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1. Introduction 
The notion of residuated lattices is initiated in order to provide a reliable 

theory and establish a logical system with truth value in a relatively gen

Zadeh (1965) [19].  Since then this idea has been applied to other 

express the evidence of supporting and opposing.  Hence 

D.J.  In a vague set A, there are two membership functions: a truth membership fucntion 

�� and �� are lower bound of the grade of membership respectively and 

set A is a subinterval [��(x), 1-��(x)] of [0, 1].  Vague sets i

of every elements which can be divided into two aspects including supporting and opposing.  Wi

theory, some structure of algebras corresponding to vague set have been studied.  R.Biswas [3] initiated the study of vague a

studying vague groups. T.Eswarlal [5] study the vague ideals and normal vague ideals in semirings.  H.Hkam , etc 

vague relations and its properties. Quotient algebras

among filters, congruences and quotient algebras.

properties of Vague filters in terms of its level subsets.

set of all vague filters forms a bounded distributive lattice.

 

2. Preliminaries 

 

2.1. Definition 2.1: [17] 

 A residuated lattice is an algebraic structure L = (L, 

1. (L, ∨, ∧, 0, 1) is a bounded lattice 

2. (L, *, 1) is a commutative monoid. 

3. (*, 1) is an adjoint pair, i.e., for any x, y, z, w

i. if x ≤ y and z ≤ w , then x * z ≤

ii. if  x ≤ y and y → z ≤ x → z then

iii. (adjointness condition) x * y ≤
In this paper, denote L as residuation lattice unless otherwise specified.

 
2.2. Definition 2.2: [20] 

 Let U ≠ ϕ.  A mapping f : U → [0, 1] is called a fuzzy set.  Let f and g be fuzzy sets on U.  Then tip

can be defined by 

 ��(x) = � ����,														�	≠	1��1�∨	��1�,				�  1� 
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n order to provide a reliable logical foundation for uncertain information processing 

theory and establish a logical system with truth value in a relatively general lattice.   The concept of 

].  Since then this idea has been applied to other algebraic structures. Since the fuzzy set is single function, it cannot 

pposing.  Hence the concept of vague set [6] is introduced in 1993 by W.L.Gau and Buehrer. 

J.  In a vague set A, there are two membership functions: a truth membership fucntion �� and a false membership function 
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(x)] of [0, 1].  Vague sets is an extension of fuzzy sets.  The idea of vague sets is that the membership 
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theory, some structure of algebras corresponding to vague set have been studied.  R.Biswas [3] initiated the study of vague a

T.Eswarlal [5] study the vague ideals and normal vague ideals in semirings.  H.Hkam , etc 
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A residuated lattice is an algebraic structure L = (L, ∨, ∧, *, →, 0, 1) satisfying the following axioms: 

(*, 1) is an adjoint pair, i.e., for any x, y, z, w∈L,  

≤ y * w. 

then z → x ≤ z → y. 

≤ z if and only if x ≤ y → z. 

denote L as residuation lattice unless otherwise specified. 

[0, 1] is called a fuzzy set.  Let f and g be fuzzy sets on U.  Then tip- extended pair of f and g [19, 20] 
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��(x) = � ����,														�	≠	1��1�∨	��1�,				� = 1�. 
 

2.3. Theorem 2.3: [17, 16]  

In each residuated lattice L, the following properties hold for all x, y, z ∈ L: 

1. (x * y) → z = x → (y → z). 

2. z ≤ x → y ⇔ z * x ≤ y. 

3. x ≤ y ⇔ z * x ≤ z * y. 

4. x → (y → z) = y→ (x → z). 

5. x ≤ y ⇒ z → x ≤ z → y. 

6. x ≤ y ⇒ y → z ≤ x → z, �� ≤  ��. 
7. y → z ≤ (x → y) → (x → z). 

8. y → x ≤ (x → z) → (y → z). 

9. 1 → x = x, x → x = 1. 

10. �� ≤ ��		, m, n ∈ N, m ≥ n. 

11. � ≤ y ⇔ x → y = 1. 

12. 0� = 1, 1� = 0, �� = ��, x ≤ ��. 

13. � ∨ y → z = (x → z) ∧ (y → z). 

14. � ∗ 	�� = 0. 

15. �	→ (y ∧ z) = (x → y) ∧ (x → z). 

