm{a}) \geq \alpha$, and so $t_{A}(\mathrm{I}) \geq \alpha$, hence $\mathrm{I} \in \mathrm{U}\left(t_{A}, \alpha\right)$. Let $\mathrm{x}, \mathrm{x} \rightarrow \mathrm{y} \in \mathrm{U}\left(t_{A}, \alpha\right)$, then $t_{A}(\mathrm{x}) \geq \alpha, t_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq \alpha$. Since A is a filter of L , then $t_{A}(\mathrm{y}) \geq$ $\min \left(t_{A}(\mathrm{x}), t_{A}(\mathrm{x} \rightarrow \mathrm{y})\right) \geq \min (\alpha, \alpha)=\alpha$. Hence $\mathrm{y} \in \mathrm{U}\left(t_{A}, \alpha\right)$. Therefore $\mathrm{U}\left(t_{A}, \alpha\right)$ is a filter of L . We will show that $\mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$ is a filter of L . Since A is a vague filter of L , then $1-f_{A}(\mathrm{I}) \geq 1-f_{A}(\mathrm{x})$. By the condition $\mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right) \neq \varphi$, it follows that there exist $\mathrm{a} \in \mathrm{L}$ such that $1-f_{A}(\mathrm{a}) \geq \beta$. Therefore we have $1-f_{A}(\mathrm{I}) \geq 1-f_{A}(\mathrm{a}) \geq \beta$. Hence $\mathrm{I} \in \mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$. Let $\mathrm{x}, \mathrm{x} \rightarrow \mathrm{y} \in \mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$, then 1- $f_{A}(\mathrm{x})$ $\geq \beta, 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq \beta$. Since A is a vague filter of L , then $1-f_{A}(\mathrm{y}) \geq \min \left(1-f_{A}(\mathrm{x}), 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y})\right) \geq \min (\beta, \beta)=\beta$. It follows that $1-$ $f_{A}(\mathrm{y}) \geq \beta$, hence $\mathrm{y} \in \mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$. Therefore $\mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$ is a filter of L . Conversely, suppose that $\mathrm{U}\left(t_{A}, \alpha\right) \neq \varphi$ and $\mathrm{L}\left(1-f_{A}(\mathrm{x}), \beta\right)$ $\neq \varphi$ are filters of L , then, for any $\mathrm{x} \in \mathrm{L}, \mathrm{x} \in \mathrm{U}\left(t_{A}, t_{A}(\mathrm{x})\right)$ and $\mathrm{x} \in \mathrm{L}\left(1-f_{A}, 1-f_{A}(\mathrm{x})\right)$. $\mathrm{By} \mathrm{U}\left(t_{A}, t_{A}(\mathrm{x})\right) \neq \varphi$ and $\mathrm{L}\left(1-f_{A}, 1-f_{A}(\mathrm{x})\right) \neq \varphi$ are filters of L , it follows that $\mathrm{I} \in \mathrm{U}\left(t_{A}, t_{A}(\mathrm{x})\right)$ and $\mathrm{I} \in \mathrm{L}\left(1-f_{A}, 1-f_{A}(\mathrm{x})\right)$, and so $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$. For any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$, let $\alpha=\min \left(t_{A}(\mathrm{x}), t_{A}(\mathrm{x} \rightarrow\right.$ $\mathrm{y})$) and $\beta=\min \left(1-f_{A}(\mathrm{x}), 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y})\right.$), then $\mathrm{x}, \mathrm{x} \rightarrow \mathrm{y} \in \mathrm{U}\left(t_{A}, \alpha\right)$ and $\mathrm{x}, \mathrm{x} \rightarrow \mathrm{y} \in \mathrm{L}\left(1-f_{A}, \beta\right)$. And so $\mathrm{y} \in \mathrm{U}\left(t_{A}, \alpha\right)$ and $\mathrm{y} \in \mathrm{L}(1-$ $\left.f_{A}(\mathrm{x}), \beta\right)$. Therefore $t_{A}(\mathrm{y}) \geq \alpha=\min \left(t_{A}(\mathrm{x}), t_{A}(\mathrm{x} \rightarrow \mathrm{y})\right)$ and 1- $f_{A}(\mathrm{y}) \geq \beta=\min \left(1-f_{A}(\mathrm{x}), 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y})\right)$. From theorem 3.2, we have A is a vague filter of L.

3.10. Theorem 3.10:

Let A, B be two vague filters of L, then $A \cap B$ is also a vague filter of L.
> Proof:
Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$ such that $\mathrm{z} \leq \mathrm{x} \rightarrow \mathrm{y}$, then $\mathrm{z} \rightarrow(\mathrm{x} \rightarrow \mathrm{y})=\mathrm{I}$. Since A, B be two vague filters of L, we have $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{z}), V_{A}(\mathrm{x})\right)$ and $V_{B}(\mathrm{y}) \geq \min \left(V_{B}(\mathrm{z}), V_{B}(\mathrm{x})\right)$. Since $V_{A \cap B}(\mathrm{y})=\min \left(V_{A}(\mathrm{y}), V_{B}(\mathrm{y})\right) \geq \min \left(\min \left(V_{A}(\mathrm{z}), V_{A}(\mathrm{x})\right), \min \left(V_{B}(\mathrm{z}), V_{B}(\mathrm{x})\right)\right)=\min \left(\min \left(V_{A}(\mathrm{z})\right.\right.$, $\left.V_{B}(\mathrm{z})\right), \min \left(V_{A}(\mathrm{x}), V_{B}(\mathrm{x})\right)=\min \left(V_{A \cap B}(\mathrm{z}), V_{A \cap B}(\mathrm{x})\right)$. Since A, B be two vague filters of L, we have $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ and $V_{B}(\mathrm{I}) \geq V_{B}(\mathrm{x})$. Hence $V_{A \cap B}(\mathrm{I})=\min \left(V_{A}(\mathrm{I}), V_{B}(\mathrm{I})\right) \geq \min \left(V_{A}(\mathrm{x}), V_{B}(\mathrm{x})\right)=V_{A \cap B}(\mathrm{x})$. Then $\mathrm{A} \cap \mathrm{B}$ is a vague filters of L .

