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1. Introduction 
The boundary layer flows over a stretching sheet are very useful in the engineering applications such as flows occur in the extrusion 

process, glass fiber and paper production, hot rolling, wire drawing, electronic chips, crystal growing, plastic manufactures, and 

aerodynamic extrusion of plastic sheets. Convective phenomena are directly influenced by this surface and dynamic causing 

significant air mixing with horizontal as well as vertical turbulences. Very large number of research papers is available for boundary 

layer flows with heat transfer induced by a stretching sheet. Rajeswari et al. [1] have investigated chemical reaction, heat and mass 

transfer on nonlinear MHD boundary layer flow through a vertical porous surface in presence of suction. Mahdy [2] has studied the 

effect of chemical reaction and heat generation or absorption on double diffussive convection from vertical truncated cone in a porous 

media with variable viscosity. Pal and Talukdar [3] have studied perturbation analysis of unsteady magnetohydrodyanamic convective 

heat mass transfer in boundary layer slip flow past a vertical permeable plate with a thermal radiation and chemical reaction. Further 

the effect of thermal radiation, heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate in presence of 

transverse magnetic field was investigated by Makinde and Ogulu [4]. Mahmoud [5] presented variable viscosity and chemical 

reaction effect on mixed convection heat and mass transfer along a semi-infinite vertical plate. Al-odat and Al-Azab [6] studied the 

influence of chemical reaction on transient MHD free convection over a moving vertical plate. Choudhury and Jha [7] have 

established the effect of chemical reaction on MHD micro-polar fluid flow past a vertical plate in slip-flow regime. The effect of 

thermal radiation on electrical conducting fluid and mass transfer in a rotating system with periodic suction along a vertical infinite 

plate studied by Parida et.al [8]. Rout et al. [9] studied the influence of chemical reaction and radiation on MHD heat and mass 

transfer fluid flow over a moving vertical plate in presence of heat source with convective boundary condition. Singh and Naveen 

Kumar [10] studied the free convection effects on flow past an exponentially accelerated vertical plate. Yao et al. [11] have studied 

heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Recently, Rahman et. al [12,13], 

have studied many thermal boundary layer fluid flow problems with variable viscosity and thermal conductivity. 

 

2. Mathematical Formulation 

A two dimensional MHD boundary layer flow of a viscous incompressible, electrically conducting fluid moving over the surface of a 

semi-infinite impermeable flat plate is considered with a uniform velocity U
∞

in presence of heat source and radiation. The viscosity 

and thermal conductivity of the fluid are assumed to be functions of temperature. The external electric field is assumed to be zero and 

the magnetic Reynolds number is assumed to be small. Hence, the induced magnetic field is small compared with the externally 

applied magnetic field. The left surface of the plate is being heated by convection from a hot fluid at temperature 
f

T that gives a heat 
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transfer coefficient 
f

h as a function of x, with its strength: 

1

2

f f f
0 0

h (x) h x , h 0
−

= ≠  and T
∞

is the temperature of the fluid away 

from the plate. Here the x-axis be taken along the direction of plate and y-axis is normal to it. A magnetic field is applied in the 

direction perpendicular to the plate with varying strength M as a function of x, which is given by

1

2

0 0
M(x) M x , M 0

−

= ≠ , where x 

is the co-ordinate along the plate. As here there is no applied electric field; Hall effect and Joule heating effect are neglected. Within 

the framework of the above-noted assumptions subject to the Boussinesq approximation can be given by the following equations: 
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Boundary conditions: 

f w w

u T
u ( x , 0 ) L ( x , 0 ) , v ( x , 0 ) 0 , K ( T ) ( x , 0 ) h [ T T ( x , 0 ) ] , C ( x , 0 ) A x C

y y

λ

∞

∂ ∂
= = − = − = +

∂ ∂

u U , T T , C C w h e n y
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= = = → ∞                                 (5) 

The subscripts w and ∞ refer to the wall and boundary layer edge, respectively. L is the slip length, 
w

C  is the species concentration at 

the plate surface, A>0 is a constant,

 

TV is the thermophoretic velocity and λ is a real number and K(T)  is the thermal conductivity 

coefficient which is function of T.  

      For a viscous fluid the viscosity dependence on temperature T is of the    

      form 
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γ  is the variable thermal conductivity parameter,

 

µ∞  is the thermal conductivity of the fluid far away from the plate, Where 

r
r

w
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The thermal conductivity varies linearly with temperature for liquid metals. So the thermal conductivity is given by 

T T
K ( T ) = K 1

T T
ε ∞

∞

∞
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Where T
w

 is the reference temperature at the plate, ε  is the variable thermal conductivity parameter and K ∞
 is the thermal 

conductivity of the fluid far away from the plate. 

The thermophoretic velocity 
TV is given as  

   p

T

r
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= −
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T

y
                                           (8) 

Where 
rT  is some reference temperature and pt  is the thermophoretic coefficient.  

For a similarity solution of equation (1) - (5), defining an independent variable η  and a dependent variable f as 

U
y , x U f ( )

x
η ψ ν η

ν
∞

∞ ∞

∞

= =
                                  (9)  

By using the Rosseland approximation the value 
r

q is given by 

* 4

r

s

4 T
q

3k y

σ ∂
= −

∂
                                               (10) 

Where 
*σ  is the Stefan-Boltzman constant and 

s
k  is the Rosseland mean absorption coefficient. Assuming the temperature 

difference within the flow are sufficiently small, by Taylor series expansion neglecting the higher order terms, 
4

T  can be expressed as 

a linear function of temperature of the form 
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By using (10) and (11)  
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Introducing the following non-dimensional parameters 
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     Using (6)- (12) in the system of Eq. (1) - (5), the reduced non-dimensional   

     Eqs. are given by  
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      Corresponding boundary conditions are 
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With the use of equation (17) the non-dimensional temperature equation (14) can be written as  
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Where the value of θr cannot be equal to zero or θ(0) as for θr ∈ (0, θ(0)) no solutions could be found. The value θr →∞ was managed 

by setting 1/θr = 0 in the governing equation. 