 

2.4. Definition 2.4: [20]  

  A non-empty subset F of a residuated lattice L is called a filter of L if it satisfies 

1. x, y ∈ F ⇒ x * y ∈ F. 

2. x ∈ F, x ≤ y ⇒ y ∈ F. 

 

2.5. Theorem 2.5: [20] 

             A non-empty subset F of a residuated lattice L is called a filter of L if it satisfies, for any x,y∈ L, 

1. 1 ∈ F. 

2. x ∈ F, x → y ∈ F ⇒ y ∈ F. 

 

2.6. Note 2.6: [20] 

A fuzzy set A on a residuated lattice L is a mapping from �� to [0, 1] 

 

2.7. Definition 2.7: [20] 

A fuzzy set A of a residuated lattice L is called a fuzzy filter, if it satisfies, for any x, y ∈ L                         

1. A(1) ≥ A(x). 

2. A(x * y) ≥ min{A(x), A(y)}. 

 

2.8. Theorem 2.8: [20] 

A  fuzzy set A of a residuated lattice L is a fuzzy filter, if and only if it satisfies, for any x, y ∈ L, 

1. A(1) ≥ A(x). 

2. A(y) ≥ min{A(x → y), A(x)} 

 

2.9. Definition 2.9: [3] 

 A Vague set A in the universe of discourse S is a Pair (��,	��) where �� : S → [0,1] and ��	: S → [0,1] are mappings (called truth 

membership function and false membership function respectively) where ��(x) is a lower bound of the grade of membership of x 

derived from the evidence for x and ��(x) is a lower bound on the negation of x derived from the evidence against x and  ��(x) + ��(x) 

≤ 1 ∀x∈	S. 

 

2.10. Definition 2.10: [18] 

 Let δ be a mapping from [0, 1] × [0, 1] to [0, 1].  δ is called a t-norm (resp. s-norm) on [0, 1], if it satisfies the following conditions:  

for any x, y, z ∈ [0, 1] 

1. δ(x, 1) = x (resp. δ(x, o) = x), 

2. δ(x, y) = δ(y, x), 

3. δ(δ(x, y), z)  = δ(x, δ(y, z)), 

4. if  x ≤ y, then δ(x, z) ≤ δ(y, z). 
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3. Vague Filters on Residuated Lattice 

 

3.1. Definition 3.1: 

     A Vague set A of L is called a vague filter of L, if for any x, y ∈ L: 

1. ��(I) ≥ ��(x) 

2. ��(y) ≥ min(��(x → y), ��(x)) 

 

3.2. Theorem 3.2: 

   Let A be a vague filter of L.  Then, for any x, y ∈ L : if x ≤ y, then ��(x) ≤ ��(y) . 

 

� Proof: 

Since x ≤ y, it follows that x → y = I.  Since A is a vague filter of L, we have  ��(y) ≥ min(��(x → y), ��(x)) and ��(I) ≥ ��(x) for any 

x, y ∈ L.  Therefore ��(y)  ≥ min (��(x → y), ��(x)) = min (��(I), ��(x)) ≥ min (��(x), ��(x)) =  ��(x). Therefore  ��(x) ≤ ��(y). 

 

Theorem 3.3: 

 Let A be a vague se t on L.  Then A is vague filter of L, if and only if , for any x, y, z ∈ L  ��(I) ≥ ��(x) and ��(x → z) ≥  min(��(y → 

( x → z)) , ��(y)) . 

 
� Proof: 

Let A be vague filter of L, obviously ��(I) ≥ ��(x) and ��(I) ≥ ��(x) and ��(x → z) ≥     min(��(y → ( x → z)) , ��(y)) holds for any x, 

y, z ∈ L.  Taking x = I in ��(x → z) ≥  min(��(y → ( x → z)) , ��(y)), we have ��(z) = ��(I → z) ≥ min(��(y → (I → z)), ��(y)) = 

min(��( y → z), ��(y)).  Since ��(I) ≥ ��(x) holds, and so A is a vague filter of L.  

 

3.4. Theorem 3.4: 

 Let A be a vague set on L.  Then A is a vague filter of L, if and only if, for any x, y, z ∈ L, A satisfies  if x ≤ y, then ��(x) ≤ ��(y) for 

any x, y ∈ L and ��(x * y) ≥ min(��(x), ��(y)) . 