3.11. Remark 3.11:

Let A_{i} be a family of vague sets on L , where i is an index set. Denoting C by the intersection of A_{i}, i.e. $\bigcap_{i \in I} A_{i}$, where $V_{C}(\mathrm{x})=$ $\min \left(V_{A_{1}}(x), V_{A_{2}}(x), \ldots \ldots\right)$ for any $x \in L$.

3.12. Note 3.12:

Let A_{i} be a family of vague filters of L , where $\mathrm{i} \in \mathrm{I}$, I is an index set, then $\bigcap_{i \in I} A_{i}$ is also a vague filters of L .

3.13. Theorem 3.13:

Let A be a vague set on L . Then
a. For any $\alpha, \beta \in[0,1]$, if $A_{(\alpha, \beta)}$ is a filter of L. Then, for any $x, y, z \in L$, $V_{A}(\mathrm{z}) \leq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$ imply $V_{A}(\mathrm{z}) \leq V_{A}(\mathrm{y})$.
b. If A satisfy Definition 3.1(1) and condition (a), then, for any $\alpha, \beta \in[0,1], A_{(\alpha, \beta)}$ is a filter of L.

Proof:
a. Assume that $A_{(\alpha, \beta)}$ is a filter of L for any $\alpha, \beta \in[0,1]$.

Since $V_{A}(\mathrm{z}) \leq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$, it follows that $V_{A}(\mathrm{z}) \leq V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{z}) \leq V_{A}(\mathrm{x})$. Therefore, $\mathrm{x} \rightarrow \mathrm{y} \in A_{\left(t_{A}(\mathrm{z}), 1-f_{A}(\mathrm{z})\right)}$, $\mathrm{x} \in A_{\left(t_{A}(\mathrm{z}), 1-f_{A}(\mathrm{z})\right)}$. As $V_{A}(\mathrm{z}) \in[0,1]$, and $A_{\left(t_{A}(\mathrm{z}), 1-f_{A}(\mathrm{z})\right)}$ is a filter of L , so $\mathrm{y} \in A_{\left(t_{A}(\mathrm{z}), 1-f_{A}(\mathrm{z})\right)}$. Thus $V_{A}(\mathrm{z}) \leq V_{A}(\mathrm{y})$.
b. Assume A satisfy (a) and (b). For any $x, y \in L, \alpha, \beta \in[0,1]$, we have $x \rightarrow y \in A_{(\alpha, \beta)}, x \in A_{(\alpha, \beta)}$, therefore $t_{A}(x \rightarrow y)$ $\geq \alpha, 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq \beta$ and $t_{A}(\mathrm{x}) \geq \alpha, 1-f_{A}(\mathrm{x}) \geq \beta$, and $\operatorname{so} \min \left(t_{A}(\mathrm{x} \rightarrow \mathrm{y}), t_{A}(\mathrm{x})\right) \geq \min (\alpha, \alpha)=\alpha$. By (a), we have $t_{A}(\mathrm{y}) \geq \alpha$ and $1-f_{A}(\mathrm{y}) \geq \beta$, that is, $\mathrm{y} \in A_{(\alpha, \beta)}$. Since $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{x})$ for any $\mathrm{x} \in \mathrm{L}$, it follows that $t_{A}(\mathrm{I}) \geq \alpha$ and 1- $f_{A}(\mathrm{I}) \geq$ β, that is, $\mathrm{I} \in A_{(\alpha, \beta)}$. Then for any $\alpha, \beta \in[0,1], A_{(\alpha, \beta)}$ is a filter of L .

3.14. Theorem 3.14:

Let A be a vague filter of L , then for any $\alpha, \beta \in[0,1], A_{(\alpha, \beta)}(\neq \varphi)$ is a filter of L .

$>$ Proof:

Since $A_{(\alpha, \beta)} \neq \varphi$, there exist $\alpha, \beta \in[0,1]$ such that $t_{A}(\mathrm{x}) \geq \alpha, 1-f_{A}(\mathrm{x}) \geq \beta$. And A is a vague filter of L , we have $t_{A}(\mathrm{I}) \geq t_{A}(\mathrm{x}) \geq \alpha, 1-$ $f_{A}(\mathrm{I}) \geq 1-f_{A}(\mathrm{x}) \geq \beta$, therefore $\mathrm{I} \in A_{(\alpha, \beta)}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{L}$ and $\mathrm{x} \in A_{(\alpha, \beta)}, \mathrm{x} \rightarrow \mathrm{y} \in A_{(\alpha, \beta)}$, therefore $t_{A}(\mathrm{x}) \geq \alpha, 1-f_{A}(\mathrm{x}) \geq \beta, t_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq$ $\alpha, 1-f_{A}(\mathrm{x} \rightarrow \mathrm{y}) \geq \beta$. Since A is a vague filter of L , thus $t_{A}(\mathrm{y}) \geq \min \left(t_{A}(\mathrm{x} \rightarrow \mathrm{y}), t_{A}(\mathrm{x})\right) \geq \alpha$ and $1-f_{A}(\mathrm{y}) \geq \min \left(1-f_{A}(\mathrm{x} \rightarrow \mathrm{y}), 1-f_{A}(\mathrm{x})\right)$ $\geq \beta$, it follows that $\mathrm{y} \in A_{(\alpha, \beta)}$. Therefore, $A_{(\alpha, \beta)}$ is a filter of L .