 

3. Result Discussion 

The solution of the above non-dimension equations are solved by using fourth order Runge-kutta method along with shooting 

technique. The numerical results of non-dimensional velocity, temperature and concentration computed for various values of physical 

parameters Ha = 1, Gr = Gc = 5,R = 0.2, θr = 3,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 0.2,a = 0.5, ε  = 0.5, τ = 0.1 and δ = 0.5 are shown.  

VELOCITY PROFILE - In Figure 1 it is observed that there is no change of velocity due to thermal conductivity parameter ε  but 

the velocity is lower for the case of no-slip than the presence of slip. Effects of the thermal radiation parameter R on the velocity is 

displayed in Figure 2. Increasing the radiation enhances the heat transfer rate as well as the velocity boundary layer thickness which 

leads to more velocity. In Figure 3, for θr > 0, velocity increase with the increase of θr. But from the Figure 4 it is observed that for θr 

<0, velocity profiles decrease on the boundary with the increase of magnitude of θr . 
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 TEMPERATURE PROFILE -The dimensionless temperature for different values of ε
 
is displayed in Figure 5 and it decreases as 

the variable thermal conductivity parameter ε  increases. The Figure 6 shows the dimensionless temperature for different values of 

R, and it indicates that the temperature distribution increases as the radiation parameter R increases. The Figure7 displays the plate 

surface temperature increases with an increase in the local surface convection parameter due to convective heat exchange between the 

hot fluids on the lower side of the plate to the cold fluid on its upper surface; consequently, the thickness of the thermal boundary 

layer is enhanced. The temperature is higher for the case of no-slip than the presence of slip. The effect of Schmidt number Sc on 

temperature is displayed in Figure 8 and it is observed that temperature increases as increase in Sc.  

CONCENTRATION PROFILE - From Figure 9, it is observed that the dimensionless concentration slightly decreases as the radiation 

parameter R increases. The thermophoretic parameter τ is expected to alter the concentration boundary layer significantly. The 

dimensionless concentration decreases by increasing τ value which is displayed in Figure 10. 

 

 
Figure 1: Comparison of velocity distribution with Rahman 

for various values of ε  and δ. Ha = 1, Gr = Gc = 5,R = 0.2, 

θr = 3,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 0.2,a = 0.5, τ = 0.1. 

 

 
Figure 2: velocity for various values of R.. Ha = 1, Gr = Gc = 

5, ε =0.5 , θr = 3,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 0.2,a = 0.5, 

τ = 0.1 and δ = 0.5 

 

 
Figure 3: velocity for various values of θr.>0. Ha = 1, Gr = 

Gc = 5, ε =0.5, R =0.2,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 0.2,a 

= 0.5, τ = 0.1 and δ = 0.5 

 

 
Figure 4: velocity for various values of θr<0. Ha = 1, Gr = Gc 

= 5, ε =0.5 ,R =0.2,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 0.2,a = 

0.5, τ = 0.1 and δ = 0.5 

 



www.ijird.com                                             January, 2016                                               Vol 5 Issue 1 

  

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 397 

 

 

Figure 5: Temperature for various values of ε . Ha = 1, Gr 

= Gc = 5, R = 0.2, θr = 3,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 0.2,a 

= 0.5, τ = 0.1 and δ = 0.5 

 

 
Figure 6: Temperature for various values of R. Ha = 1, Gr = 

Gc =5 ε  = 0.5, θr = 3,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 0.2,a 

= 0.5, τ = 0.1 and δ = 0.5

 

 
Figure 7: Temperature for various values of a. Ha = 1, Gr = 

Gc = 5, ε  = 0.5, θr = 3,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 0.2, 

R = 0.5,τ = 0.1 and δ = 0.5 

 

 
Figure 8: Temperature for various values of Sc. Ha = 1, Gr = 

Gc = 5, ε  = 0.5, θr = 3, Pr = 1, Sx = 0.1,R= 0.5,Nc = 0.2,a 

= 0.5, τ = 0.1 and δ = 0.5 
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Figure 9: Concentration for various values of R with Ha = 1, 

Gr = Gc = 5,R = 0.2, θr = 3,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 

0.2,a = 0.5, ε  = 0.5, τ = 0.1 and δ = 0.5 

 

 
 Figure10: Concentration for various values of τ with Ha = 1, 

Gr = Gc = 5,R = 0.2, θr = 3,Pr = 1,Sx = 0.1,Sc = 0.22,Nc = 

0.2,a = 0.5, ε  = 0.5, and δ = 0.5.

4. Conclusion 
The effects of variable viscosity and variable thermal diffusivity on steady heat and mass transfer process in a two- dimensional MHD 

convective flow over a flat plate with partial slip at the surface subjected to the convective boundary condition with thermophoresis 

are studied. Finally, the following conclusions are drawn: 

• The velocity and temperature distribution increases with higher value of the radiation parameter. 

• The temperature is higher for the case of no- slip than the presence of slip 

• The concentration decreases by increasing the thermophoretic parameter. 
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