 

• Proof: 

Assume that A is a vague filter of L, obviously if x ≤ y, then ��(x) ≤ ��(y) holds for any x,y ∈ L.  Since x ≤ y → (x * y), we have ��(y 

→ (x * y)) ≥	��(x).  By Definition 3.1 (2), it follows that ��(x * y) ≥ min(��(y), ��(y → (x * y))) ≥ min(��(y), ��(x)).  Conversely, 

assume that if  x ≤ y, then ��(x) ≤ ��(y) and ��(x * y) ≥ min(��(x), ��(y)) holds for any x, y ∈ L.  Taking y = I, we get ��(I) ≥ ��(x) . 

As x * (x → y) ≤ y, thus ��(y) ≥ ��(x * (x → y)). Therefore ��(y) ≥ min(��(x), ��(x → y)).  Hence A is a vague filter of L. 

 

3.5. Remark 3.5: 

  A vague set on L is a vague filter of L, if and only if, for any x, y, z ∈ L : if  x → (y → z) = I then ��(z) ≥ min(��(x), ��(y)). 

 

3.6. Remark 3.6: 

  A vague set on L is a vague filter of L, if and only if, for any x, y, z ∈ L: 

if �� → (��	�� → ….→ (�� → x) …..) = I, then ��(x) ≥ min(��(��), …….,��(��)) 

 

3.7. Theorem 3.7: 

A vague set on L is a vague filter of L, if and only if, for any x, y, z ∈ L, A satisfies Remark 3.5 and ��( ( x → (y → z)) → z) ≥ 

min(��(x), ��(y)). 

 

� Proof: 

If A is a vague filter of L then Remark 3.5 holds.  Since ��((x → (y → z)) → z) → z ) ≥ min (��((x → (y → z)) → (y → z)), ��(y)).  

As (x → (y → z)) → (y → z) = x ∨ (y → z) ≥ x , by Theorem 3.2 we have ��((x → (y → z)) → (y → z) ) ≥ ��(x).                                                

Therefore, ��((x → (y → z)) → z) ≥ min (��(x), ��(y)). Conversely, suppose	��( ( x → (y → z)) → z) ≥ min(��(x), ��(y)) is valid.                                 

Since ��(y) = ��(I → y) = ��((( x → y) → (x → y)) → y) ≥ min(��(x → y), ��(x)).  Hence by Definition 3.1, A is s vague filter of L. 

 
3.8. Theorem 3.8: 

 Let A be a vague set on L.  Then A is a vague filter of L, for any x, y, z ∈ L, A satisfies Definition 3.1(1) and ��(x → z) ≥ min(��(x 

→ y), ��(y → z)). 
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� Proof: 

  Assume that A is vague filter of L.  Since (x → y) ≤ (y → z) → (x → z), it follows from Theorem 3.2 that ��((y → z) → (x → z)) ≥ 

��(x → y).  As A is a vague filter , so ��(x → z)  ≥ min(��(y → z), ��((y → z) → (x → z))).  We have ��(x → z) ≥ min(��(y → z), 

��(x → z)).  Conversely, if ��(x → z) ≥ min(��(x → y), ��(y → z)) for any x, y, z ∈ L, then ��(I → z) ≥ min(��(I → y), ��(y → z )) 

that is ��(z) ≥ min(��(y), ��(y → z)).  Hence by definition 3.1 A is a vague filter of L.      

 

3.9. Theorem 3.9: 

Let A be a vague set on L.  Then A is a vague filter of L, if and only if, for any α, β ∈ [0, 1] and α + β ≤ 1, the sets U(��, α) (≠ ϕ) and 

L(1-��, β) (≠ ϕ) are filters of L, where U(��, α) = {x ∈ L / ��(x) ≥ α} , L(1- ��(x), β) = {x ∈ L/ 1- ��(x) ≥ β}. 