3.15. Remark 3.15:

From Theorem 3.14, the filter $A_{(\alpha, \beta)}$ is also called a vague - cut filter of L .
3.16. Theorem 3.16:

Any filter F of L is a vague -cut filter of some vague filter of L .

> Proof:

Consider the vague set A of $\mathrm{L}: \mathrm{A}=\left\{\left(\mathrm{x}, t_{A}(\mathrm{x}) / \mathrm{x} \in \mathrm{L}\right\}\right.$, where If $\mathrm{x} \in \mathrm{F}, V_{A}(\mathrm{x})=\alpha$. If $\mathrm{x} \notin \mathrm{F}, V_{A}(\mathrm{x})=0$. where $\alpha \in[0,1]$. Since F is a filter of L, we have $1 \in \mathrm{~F}$. Therefore $V_{A}(\mathrm{I})=\alpha \geq V_{A}(\mathrm{x})$. For any $\mathrm{x}, \mathrm{y} \in \mathrm{L}$, if $\mathrm{y} \in \mathrm{F}$, then $V_{A}(\mathrm{y})=\alpha=\min (\alpha, \alpha) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y})\right.$, $\left.V_{A}(\mathrm{x})\right)$. If $\mathrm{y} \notin \mathrm{F}$, then $\mathrm{x} \notin \mathrm{F}$ or $\mathrm{x} \rightarrow \mathrm{y} \notin \mathrm{F}$. And so $V_{A}(\mathrm{y})=0=\min (0,0)=\min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)$. Therefore A is a vague filter of L.
3.17. Theorem 3.17:

Let A be a vague filter of L . Then $\mathrm{F}=\left\{\mathrm{x} \in \mathrm{L} / t_{A}(\mathrm{x})=t_{A}(\mathrm{I}), 1-f_{A}(\mathrm{x})=1-f_{A}(\mathrm{I})\right\}$ is a filter of L .
> Proof:
Since $\mathrm{F}=\left\{\mathrm{x} \in \mathrm{L} / t_{A}(\mathrm{x})=t_{A}(\mathrm{I}), 1-f_{A}(\mathrm{x})=1-f_{A}(\mathrm{I})\right\}$, obviously $\mathrm{I} \in \mathrm{F}$. Let $\mathrm{x} \rightarrow \mathrm{y} \in \mathrm{F}, \mathrm{x} \in \mathrm{F}$, so $V_{A}(\mathrm{x} \rightarrow \mathrm{y})=V_{A}(\mathrm{x})=V_{A}(\mathrm{I})$. Therefore $V_{A}(\mathrm{y}) \geq \min \left(V_{A}(\mathrm{x} \rightarrow \mathrm{y}), V_{A}(\mathrm{x})\right)=V_{A}(\mathrm{I})$ and $V_{A}(\mathrm{I}) \geq V_{A}(\mathrm{y})$, then $V_{A}(\mathrm{y})=V_{A}(\mathrm{I})$. Thus $\mathrm{y} \in \mathrm{F}$. It follows that F is a filter of L .

4. Extended Pair of Vague Filters

4.1. Remark 4.1:

Let A, B be two vague filters of L, then $A \cap B$ is also a vague filter of L.

4.2. Remark 4.2:

For $\mathrm{A} \in \mathrm{VS}(\mathrm{L})$, the intersection of all vague filters containing A is called the generated fuzzy filter by A , denoted as $<\mathrm{A}\rangle$.

4.3. Remark 4.3:

Let $\mathrm{A} \in \mathrm{VS}(\mathrm{L})$. Then A is a vague filter if and only if $\mathrm{x} * \mathrm{y} \leq \mathrm{z}$ implies $V_{A}(\mathrm{x}) \wedge V_{A}(\mathrm{y}) \leq V_{A}(\mathrm{z})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$.

