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1. Introduction 
Flexural continuum (beams, columns rectangular plates) energy approach analysis is dominated by the use of second order functional 

(functional with highest derivative of deflection being two) and fourth order functional (functional with highest derivative of deflection 

being four). Typical examples of second order functional are Ritz and Rayleigh-Ritz energy functionals (El-Naschie, 1990; Ugural, 

1999; Long et al., 2009; Chakraverty, 2009; Ibearugbulem and Ezeh, 2013; Ibearugbulem et al., 2013;).  Galerkin and work-error energy 

functionals are examples of fourth order functionals (Ezeh et l., 2013; Njoku et al., 2013; Ibearugbulem et al.,2014a; Ibearugbulem et 

al.,2014b). These energy functionals are very sufficient in continuum analyses. However, curiosity demands for a third order function 

for continuum analyses. The probing question is whether a reliable third order energy functional will be adequate for continuum 

analyses. It is in the bid to answer this probing question that gave rise to the present subject matter " use of variational calculus to evolve 

third order functionals for continuum analysis" 

 

2. Energy Functionals from Governing Differential Equation  
The governing differential equation of a line continuum subject to uniform lateral load, axial load and vibration is given by 

Ibearugbulem et al. (2014) as: EI������ = q	 + 	Nx	 ���� + ρa��																	(	1)	 
Where w, q, Nx, ρ, a, λ and EI respectively symbolize lateral deflection, lateral uniform load, axial load, density, cross section area, 

vibration frequency and flexural stiffness of the line continuum. This equation is the equation of equilibrium of forces acting at any 

arbitrary point along the continuum. The term on the left hand of the equation is the internal resistance force of the continuum, where as 

the terms on the right hand sum up to external forces trying to deform the continuum. Summation of all these forces (internal and 
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Abstract: 

This paper presents use of variational calculus to evolve third order functionals for continuum analysis. The governing equilibrium 

equation of forces of a line continuum was integrated in the open domain with respect to deflection to obtain three different valid 

forms of total energy functional for the continuum. They are second order (Ritz energy functional), fourth order (work error 

functional) and any functional hereinafter called the third order energy functional. Third order energy functional for a rectangular 

plate was also formulated. These third order energy functionals were subjected to direct variation (differentiating with respect to 

the coefficient of deflection) to obtain the weak form equilibrium of forces of continuums. Line continuum of four different boundary 

conditions and a plate with one edge clamped and the other three edges simply supported were used to test this new third order 

energy functional. In this numerical study, pure bending, buckling and free vibration analysis were performed. The results obtained 

indicated that the values obtained using this new method are exactly the same as the values obtained using either Ritz or work error 

energy functionals. Thus, one can comfortably and confidently use the third order energy functionals in continuum analysis  
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external) at any point along the continuum must be zero. By employing principles variational calculus, equation (1) can be integrated in 

open domain with respect to deflection, w to obtain: EI��(�)2��� = qw	 + 	Nx	 �(�)2�� + ρa�(�)2 + �� 		(	2)	 
‘ei’ is the arbitrary constant of integration and i denote arbitrary position along the continuum. Equation (2) can be rewritten in three 

different mathematically valid ways as: 

��		 = EI2 ������
 − qw −	Nx2 	������

 − ρa�(�)2 		(	3)	 
��		 = EI2 ������ . w − qw −	Nx2 	���� . � − ρa�(�)2 				(	4)	 
��		 = EI2 �!���! . ���� − qw −	Nx2 	���� . � − ρa�(�)2 		(	5)	 
Equations (3), (4) and (5) means that summation of all the works (internal and external) performed on the continuum at any arbitrary 

point along the continuum is not equal to zero but equal to a constant, ei. Let us sum these works at all the points along the continuum. 

This is an indefinite summation (integration): 

Π = $ ��%
& ��		 = EI2 $ ������

 ��%
& − q$ w'& dx 

−	Nx2 	$ ������
 ��%

& − ρa�2 $ (�)%
& ��					(	6)	 

Π = $ ��%
& ��			 = EI2 $ ������ . w	dx%

& − q$ w'& dx 

−	Nx2 	$ ���� . �'
& �� − ρa�2 $ (�)%

& ��			(	7)	 
Π = $ ��%

& ��		 = EI2 $ �!���! . ����%
& dx − q$ w'& dx 

−	Nx2 $ 	���� . �%
& �� − ρ+�2 $ (�)%

& ��				(	8)	 
Equation (6) is a typical Raleigh-Ritz equation of total potential energy functional of flexural line continuum under external flexural 

disturbance.  Equation (7) looks like the equation of total work error functional of flexural line continuum under external flexural 

disturbance (Ibearugbulem et al., 2014). The first term (internal work or internal energy of the continuum) of equation (8) is new and has 

not been used for continuum analysis. However, it is supposed to be mathematically equal to the internal work terms of equations (6) and 

(7). At this point, it shall be proper to ascertain the actual sign (positive or negative) of the various derivatives of the deflection function. 