 

� Proof: 

Assume A is a vague filter of L, then ��(I) ≥ ��(x) .  By the condition U(��, α) ≠ ϕ, it follows that there exist a ∈ L such that ��(a) ≥ α 

, and so ��(I) ≥ α, hence I ∈ U(��, α).  Let x, x → y ∈ U(��, α), then ��(x) ≥ α, ��(x → y) ≥ α.  Since A is a filter of L, then ��(y) ≥ 

min(��(x), ��(x → y)) ≥ min (α, α) = α.  Hence y ∈ U(��, α).  Therefore U(��, α) is a filter of L.  We will show that L(1- ��(x), β) is a 

filter of L.  Since A is a vague filter of L, then 1- ��(I) ≥ 1- ��(x).  By the condition L(1- ��(x), β) ≠ ϕ, it follows that there exist a ∈ L 

such that 1- ��(a) ≥ β.  Therefore we have 1- ��(I) ≥ 1- ��(a) ≥ β.  Hence I∈ L(1- ��(x), β).  Let x, x → y ∈ L(1- ��(x), β), then 1- ��(x) 

≥ β , 1- ��(x → y) ≥ β.  Since A is a vague filter of L, then 1- ��(y) ≥ min (1- ��(x), 1- ��(x → y)) ≥ min (β, β) = β.  It follows that 1- 

��(y) ≥ β, hence  y ∈ L(1- ��(x), β).  Therefore L(1- ��(x), β) is a filter of L.  Conversely, suppose that  U(��, α) ≠ ϕ and L(1- ��(x), β) 

≠ ϕ are filters of L, then, for any x ∈ L, x ∈ U(��, ��(x)) and x ∈ L(1- ��,  1- ��(x)).  By U(��, ��(x)) ≠ ϕ and L(1- ��, 1- ��(x)) ≠ ϕ are 

filters of L, it follows that I∈ U(��, ��(x)) and  I ∈ L(1- ��, 1- ��(x)), and so ��(I) ≥ ��(x).  For any x, y ∈ L, let α = min(��(x), ��(x → 

y)) and β = min (1- ��(x), 1- ��(x → y)),  then x, x → y ∈ U(��, α) and x, x → y ∈ L(1- ��, β).  And so y ∈ U(��, α) and y ∈ L(1- 

��(x), β).  Therefore ��(y) ≥ α = min(��(x), ��(x → y)) and  1- ��(y) ≥ β = min(1- ��(x), 1- ��(x → y)).  From theorem 3.2, we have A 

is a vague filter of L. 

 

3.10. Theorem 3.10: 

Let A, B be two vague filters of L, then A∩B is also a vague filter of L. 

 

� Proof: 

Let x , y, z ∈ L such that z ≤ x → y, then z → (x → y) = I.  Since A, B be two vague filters of L, we have  ��(y) ≥ min (��(z), ��(x)) 

and ��(y) ≥ min (��(z), ��(x)).  Since ��∩	�(y) = min(��(y), ��(y)) ≥ min(min(��(z), ��(x)), min (��(z), ��(x))) = min(min(��(z), 

��(z)), min(��(x), ��(x)) = min(��∩	�(z), ��∩�(x)).  Since A, B be two vague filters of L, we have  ��(I) ≥ ��(x) and ��(I) ≥ ��(x).  

Hence ��∩�(I) = min(��(I), ��	(I)) ≥ min(��(x), ��(x)) = ��∩�(x) .  Then A ∩ B is a vague filters of L. 

 
3.11. Remark 3.11:  

Let  ! be a family of vague sets on L, where i is an index set.  Denoting C by the intersection of   !, i.e. ⋂  !!	∈# , where �$(x) = 

min(��%(x), ��&(x), ……) for any x ∈ L. 

 
3.12. Note 3.12: 

Let  ! 	be a family of vague filters of L, where i ∈ I, I is an index set, then  ⋂  !!	∈#  is also a vague filters of L.   

 
3.13. Theorem 3.13: 

Let A be a vague set on L.  Then  

a. For any α, β ∈ [0, 1], if  �',(� is a filter of L.  Then, for any x, y, z ∈ L, 

��(z) ≤ min(��(x → y), ��(x)) imply ��(z) ≤ ��(y). 

b. If A satisfy Definition 3.1(1) and condition (a), then, for any α, β ∈ [0, 1],  �',(� is a filter of L. 

Proof: 

a. Assume that  �',(� is a filter of L for any α, β ∈ [0, 1].   