4.4. Theorem 4.4:

Let $\mathrm{A} \in \mathrm{VS}(\mathrm{L})$. Define a new vague set B by $\mathrm{B}=\left[t_{B}, 1-f_{B}\right]$ where $V_{B}(\mathrm{x})=\mathrm{V}_{a_{1} * \ldots} \ldots a_{n} \leq x\left\{V_{A}\left(a_{1}\right) \wedge \ldots \ldots . V_{A}\left(a_{n}\right)\right\}$, for all $\mathrm{x} \in \mathrm{L}$. where $a_{i} \in \mathrm{~L}, \mathrm{n} \in \mathrm{N}$. Then $\mathrm{B}=\langle\mathrm{A}\rangle$.
> Proof:
We complete the proof by two steps. Firstly, we verify that B is a vague filter. For all $\mathrm{x}, \mathrm{y} \in \mathrm{L}$, such that $\mathrm{x} \leq \mathrm{y}$, the Definition of B yields that $V_{B}(\mathrm{x}) \leq V_{B}(\mathrm{y})$. For all $\mathrm{x}, \mathrm{y} \in \mathrm{L}$, we have $\quad V_{B}(\mathrm{x}) \wedge V_{B}(\mathrm{y})=\vee_{a_{1} * \ldots} \ldots a_{n} \leq x\left\{V_{A}\left(a_{1}\right) \wedge \ldots \ldots V_{A}\left(a_{n}\right)\right\} \wedge \bigvee_{b_{1} * \ldots b_{m} \leq y}\left\{V_{A}\left(b_{1}\right) \wedge\right.$ $\left.\ldots \ldots V_{A}\left(b_{m}\right)\right\}=\bigvee_{a_{1} * \ldots a_{n} \leq x} \bigvee_{b_{1} * \ldots b_{m} \leq y}\left\{\left\{V_{A}\left(a_{1}\right) \wedge \ldots \ldots V_{A}\left(a_{n}\right) \wedge V_{A}\left(b_{1}\right) \wedge \ldots \ldots V_{A}\left(b_{m}\right)\right\}\right.$, where $a_{i}, b_{i} \in \mathrm{~L}, \mathrm{n}, \mathrm{m} \in \mathrm{N}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{L}$. $\leq \mathrm{V}_{c_{1} * \ldots c_{k} \leq x * y}\left\{V_{A}\left(c_{1}\right) \wedge \ldots \ldots V_{A}\left(c_{k}\right)\right\}, c_{i} \in \mathrm{~L}, \mathrm{k} \in \mathrm{N} .=V_{B}(\mathrm{x} * \mathrm{y})$, by Remark 4.3. Thus B is a vague filter. Secondly, let C be a vague filter such that $\mathrm{C} \supseteq \mathrm{A}$. By the Definition of vague filter, it holds that $V_{B}(\mathrm{x})=\mathrm{V}_{a_{1} * \ldots a_{n} \leq x}\left\{V_{A}\left(a_{1}\right) \wedge \ldots \ldots V_{A}\left(a_{n}\right)\right\} \leq$ $\mathrm{V}_{a_{1} * \ldots a_{n} \leq x}\left\{V_{C}\left(a_{1}\right) \wedge \ldots \ldots V_{C}\left(a_{n}\right)\right\} \leq \mathrm{V}_{a_{1} * \ldots a_{n} \leq x}\left\{V_{C}\left(a_{1} * \ldots \ldots . . * a_{n}\right)\right\} \leq V_{C}(\mathrm{x})$. Hence $\mathrm{B} \subseteq \mathrm{C}$. Thus $\mathrm{B}=<\mathrm{A}>$.

4.5. Lemma 4.5:

Let $\mathrm{a}, \mathrm{b}, \mathrm{u}, \mathrm{v} \in[0,1]$ such that $0 \leq \mathrm{a}+\mathrm{b} \leq 1$ and $0 \leq \mathrm{u}+\mathrm{v} \leq 1$. Then $0 \leq \mathrm{a} \vee \mathrm{u}+\mathrm{b} \wedge \mathrm{v} \leq 1$.
$>$ Proof:
Without losing the generality, we assume that $a \leq u$. Then $a v u+b \wedge v \leq u+v \leq 1$. It obvious that $0 \leq a \vee u+b \wedge v$. Thus it holds that $0 \leq \mathrm{a} \vee \mathrm{u}+\mathrm{b} \wedge \mathrm{v} \leq 1$.

4.6. Theorem 4.6:

Let A be a vague filter of L and for all $\mathrm{u}, \mathrm{v} \in[0,1]$ such that $0 \leq \mathrm{u}+\mathrm{v} \leq 1$. Then $A^{u, v}=\left[t_{A}{ }^{u}, 1-f_{A}{ }^{v}\right]$ is a vague filter, where $t_{A}{ }^{u}(\mathrm{x})=\left\{\begin{array}{ll}t_{A}(x), & x \neq 1 \\ t_{A}(1) \vee u, & x=1\end{array}\right\}$,

$$
1-f_{A}^{v}(\mathrm{x})=\left\{\begin{array}{cc}
1-f_{A}(x), & x \neq 0 \\
1-f_{A}(0) \vee v, & x=0
\end{array}\right\} .
$$

Proof:

It follows form Lemma 3.6 that $A^{u, v} \in \operatorname{VS}(\mathrm{~L})$. Now we prove that $A^{u, v}$ is a vague filter. If $\mathrm{x} \leq \mathrm{y}$, we consider the following two cases.