In doing this, common trigonometric (H = sin πR) and polynomial (H = R – 2R
3
 + R

4
) deflection functions for simply supported (SS) line 

continuum shall be used. Polynomial deflection functions for clamped, C-C, (H = R
2
 – 2R

3
 + R

4
) and propped cantilever, CS, (H = 1.5R

2
 

– 2.5R
3
 + R

4
) line continua were also used. The signs of these deflection functions and their derivative are presented on figures 1 to 4. 

Note: w = A H; A is the coefficient and H is deflection curve (profile, shape); R = x/L; 0 ≤ R ≤ 1; G is as defined in the figures.  

 

 
Figure 1: Trigonometric funtion for SS 
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Figure 2: Polynomial funtion for SS   Figure 3: Trigonometric funtion for CC 

 

  
Figure 4: Polynomial funtion for CC     Figure 5: Polynomial funtion for CS 

 

From figures 1 to 5, only the deflection function, w and its fourth derivatives, w”” are positive at all the points along the continuum.  

Other derivatives – w’; w”; w’” –  are positive at some points and negative at some other points along the continuum.  

By thorough calculations of functions and observation of figures 1 to 5, we shall note that at all times the the following are obtainable: 

� = -./�01�;	������� . �� = -./�01�;	 
��!���! . ����� = 3�4+0�1�;	������

 = -./�01�;	 
����� . �� = 3�4+0�1� 

With these values (positive or negative), equations (7) and (8) shall be rewritten as: 

Π = EI2 $ ������ . w	dx%
& − q$ w'& dx +	Nx2 	$ ���� . �'

& �� 

−ρa�2 $ (�)%
& ��																																													(	9)	 

Π = −EI2 $ �!���! . ����%
& dx − q$ w'& dx +	Nx2 $ 	���� . �%

& �� 

−ρA+2 $ (�)%
& ��				(10)	 

Equation (9) is the typical equation of total work error functional of flexural line continuum under external flexural disturbance 

(Ibearugbulem et al., 2014). However, equation (10) is a new equation of total energy functional (third order work function) of flexural 

line continuum under external flexural disturbance.  

 



www.ijird.com                                                                                     April, 2017                                                                                     Vol 6 Issue 4 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT           DOI No. : 10.24940/ijird/2017/v6/i4/DEC16019 Page 55 

 

3. Verifying the Mathematical Equivalence of the Functionals 

Let the three functionals represented by equations (6), (9) and (10) be designated functional 1, functional 2 and functional 3. The 

integrals to be tested for mathematical equivalence include: 

$ ������
 ��%

& , $ ������ . w	dx		and	%
& $ �!���! . ����%

& dx.		Also, 
	$ ������

 ��%
& 	+3�	 $ 	���� . �%

& ��	 
 We shall use the five deflection equation used in plotting the graphs of figures 1 to 5 in this verification. Product of functions are 

presented on table 1 and their integrals are presented on table 2. 

 

4. Applying Direct Variation Calculus on Energy Equations 
If variational calculus is applied on equations (6), (9) and (10), we obtain (for each case) exactly equation (1), which is the governing 

differential equation. This equation is the strong form of expressing continuum flexural behavior under external disturbance because it 

states the equilibrium of forces at any arbitrary point along the continuum. This variation is achieved by differentiating the energy 

equation with respect to displacement equation, w. However, if we differentiate the energy equation with respect to the coefficient, A of 

the displacement equation, we obtain equilibrium of forces summed at all the points along the continuum. Note, the equilibrium of forces 

here is not at any arbitrary point, but summation of forces at all the points. The resulting equation is a weak form of expressing 

continuum flexural behavior under external disturbance because it did not state the equilibrium of forces at any arbitrary point along the 

continuum. This type of variation is called direct variational calculus. Thus, applying direct variation on equations (6), (9) and (10), we 

obtain: 

0	 = EIA$ ��=���
 ��%

& − q$ H'& dx − 	Nx. A	 $ ��=���
 ��%

&  

−ρa�. ? $ (=)%
& ��																																																			(	11)	 

0 = EIA$ ��=��� . H	dx%
& − q$ H'& dx + 	Nx. A	$ �=�� . ='

& �� 

−ρa�. ?$ (=)%
& ��																																															(	12)	 

0 = −EIA$ �!=��! . �=��%
& dx − q$ H'& dx 

+	Nx. A$ 	���� . =%
& �� − ρ+. ?$ (=)%

& ��							(13)	 
These three equations can be used for pure bending, buckling and free vibration analyses. For pure bending analysis, Nx and λ are equal 

to zero and we obtain from equations (6), (9) and (10): 