Since ��(z) ≤ min(��(x → y), ��(x)), it follows that ��(z) ≤ ��(x → y), ��(z) ≤ ��(x).  Therefore, x → y ∈ �)*�+�,���*�+��, 
x ∈  �)*�+�,���*�+�� .  As ��(z) ∈ [0, 1], and  �)*�+�,���*�+�� is a filter of L, so y ∈  �)*�+�,���*�+��.  Thus ��(z) ≤ ��(y). 

b. Assume A satisfy (a) and (b).  For any x, y ∈ L, α, β ∈ [0, 1], we have  x → y ∈  �',(�,   x ∈  �',(�,therefore ��(x → y) 

≥ α, 1- ��(x → y) ≥ β and ��(x) ≥ α , 1- ��(x) ≥ β , and so min(��(x → y) , ��(x) ) ≥ min(α, α) = α.  By (a), we have             

��(y) ≥ α and 1- ��(y) ≥ β, that is, y ∈  �',(�.  Since  ��(I) ≥ ��(x) for any x ∈ L, it follows that ��(I) ≥ α and 1- ��(I) ≥ 

β, that is, I ∈  �',(�.  Then for any α, β ∈ [0, 1],  �',(� is a filter of L. 

 

3.14. Theorem 3.14: 

 Let A be a vague filter of L, then for any α, β ∈ [0, 1],   �',(� (`≠ ϕ) is a filter of L. 
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� Proof: 

Since  �',(� ≠ ϕ, there exist α, β ∈ [0, 1] such that ��(x) ≥ α , 1- ��(x) ≥ β .  And A is a vague filter of L, we have ��(I) ≥ ��(x) ≥ α, 1- 

��(I) ≥ 1- ��(x) ≥ β, therefore I ∈  �',(�. Let x, y ∈ L and  x ∈  �',(�, x → y ∈  �',(�  , therefore ��(x) ≥ α, 1- ��(x) ≥ β , ��(x → y) ≥ 

α, 1- ��(x → y) ≥ β.  Since  A is a vague filter of L, thus  ��(y) ≥ min(��(x → y), ��(x)) ≥ α and 1- ��(y) ≥  min(1- ��(x → y), 1- ��(x)) 

≥ β, it follows that y ∈  �',(� .  Therefore,  �',(�  is a filter of L. 

 

3.15. Remark 3.15:       

From Theorem 3.14, the filter  �',(�	 is also called a vague – cut filter of L. 

 
3.16. Theorem 3.16: 

Any filter F of L is a vague –cut filter of some vague filter of L. 

 

� Proof:    

 Consider the vague set A of L: A = {(x, ��(x) / x ∈ L}, where If x ∈ F, ��(x) = α.  If x ∉ F, ��(x) = 0.  where α ∈ [0, 1].  Since F is a 

filter of L, we have 1 ∈ F.  Therefore ��(I) = α ≥ ��(x).  For any x, y ∈L, if y ∈ F, then ��(y) = α = min(α, α) ≥ min (��(x → y), 

��(x)).  If y ∉ F, then    x ∉ F or  x → y ∉ F.  And so ��(y) = 0 = min(0, 0) = min(��(x → y), ��(x)).  Therefore A is a vague filter of 

L.  

 

3.17. Theorem 3.17: 

Let A be a vague filter of L.  Then F = {x ∈ L / ��(x) = ��(I), 1- ��(x) = 1- ��(I)} is a filter of L. 

 

� Proof:     

Since F = {x ∈ L / ��(x) = ��(I), 1- ��(x) = 1- ��(I)}, obviously I ∈ F.  Let x → y ∈ F, x ∈ F, so ��(x → y) = ��(x) = ��(I).  Therefore 

��(y) ≥ min(��(x → y), ��(x)) = ��(I) and ��(I) ≥ ��(y), then ��(y) = ��(I).  Thus y ∈ F.  It follows that F is a filter of L. 

 

4. Extended Pair of Vague Filters 

 

4.1. Remark 4.1: 

Let A, B be two vague filters of L, then A∩B is also a vague filter of L. 

 

4.2. Remark 4.2: 

For A ∈ VS (L), the intersection of all vague filters containing A is called the generated fuzzy filter by A, denoted as < A >. 

 

4.3. Remark 4.3: 

Let A ∈ VS (L).  Then A is a vague filter if and only if x * y ≤ z implies  ��(x) ∧  ��(y) ≤  ��(z) for all x, y, z ∈ L. 