Case 1: $(\mathrm{y}=1)$. It is obvious that $t_{A}{ }^{u}(\mathrm{x}) \leq t_{A}{ }^{u}(1)=t_{A}{ }^{u}(\mathrm{y}), 1-f_{A}{ }^{v}(\mathrm{x}) \leq 1-f_{A}{ }^{v}(0)=1-f_{A}{ }^{v}(\mathrm{y})$.
Case 2: $(\mathrm{y} \neq 1)$. The Definition of $A^{u, v}$ leads that $t_{A}{ }^{u}(\mathrm{x})=t_{A}(x) \leq t_{A}(y)=t_{A}{ }^{u}(\mathrm{y}), 1-f_{A}^{v}(\mathrm{x})=1-f_{A}(x) \leq 1-f_{A}(y)=1-f_{A}{ }^{v}(\mathrm{y})$. Thus $t_{A}{ }^{u}(\mathrm{x}) \leq t_{A}^{u}(\mathrm{y}), 1-f_{A}{ }^{v}(\mathrm{x}) \leq 1-f_{A}{ }^{v}(\mathrm{y})$.
Let $\mathrm{x}, \mathrm{y} \in \mathrm{L}$. We consider the following two cases.
Case 1: $(\mathrm{x} * \mathrm{y}=1)$. If $\mathrm{x}=\mathrm{y}=1$, it is obvious that $t_{A}{ }^{u}(\mathrm{x}) \wedge t_{A}{ }^{u}(\mathrm{y}) \leq t_{A}{ }^{u}(\mathrm{x} * \mathrm{y}), 1-f_{A}{ }^{v}(\mathrm{x}) \wedge 1-f_{A}{ }^{v}(\mathrm{y}) \leq 1-f_{A}^{v}(\mathrm{x} * \mathrm{y})$. If $\mathrm{x}=1, \mathrm{y} \neq 1$ or x $\neq 1, \mathrm{y}=1$, it is a contradiction. If $\mathrm{x} \neq 1, \mathrm{y} \neq 1$, it holds that $t_{A}{ }^{u}(\mathrm{x}) \wedge t_{A}{ }^{u}(\mathrm{y})=t_{A}(x) \wedge t_{A}(y) \leq t_{A}(\mathrm{x} * \mathrm{y})=t_{A}{ }^{u}(\mathrm{x} * \mathrm{y}), 1-f_{A}{ }^{v}(\mathrm{x}) \wedge 1-$ $f_{A}^{v}(\mathrm{y})=1-f_{A}(x) \wedge 1-f_{A}(y) \leq 1-f_{A}(x * y)=1-f_{A}{ }^{v}(\mathrm{x} * \mathrm{y})$.
Case 2: $(x * y \neq 1)$, it is a contradiction. If $x=y=1$, it is a contradiction. If $x=1, y \neq 1$ or $x \neq 1, y=1$, it is obvious that $t_{A}{ }^{u}(x) \wedge$ $t_{A}{ }^{u}(\mathrm{y}) \leq t_{A}{ }^{u}(\mathrm{x} * \mathrm{y}), 1-f_{A}^{v}(\mathrm{x}) \wedge 1-f_{A}{ }^{v}(\mathrm{y}) \leq 1-f_{A}^{v}(\mathrm{x} * \mathrm{y})$. If $\mathrm{x} \neq 1, \mathrm{y} \neq 1$, we have $t_{A}{ }^{u}(\mathrm{x}) \wedge t_{A}^{u}(\mathrm{y})=t_{A}(x) \wedge t_{A}(y) \leq t_{A}(\mathrm{x} * \mathrm{y})=t_{A}^{u}(\mathrm{x} *$ y) $1-f_{A}{ }^{v}(\mathrm{x}) \wedge 1-f_{A}{ }^{v}(\mathrm{y})=1-f_{A}(x) \wedge 1-f_{A}(y) \leq 1-f_{A}(\mathrm{x} * \mathrm{y})=1-f_{A}{ }^{u}(\mathrm{x} * \mathrm{y})$. And in all, it yields that $t_{A}{ }^{u}(\mathrm{x}) \wedge t_{A}{ }^{u}(\mathrm{y})=t_{A}(x) \wedge$ $t_{A}(y) \leq t_{A}(\mathrm{x} * \mathrm{y})=t_{A}{ }^{u}(\mathrm{x} * \mathrm{y}), 1-f_{A}{ }^{v}(\mathrm{x}) \wedge 1-f_{A}{ }^{v}(\mathrm{y})=1-f_{A}(x) \wedge 1-f_{A}(y) \leq 1-f_{A}(\mathrm{x} * \mathrm{y})=1-f_{A}{ }^{u}(\mathrm{x} * \mathrm{y})$. Thus $A^{u, v}$ is a vague filter.

4.7. Definition 4.7:

For given $\mathrm{A}, \mathrm{B} \in \mathrm{VS}(\mathrm{L})$, the operation $\tilde{*}$ is defined by $\mathrm{A} \tilde{*} \mathrm{~B}$ is defined by
$\mathrm{A} \tilde{*} \mathrm{~B}=\left[t_{A} \tilde{*} t_{B}, 1-f_{A} \tilde{*} 1-f_{B}\right]$, where $V_{A} \tilde{*} V_{B}(\mathrm{x})=\mathrm{V}_{y * \mathrm{z} \leq x}\left\{V_{A}(y) \wedge V_{B}(\mathrm{z})\right\}$.

4.8. Definition 4.8:

The extended pair for vague sets A and B defined by $A^{B}=\left[t_{A}{ }^{t_{B}}, 1-f_{A}{ }^{1-f_{B}}\right]$,
$t_{A}^{t_{B}}(\mathrm{x})=\left\{\begin{array}{cc}t_{A}(x), & x \neq 1 \\ t_{A}(1) \vee t_{B}(1), & x=1\end{array}\right\}, 1-f_{A}^{1-f_{B}}(\mathrm{x})=\left\{\begin{array}{cc}1-f_{A}(x), & x \neq 0 \\ 1-f_{A}(0) \vee 1-f_{B}(0), & x=0\end{array}\right\}$
$B^{A}=\left[t_{B}{ }^{t_{A}}, 1-f_{B}{ }^{1-f_{A}}\right]$ where $t_{B}{ }^{t_{A}(\mathrm{x})}=\left\{\begin{array}{cc}t_{B}(x), & x \neq 1 \\ t_{B}(1) \vee t_{A}(1), & x=1\end{array}\right\}, 1-f_{B}{ }^{1-f_{A}}(\mathrm{x})=\left\{\begin{array}{cc}1-f_{B}(x), & x \neq 0 \\ 1-f_{B}(0) \vee 1-f_{A}(0), & x=0\end{array}\right\}$.