? = q@ H'& dx
EI @ ��=��� ��%&

																																													(14) 
				? = q@ H'& dx

EI @ ��=��� . H	dx%&
																																									(15) 

		? = −q@ H'& dx
EI @ �!=��! . �=��%& dx																																									(16) 

For buckling analysis, q and λ are equal to zero and from equations (6), (9) and (10) we obtain:  

AB = EI @ ��=��� ��%&
@ C�=��D ��%&

																																									(17) 
		AB = −EI @ ��=��� . H	dx%&@ �=�� . ='& �� 																																				(18) 
		AB = EI @ �!=��! . �=��%& dx

@ 	�=�� . =%& �� 																																				(19) 
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For free vibration analysis, q and Nx are equal to zero and we obtain from equations (6), (9) and (10): 

� = EI @ ��=��� ��%&ρa @ (=)%& �� 																																								 (20) 
				� = EI @ ��=��� . H	dx%&ρa @ (=)%& �� 																																					(21) 
				� = −EI @ �!=��! . �=��%& dx

ρa @ (=)%& �� 																														 (22) 
 

5. New Energy (Work) Functional for Classical Plate Continuum 

From the foregoing, one can write a new work functional for a classical plate. Note, the maximum derivative of strain energy in Ritz 

energy functional is two. In the works of Ibearugbulem, the maximum derivative of the internal work in the work functional is four. 

Herein, the internal work of this new functional shall have a maximum derivative of three (hence, third order energy functional) as: 

Π = D2 $$�∂!�∂�! . ∂�∂x + 2 ∂!�∂� ∂y . ∂�∂y + ∂!�∂H! . ∂�∂y�
I
&

J
&

∂x ∂y 

+$$q.w	K
&

∂x ∂yL
&

+ ρh�2 $�'
&

∂x ∂y	 
−	12$$�NN ∂�∂� . � + 2NNO 	 ∂�∂x ∂y . � + NO 	∂�∂� . ��

K
&

J
&

∂x ∂y												(23) 
Π = D2 $$�∂!�∂�! . ∂�∂x + 2 ∂!�∂x ∂H . ∂�∂x + ∂!�∂H! . ∂�∂y�

I
&

J
&

∂x ∂y 

+$$q.w	K
&

∂x ∂yL
&

+ ρh�2 $�'
&

∂x ∂y −	12$$�NN ∂�∂� . � + 2NNO 	 ∂�∂x ∂y .� + NO 	∂�∂� . ��
K
&

J
&

∂x ∂y																																(24)	 
Applying direct variational calculus on equations (23) and (24) and rearranging the resulting weak equilibrium equations for pure 

bending, buckling and free vibration, we obtain: 

For pure bending 

	? = −q@ @ HK&L& ∂x ∂y
D @ @ �∂!=∂�! . ∂=∂x + 2 ∂!=∂� ∂y . ∂=∂y + ∂!=∂H! . ∂=∂y�I&J& ∂x ∂y (25) 

		? = −q@ @ HK&L& ∂x ∂y
D@ @ �∂!=∂�! . ∂=∂x + 2 ∂!=∂x ∂H . ∂=∂x + ∂!=∂H! . ∂=∂y�I&J& ∂x ∂y	(26) 

For buckling load 

NN = D@ @ �∂!=∂�! . ∂=∂x + 2 ∂!=∂� ∂y . ∂=∂y + ∂!=∂H! . ∂=∂y�I&J& ∂x ∂y
@ @ �∂=∂� . = + 2NNONN 	 ∂=∂x ∂y . = + NONN 	∂=∂H . =�K&J& ∂x ∂y		(27) 

NN = D@ @ �∂!=∂�! . ∂=∂x + 2 ∂!=∂x ∂H . ∂=∂x + ∂!=∂H! . ∂=∂y�I&J& ∂x ∂y
@ @ �∂=∂� . = + 2NNONN 	 ∂=∂x ∂y . = + NONN 	∂=∂H . =�K&J& ∂x ∂y		(28) 

 

For free vibration 

� = −D@ @ �∂!=∂�! . ∂=∂x + 2 ∂!=∂� ∂y . ∂=∂y + ∂!=∂H! . ∂=∂y�I&J& ∂x ∂y	
ρh @ @ =I&J& ∂x ∂y 		(29) 
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� = −D@ @ �∂!=∂�! . ∂=∂x + 2 ∂!=∂x ∂H . ∂=∂x + ∂!=∂H! . ∂=∂y�I&J& ∂x ∂y	
ρh @ @ =I&J& ∂x ∂y 		(30) 

 