 

4.4. Theorem 4.4: 

  Let A ∈ VS(L).  Define a new vague set B by B = [��, 1 −	��] where ��(x) = ⋁ {/%∗	…./234 ��(��) ∧ …… ��(��)}, for all x ∈ L. 

where �!∈ L, n ∈ N.  Then B = < A >. 

 

� Proof: 

  We complete the proof by two steps.  Firstly, we verify that B is a vague filter.  For all x, y ∈ L, such that x ≤ y, the Definition of B 

yields that ��(x) ≤  ��(y).  For all x, y ∈ L, we have         ��(x) ∧  ��(y) = ⋁ {/%∗	…./234 ��(��) ∧ …… ��(��)} ∧ ⋁ {5%∗	….5637 ��(8�) ∧ 

…… ��(8�)} = ⋁ 	⋁ {5%∗	….5637 {/%∗	…./234 ��(��) ∧ …… ��(��) ∧ ��(8�) ∧ …… ��(8�)}, where �!,	8!  ∈ L, n,m ∈N, for all x, y ∈ L. 

≤ ⋁ {9%∗	….9:34∗7 ��(;�) ∧ …… ��(;<)}, ;! ∈ L, k ∈ N.  =  ��(x * y), by Remark 4.3.  Thus B is a vague filter.  Secondly, let C be a 

vague filter such that C ⊇ A.  By the Definition of vague filter, it holds that  ��(x) = ⋁ {/%∗	…./234 ��(��) ∧ …… ��(��)}  ≤ 

⋁ {/%∗	…./234 �$(��) ∧ …… �$(��)} ≤ ⋁ {/%∗	…./234 �$(�� ∗……..* ��)} ≤  �$(x).  Hence B ⊆ C.  Thus B = < A >. 

 

4.5. Lemma 4.5: 

  Let a, b, u, v ∈ [0, 1] such that 0 ≤ a + b ≤ 1 and 0 ≤ u + v ≤ 1.  Then 0 ≤ a ∨ u + b ∧ v ≤ 1. 

 

� Proof: 

Without losing the generality, we assume that a ≤ u.  Then a ∨ u + b ∧ v ≤ u + v ≤ 1.  It obvious that 0 ≤ a ∨ u + b ∧ v.  Thus it holds 

that 0 ≤ a ∨ u + b ∧ v ≤ 1. 
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4.6. Theorem 4.6: 

                    Let A be a vague filter of L and for all u, v ∈ [0, 1] such that 0 ≤ u + v ≤ 1.  Then  =,> = [��=, 1-��>] is a vague filter, 

where ��= (x) = � �����,									�	≠	1���1�	∨	?, � = 1� ,             
                                                                 1-��>(x) = � 1 − �����,										�	≠	0

1 − ���0�	∨	@,							� = 0�. 
� Proof: 

It follows form Lemma 3.6 that  =,> ∈ VS(L).  Now we prove that  =,> is a vague filter.  If x ≤ y, we consider the following two 

cases. 

 

Case 1: (y = 1).  It is obvious that ��=(x) ≤ ��=(1) = ��=(y), 1-��>(x) ≤ 1-��>(0) = 1-��>(y). 

Case 2: (y ≠ 1).  The Definition of  =,> leads that ��=(x) = ����� ≤ ����� = ��=(y), 1-��> (x) = 1 − ����� ≤ 1 − ����� = 1-��>(y).  

Thus ��=(x) ≤ ��=(y), 1-��>(x) ≤ 1-��>(y).   

Let x, y ∈ L.  We consider the following two cases. 

Case 1: (x * y  = 1).  If x = y = 1, it is obvious that ��=(x) ∧ ��=(y) ≤ ��=(x * y), 1-��>(x) ∧ 1-��>(y) ≤ 1-��>(x * y).  If x = 1, y ≠ 1 or x  

≠ 1, y = 1, it is a contradiction.  If x ≠ 1, y ≠ 1, it holds that ��=(x) ∧ ��=(y) = ����� ∧ �����  ≤ ��(x * y) = ��=(x * y),  1-��>(x) ∧ 1-

��>(y) = 1 − ����� ∧ 1 − �����  ≤ 1 − ���� ∗ � ) = 1-��>(x * y). 