4.9. Theorem 4.9:

Let $\mathrm{A}, \mathrm{B} \in \mathrm{VF}(\mathrm{L})$. Then $A^{B} \tilde{\approx} B^{A} \in \mathrm{VF}(\mathrm{L})$.

$>$ Proof:

It is obvious that $t_{A}{ }^{t_{B}} \tilde{\not} t_{B}^{t_{A}}$ is order preserving, and $1-f_{A}^{1-f_{B}} \tilde{\not} 1-f_{B}{ }^{1-f_{A}}$ is order preserving. For all $\mathrm{x}, \mathrm{y} \in \mathrm{L}$, we have $V_{A}{ }^{V_{B}} \tilde{\not} \tilde{F}^{2}$ $\left.V_{B} V_{A}(\mathrm{x} * \mathrm{y})=\mathrm{V}_{p * q \leq x * y}\left\{V_{A}{ }^{V_{B}}(p) \wedge V_{B}{ }^{V_{A}}(\mathrm{q})\right\} \geq \underset{c * d \leq y}{\mathrm{~V}_{a * b \leq x}\left\{V_{A} V_{B}\right.}(a * c) \wedge V_{B} V_{A}(\mathrm{~b} * \mathrm{~d})\right\} \geq \underset{\substack{a * b \leq x \leq y \\ c * d \leq y}}{ }\left\{V_{A} V_{B}(a) \wedge V_{A} V_{B}(c) \wedge V_{B} V_{A}(\mathrm{~b}) \wedge V_{B} V_{B}\right.$ (d) $\}=V_{a * b \leq x}\left\{V_{A}{ }^{V_{B}}(a) \wedge V_{B}{ }^{V_{A}}(b)\right\} \wedge V_{c * d \leq y}\left\{V_{A}{ }^{V_{B}}(c) \wedge V_{B} V_{A}(d)\right\}=V_{A} V_{B} \tilde{\not} V_{B} V_{A}(\mathrm{x}) \wedge V_{A} V_{B} \tilde{\not} V_{B} V_{A}(\mathrm{y})$ and hence $V_{A} V_{B} \tilde{\not} V_{B} V_{A}(\mathrm{x} * \mathrm{y})$ $\geq V_{A}{ }^{V_{B}} \tilde{\not} V_{B}{ }^{V_{A}}(\mathrm{x}) \wedge V_{A}{ }^{V_{B}} \tilde{\not} V_{B}{ }^{V_{A}}(\mathrm{y})$. Thus $A^{B} \tilde{\not} B^{A} \in \mathrm{VF}(\mathrm{L})$.

4.10. Theorem 4.10:

Let $\mathrm{A}, \mathrm{B} \in \mathrm{VF}(\mathrm{L})$. Then $A^{B} \tilde{\not} B^{A}=\langle\mathrm{A} \cup \mathrm{B}\rangle$.

$>$ Proof:

It is easy to prove that $\mathrm{A}, \mathrm{B} \subseteq A^{B} \tilde{*} B^{A}$, and hence $\mathrm{A} \cup \mathrm{B} \subseteq A^{B} \tilde{*} B^{A}$. Thus $<\mathrm{A} \cup \mathrm{B}>\subseteq A^{B} \tilde{*} B^{A}$. Assume that $\mathrm{C} \in \mathrm{VF}(\mathrm{L})$ such that $\mathrm{A} \cup \mathrm{B} \subseteq \mathrm{C}$. If $\mathrm{x}=1$, we have $t_{A} t_{B} \tilde{*} t_{B}^{t_{A}}(1)=t_{A}(1) \vee t_{B}(1) \leq t_{C}(1), 1-f_{A}^{1-f_{B}} \mathfrak{\not} 1-f_{B}{ }^{1-f_{A}}(0)=1-f_{A}(0) \wedge 1-f_{B}(0)$ $\leq 1-f_{C}(0)$. It holds that $V_{A}^{V_{B}} \tilde{*} V_{B}^{V_{A}}(\mathrm{x})=V_{p * q \leq x}\left\{V_{A}^{V_{B}}(p) \wedge \quad V_{B}^{V_{A}}(\mathrm{q})\right\}=\underset{p \neq 1, q \neq 1}{ }=\underset{\sim}{p * q \leq x}\left\{V_{A}^{V_{B}}(p) \wedge\right.$ $\left.\left.V_{B}{ }^{V_{A}}(\mathrm{q})\right\} \vee \vee_{p \leq x}\left\{V_{A}(p)\right\} \vee \vee_{q \leq x}\left\{V_{B}(q)\right\}=V_{p * q \leq x} V_{A}(p) \wedge V_{B}(\mathrm{q})\right\} \vee V_{p \leq x}\left\{V_{A}(p)\right\} \vee \quad V_{q \leq x}\left\{V_{B}(q)\right\} \quad \leq$ $\left.\vee_{\substack{p * q \leq x \\ p \neq 1, q \neq 1}} V_{C}(p) \wedge V_{C}(\mathrm{q})\right\} \vee \mathrm{V}_{p \leq x}\left\{V_{C}(p)\right\} \vee \bigvee_{q \leq x}^{p \neq 1, q \neq 1}\left\{V_{C}(q)\right\}=\vee_{p \tilde{*} q \leq x}\left\{V_{A}(\mathrm{p}) \wedge V_{B}(\mathrm{q})\right\} \leq V_{C}(\mathrm{x})$. It follows from Theorem 3.10 that $A^{B} \tilde{*} B^{A}$ $=\langle A \cup B\rangle$.

4.11. Remark 4.11:

For $\mathrm{A}, \mathrm{B} \in \mathrm{VF}(\mathrm{L})$, then the operations Π and \sqcup on $\mathrm{VF}(\mathrm{L})$ are defined by $\mathrm{A} \Pi \mathrm{B}=\mathrm{A} \cap \mathrm{B}, \mathrm{A} \sqcup \mathrm{B}=A^{B} \tilde{*} B^{A}$.

4.12. Theorem 4.12:

$(\mathrm{VF}(\mathrm{L}), \Pi, \sqcup, \emptyset, \mathrm{L})$ is a bounded distributive lattice.
$>$ Proof:
We only verify the distributivity. Obviously, it holds that $\mathrm{C} \Pi(\mathrm{A} \cup \mathrm{B}) \supseteq(\mathrm{C} \Pi \mathrm{A}) \sqcup(\mathrm{C} \Pi \mathrm{B})$, so we only prove $\mathrm{C} \Pi(\mathrm{A} \cup \mathrm{B}) \subseteq(\mathrm{C}$ $\Pi \mathrm{A}) \sqcup(\mathrm{C} \Pi \mathrm{B})$. Assume that $\mathrm{x} \in \mathrm{L}$ for $V_{C} \wedge V_{A}^{V_{B}} \tilde{\not} V_{B}^{V_{A}}(\mathrm{x}) \leq\left(V_{C} \wedge V_{A}\right)^{V_{C} \wedge V_{B}} \tilde{*}\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(\mathrm{x})$, we consider the following two cases.
Case 1: $(\mathrm{x}=1)$. We have $V_{C} \wedge V_{A \cup B}(1)=V_{C}(1) \wedge V_{A} V_{B} \tilde{*} V_{B} V_{A}(1)=V_{C}(1) \wedge\left(V_{A}(1) \vee V_{B}(1)\right)=\left(V_{C}(1) \wedge\left(V_{A}(1)\right) \vee\left(V_{C}(1) \wedge\left(V_{B}(1)\right)=\left(V_{C} \wedge\right.\right.\right.$ $\left.V_{A}\right)^{V_{C} \wedge V_{B}} \tilde{\not}\left(\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(1)\right.$.
Case 2: $(\mathrm{x} \neq 1)$. It holds that $V_{C}(\mathrm{x}) \wedge V_{A} V_{B} \tilde{\not} V_{B}{ }^{V_{A}}(\mathrm{x})=V_{C}(\mathrm{x}) \wedge V_{p \tilde{\approx} q \leq x}\left\{V_{A}{ }^{V_{B}}(p) \wedge V_{B} V_{A}(q)\right\}=$
$\vee_{p \tilde{\approx} q \leq x}\left\{V_{C}(x) \wedge V_{A} V_{B}(p) \wedge V_{B} V_{A}(q)\right\}=\bigvee \underset{\substack{p * q \leq x \\ p \neq 1, q \neq 1}}{ }\left\{V_{C}(x) \wedge V_{A}(\mathrm{p}) \wedge V_{C}(\mathrm{x}) \wedge V_{B}(\mathrm{q})\right\} \vee\left\{V_{C}(\mathrm{x}) \wedge V_{A} V_{B}(1) \wedge V_{B}(\mathrm{x})\right\} \vee$
$\left\{V_{C}(\mathrm{x}) \wedge V_{B}{ }^{V_{A}}(1) \wedge V_{A}(\mathrm{x})\right\}=\vee \underset{\substack{p * q \leq x \\ p \neq 1, q \neq 1}}{ }\left\{V_{C}(x) \wedge V_{A}(\mathrm{p}) \wedge V_{C}(\mathrm{x}) \wedge V_{B}(\mathrm{q})\right\} \vee\left\{V_{C}(x) \wedge V_{C}(1) \wedge V_{A}{ }^{V_{B}}(1) \wedge V_{B}(x)\right\} \vee\left\{V_{C}(x) \wedge\right.$
$\left.\left.\left.V_{C}(1) \wedge V_{B} V_{A}(1) \wedge V_{A}(x)\right\}\right\}=\vee \underset{p \neq 1, q \neq 1}{p * q \leq x}\left\{V_{C}(x) \wedge V_{A}(\mathrm{p}) \wedge V_{C}(x) \wedge V_{B}(q)\right\} \vee\left\{V_{C}(1) \wedge\left(V_{A}(1) \vee V_{B}(1)\right)\right\} \wedge\left[\left(V_{C}(x) \wedge V_{B}(x)\right) \vee\left(V_{C}(x) \wedge V_{A}(x)\right)\right]\right\}=$
$\left.\vee_{\substack{p * q \leq x \\ p \neq 1, q \neq 1}}\left\{V_{C}(x) \wedge V_{A}(\mathrm{p}) \wedge V_{C}(x)\right\} \wedge V_{B}(q)\right\} \vee\left\{\left[\left(V_{C}(1) \wedge\left(V_{A}(1)\right) \vee\left(V_{C}(1) \wedge V_{B}(1)\right)\right] \wedge\left[\left(V_{C}(x) \wedge V_{B}(x)\right) \vee\left(V_{C}(x) \wedge V_{A}(x)\right)\right]\right\} \leq \bigvee_{p \neq 1, q \neq 1}^{p * q \leq x}\left\{\left(V_{C}\right.\right.\right.$
$\left.\left.\wedge V_{A}\right)^{V_{C} \wedge V_{B}}(\mathrm{p} \vee \mathrm{x}) \wedge\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(\mathrm{q} \vee \mathrm{x})\right\} \vee\left[\left(V_{C} \wedge V_{A}\right)^{V_{C} \wedge V_{B}}(1) \wedge\left(V_{C} \wedge V_{A}\right)(\mathrm{p} \vee \mathrm{x})=\left[\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(1) \wedge\left(V_{C} \wedge V_{B}\right)(\mathrm{q} \vee \mathrm{x})\right]=\right.$ $\vee_{p * q \leq x}\left\{\left(V_{C} \wedge V_{A}\right)^{V} \wedge^{\wedge} V_{B}(\mathrm{p} \vee \mathrm{x}) \wedge\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(\mathrm{q} \vee \mathrm{x})\right\}$. Let $\mathrm{p} \vee \mathrm{x}=p^{\prime}$ and $\mathrm{q} \vee \mathrm{x}=q^{\prime}$. It is easy to verify that $p^{\prime} * q^{\prime} \leq \mathrm{x}$, and then the above can be written as $\bigvee_{p * q \leq x}\left\{\left(V_{C} \wedge V_{A}\right)^{V_{C} \wedge V_{B}}\left(p^{\prime}\right) \wedge\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}\left(q^{\prime}\right)\right\}=\left(V_{C} \wedge V_{A}\right)^{V_{C} \wedge V_{B}} \tilde{*}\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}(\mathrm{x})$. Thus $V_{C} \wedge V_{A} V_{B} \tilde{*}$ $V_{B}^{V_{A}} \leq\left(V_{C} \wedge V_{A}\right)^{V_{C} \wedge V_{B}} \tilde{\mathcal{F}^{\prime}}\left(V_{C} \wedge V_{B}\right)^{V_{C} \wedge V_{A}}$, that is, the distributivity holds.