Case 2: (x * y  ≠ 1), it is a contradiction.  If x = y = 1, it is a contradiction. If x = 1, y ≠ 1or x ≠ 1, y = 1, it is obvious that ��=(x) ∧ 

��=(y) ≤ ��=(x * y),  1-��>(x) ∧ 1-��>(y) ≤ 1-��>(x * y). If x ≠ 1, y ≠ 1, we have ��=(x) ∧ ��=(y)  = ����� ∧ �����	 ≤ ��(x * y) = ��=(x * 

y) 1-��>(x) ∧ 1-��>(y) = 1 − �����  ∧ 1 − �����  ≤ 1 − ��(x * y) =1- ��=(x * y).  And in all, it yields that ��=(x) ∧ ��=(y) = ����� ∧ 

�����	 ≤ ��(x * y) = ��=(x * y), 1-��>(x) ∧ 1-��>(y) = 1 − �����  ∧ 1 − �����  ≤ 1 − ��(x * y) =1- ��=(x * y).  Thus  =,> is a vague 

filter. 

 

4.7. Definition 4.7:  

For given A, B ∈ VS(L), the operation ∗A is defined by A ∗A B is defined by  

 A ∗A B = [�� ∗A ��, 1 − �� ∗A 1 − �� ], where �� ∗A ��(x) = ⋁ {7∗B≤	4 �����∧ ��(z)}. 

 

4.8. Definition 4.8: 

The extended pair for vague sets A and B defined by  � = [��)C , 1 − ��		���C	] , 
 ��)C(x) = � �����,												�	≠	1���1�∨	���1�, � = 1� ,  1 − �����C(x) = � 1 − �����,																					�	≠		0

1 − ���0�∨	1 − ���0�, � = 0�       
D� = [��)*, 1 − ��		���*	] where ��)*(x) = � �����,												�	≠	1���1�∨	���1�, � = 1� ,  1 − �����*(x) = � 1 − �����,																					�	≠		0

1 − ���0�∨	1 − ���0�, � = 0� . 
 

4.9. Theorem 4.9:      

          Let A, B ∈ VF(L).  Then  � ∗A 	D� ∈ VF(L). 

� Proof:  

It is obvious that ��)C  ∗A ��)* is order preserving, and 1 − �����C  ∗A 1 − ��		���*	 is order preserving.  For all x, y ∈ L, we have ��EC ∗A 
��E* (x * y) = ⋁ {��EC�F�G∗H	34∗7 ∧ ��E*(q)}≥	⋁ {��EC�� ∗ ;�	/∗5	34

9∗J37
∧ ��E*(b * d)}≥ ⋁ {��ECK��∧	��EC�;L	/∗5	34

9∗J37
∧ ��E*(b) ∧��EC  

(d)} = ⋁ {��ECK��∧	��E*�8L}	/∗5	34 ∧ ⋁ {��ECK;�∧	��E*�NL	9∗J	37 } = ��EC ∗A ��E*(x) ∧ ��EC ∗A ��E*(y) and hence ��EC ∗A ��E* (x * y)  

≥ ��EC ∗A ��E*(x) ∧ ��EC ∗A ��E*(y).  Thus  � ∗A 	D� ∈ VF(L). 

 
4.10. Theorem 4.10:  

Let A, B ∈ VF(L).  Then  � ∗A 	D�  = < A ∪ B >. 

� Proof:   

             It is easy to prove that A, B ⊆  � ∗A 	D�, and hence A ∪ B ⊆  � ∗A 	D�. Thus < A ∪ B > ⊆  � ∗A 	D�.  Assume that C ∈ VF(L) 

such that A ∪ B ⊆ C.  If x = 1, we have ��)C  ∗A ��)* (1) =  ��(1) ∨ ��(1) ≤ �$(1), 1 − �����C ∗A 1 − ��		���*	(0) = 1 − ��(0) ∧ 1 − ��(0) 

≤ 1 − �$(0).  It holds that ��EC ∗A ��E*  (x)  =  ⋁ {��EC�F�G∗H	34 ∧ ��E*(q)} =  ⋁ {��EC�F�G∗H	34
G	≠	�,H	≠	�

∧ 

��E*(q)}∨⋁ {G	34 ���F�}∨⋁ {H	34 ���O�}=⋁ ���F�G∗H	34
G	≠	�,H	≠	�

∧��(q)}∨⋁ {G	34 ���F�}∨ ⋁ {H	34 ���O�} ≤ 

⋁ �$�F�G∗H	34
G	≠	�,H	≠	�

∧�$(q)}∨⋁ {G	34 �$�F�}∨⋁ {H	34 �$�O�}= ⋁ {G	∗A	H34	 ��(p)∧ ��(q)} ≤ �$(x).  It follows from Theorem 3.10 that  � ∗A 	D�  

= < A ∪ B >. 