5. References

i. M. Bakhshi, R.A. Boaraooei, Fuzzy regular congruence relation on Hyper K-algebras, Southeast Asian Bull.Math. 33 (2009) 209-220.
ii. M. Bakhshi, R.A.Boraooei, Lattice structure on fuzzy congruence relations of a hypergroupoid, Inform. Sci. 177 (2007) 3305-3313.
iii. R. Biswas, Vague Groups, Int. J. Comput. Cognition 4 (2006) 20-23.
iv. S.W.Chen, Y. Xu, Y. B. Jun, Intuitionistic fuzzy filters in Lattice Implication Algebra, The Journal of Fuzzy Mathematics 14 (2006) 385-392.
v. T. Eswarlal, Vague ideals and normal vague ideals in semirings, Int. J. Comput. Cognition 6 (2008) 60-65.
vi. W.L. Gau and Buehrer D.J.Vague sets, IEEE Transactions on systems, Man and Cybernetics 23 (1993) 610-614.
vii. S. Ghorbani, Intuitionistic fuzzy filters of residuated lattices, New Mathematics and Natural Computation 7 (2011) 499-513.
viii. S. Ghorbani, Intuitionistic fuzzy congruence relations on residuated lattices, Acta Universities Apulensis 29 (2012) 301-314.
ix. Y. B. Jun, W. H. Shim, Fuzzy strong implicative hyper BCK-ideals of of hyper BCK-algebras, Inform. Sci. 170 (2005) 351361.
x. Y. B. Jun, Fuzzy positive implicative and fuzzy associative filters of lattice implication algebras, Fuzzy Sets, Syst. 121 (2001) 353-357.
xi. Y. B. Jun, S.Z. Song, On fuzzy implicative filters of lattice implication algebras, J. Fuzzy Math. 10 (2002) 893-900.
xii. Y. B. Jun, Y. Xu, J. Ma, Redefined fuzzy implication filters, Inform. Sci. 177 (2007) 1422-1429.
xiii. H. Kham, M. Ahamd, R. Biswas, Vague relations, Int.J.Comput.Cognition 5(2007)31-35.
xiv. Y. Liu, J. Liu, Y. Xu, Fuzzy congruence theory of lattice implication algebras, J.Fuzzy Math. 20 (2012) 777-790.
xv. Y. Liu, Y. Xu, X.Y. Qin, Interval-valued T-Fuzzy Filters and Interval-valued T-Fuzzy Congruences on Residuated Lattices, Journal of Intelligent and Fuzzy Systems DOI : 10.3233/ IFS-130879.
xvi. G. J. Wang, Non-classical Mathematical Logic and Approximating Reasoning, Science Press, Beijing, (2000).
xvii. M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 36 (2) (1939), 406-437.
xviii. Z. Xue, Y. Xiao, T. Y. Xue and Y. Li, Intuitionistic fuzzy filter of BL-algebras, Computer Science, 39 (2012), 198-201.
xix. L. A. Zadeh, Fuzzy set, Inform. Sci. 8 (1965) 338-353.
xx. Y. Q. Zhu and Y. Xu, On filter theory of residuated lattices, Inform Sciences, 180 (2010) 3614-3632.