 

4.11. Remark 4.11: 

For A,B∈VF(L), then the operations ⨅ and ⨆ on VF(L) are defined by A⨅B=A∩B, A⨆B= � ∗A 	D�. 



www.ijird.com                                           February, 2016                                             Vol 5 Issue 3 

  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 279 

 

4.12. Theorem 4.12: 

(VF(L), ⨅, ⨆, ∅, L) is a bounded distributive lattice.  

� Proof: 

  We only verify the distributivity.  Obviously, it holds that C ⨅ (A ∪ B) ⊇ (C ⨅A) ⨆ (C ⨅ B), so we only prove C ⨅ (A ∪ B) ⊆ (C 

⨅A) ⨆ (C ⨅ B).  Assume that x ∈ L for �$ ∧ ��EC ∗A ��E* (x) ≤ (�$ ∧ ���ES∧EC ∗A(�$ ∧ ���ES∧E*(x), we consider the following two 

cases. 

Case 1: (x = 1). We have �$∧��∪�(1) = �$�1�∧	��EC ∗A ��E* (1) = �$(1)∧(	��(1) ∨ ��(1)) =  (�$(1)∧(	��(1)) ∨ (�$(1)∧(	��(1)) = ��$ ∧ 

���ES∧	EC ∗A (��$ ∧ ���ES∧	E*(1). 

Case 2: (x ≠ 1).  It holds that �$(x)∧ ��EC ∗A ��E*(x) = �$(x) ∧⋁ {��ECG∗AH	34 �F�∧	��E*�O�} = 

⋁ {	�$���∧��ECG∗AH	34 �F�∧	��E*�O�}=⋁ {�$G∗H	34
G	≠	�,H	≠	�

���∧	��(p)∧	�$(x)∧	��(q)}∨{�$(x)∧	��EC(1)∧	�	�(x)} ∨ 

{�$(x)∧	��E*(1)∧	�	�(x)}= ⋁ {�$���G∗H	34
G	≠	�,H	≠	�

∧��(p)∧	�$(x)∧	��(q)}∨ {�$��� ∧ �$�1�∧��EC(1)∧	�����}∨{�$��� ∧ 

�$�1�∧��E*(1)∧	�����}}= ⋁ {�$���G∗H	34
G	≠	�,H	≠	�

∧��(p) ∧�$���∧���O�}∨{	�$�1�∧����1�∨	���1��}∧[(�$���∧�����)∨(	�$���∧�����)]}= 

⋁ {�$���G∗H	34
G	≠	�,H	≠	�

∧��(p)∧�$���}∧���O�}∨{[(	�$�1�∧����1��∨	��$�1�∧���1��]∧ [(	�$���∧������∨��$���∧	������]} ≤ ⋁ {G∗H	34
G	≠	�,H	≠	�

(�$ 

∧ ���ES∧EC(p∨x)∧ (�$ ∧ ���ES∧E*(q∨x)}∨  [(�$ ∧ ���ES∧EC(1) ∧ (�$∧��)(p ∨ x) = [(�$ ∧ ���ES∧E*(1)∧ (�$∧��)(q ∨ x)] =               

⋁ {G∗H	≤	4 (�$ ∧ ���ES∧EC(p∨x) ∧(�$ ∧ ���ES∧E*(q∨x)}.  Let p∨x = F, and q∨x = O, .  It is easy to verify that F, * O, ≤ x, and then the 

above can be written as ⋁ {G∗H	≤	4 (�$ ∧ ���ES∧EC(F,) ∧(�$ ∧ ���ES∧E*(O,)} = (�$ ∧ ���ES∧EC  ∗A (�$ ∧ ���ES∧E*(x).  Thus �$∧ ��EC ∗A 
��E* ≤  (�$ ∧ ���ES∧EC  ∗A (�$ ∧ ���ES∧E*, that is, the distributivity holds. 
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