6. Numerical Problems 

The third-order-work functional is required for pure bending, buckling and free vibration analyses of the following continuums: 

i. SS line continuum with w = A(R -2R
3
 + R

4
) 

ii. CC line continuum with w = A(R
2
 – 2R

3
 + R

4
) 

iii. CS line continuum with w = A(1.5R
2
 – 2.5R

3
 + R

4
) 

iv. CSSS plate continuum with w = A(R -2R
3
 + R

4
) (1.5Q

2
 – 2.5Q

3
 + Q

4
) 

The following integrals from the deflection equation of the plate continuum are obtainable: 

$$∂!=∂�! . ∂=∂x 	
K
&

∂x ∂yL
&

= 	− 19b525a! 																						 (31) 
$$∂!=∂H! . ∂=∂y 	

K
&

∂x ∂yL
&

= 	− 31a350b! 																					(32) 
	$ $ ∂!=∂x ∂H . ∂=∂x 	

K
&

∂x ∂y	L
&

= $$ ∂!=∂x ∂y . ∂=∂y 	
K
&

∂x ∂y	L
&

= − 511225ab																											(33) 
						$$=I

&
J
&

∂x ∂y = 5ab13477																																 (34) 
						$$HI

&
J

	&
∂x ∂y = 3ab200																																									(35) 

					$$∂=∂� . =
I
&

J
&

∂x ∂y = − 495b135167a																	(36)	 
 

7. Results and Discussions 
Substitutions of the integrals contained on table 2 into equation (16) shall yield the values of A for   SS, CC and CS continuums as 

qL
4
/(24EI). This implies that the deflection equations for SS, CC and CS continuums are respectively: 

� = QR�24ST (U − 2U! + U�) 
	� = QR�24ST (U − 2U! + U�) 
� = QR�24ST (1.5U − 2.5U! + U�) 
Substitutions of the integrals contained on table 2 into equations (19) and (22) shall yield the values of Nx and λ for SS, CC and CS 

continuums as presented on table 3. The values of deflections at the center (when R = ½) of the continuums are also presented on table 3. 

Close observation of table 3 reveals that the present result is approximately the same as the past result. Substituting the values of the 

integrals of equations (31), (32), (33) and (35) into equation (25 or 26), we obtain the value of coefficient of deflection, A and the 

corresponding deflection equation, w for CSSS plate continuum as: 

		? = − 3ab200 q−DC 19b525a! + 1021225ab + 31a350b!D	 
 

			w = − 3ab200 q	(U − 2U! + U�)(1.5U − 2.5U! + U�)
−D C 19b525a! + 1021225ab + 31a350b!D 					 

Substituting the values of the integrals of equations (31), (32), (33), (34) and (36) into equations (27 or 28) and (29 or 30) where 

appropriate gives the values of buckling load, Nx (when Ny = Nxy = 0) and natural frequency, λ
2
: 

NN = −DC 19b525a! + 1021225ab + 31a350b!D− 495b135167a  
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	λ = DC 19b525a! + 1021225ab + 31a350b!D5ab13477  

For a square plate the values of A, Nx and λ respectively become: 

? = −380000qa�−D5269999 = 0.072106qa�D 	 
 NN = 56.8049Da 		 
�The	value	from	Ibearugbulem	et	al. , 2013	is	 56.80234Da � 

λ = 23.6795a aDρh	 
bThe	value	from	Ibearugbulem	et	al. , 2013	is	 23.67718a aDρhc 

At the center of the plate (R = Q =1/2), the deflection of CSSS plate continuum is obtained as: 

� �12 , 12� = 0.002817qa�D 	 
�The	value	from	Ibearugbulem	et	al. , 2013	is	 0.00282qa�D � 

 

It is obvious herein that the values from this present study are approximately the same with the values from pasts studies.

 

Deflection function, w �defdge�e 
dhfdgh . f 

difdgi . dfdg 

A sin πR A
2
π

4
 Sin

2
πR A

2
π

4
 Sin

2
πR -A

2
π

4
 Cos

2
πR 

A (1 - Cos2πR) 16A
2
π

4
 Cos

2
 2πR 16A

2
π

4
 Sin

2
 2πR -16A

2
π

4
 Sin

2
 2πR 

A(R - 2R
3
 + R

4
) 144A

2
(R

4
 - 2R

3
 + R

2
) 24A

2
(R - 2R

3
 + R

4
) 12A

2
(2R + 6 R

2
 - 16R

3
 + 8R

4
 – 1) 

A(R 
2
- 2R

3
 + R

4
) 4A

2
(1-12R+48R

2
-72R

3
 + 36R

4
) 24A

2
(R

2
 - 2R

3
 + R

4
) -12A

2
(2R -10R

2
+16R

3
 - 8R

4
) 

A(1.5R
2
-2.5R

3
 + R

4
) 9A

2
(1-10R+33R

2
-40R

3
+ 16R

4
) 24A

2
(1.5R

2
-2.5R

3
+R

4
) -3A

2
(15R-61.5R

2
 + 80R

3
-32R

4
) 

Table 1: Product of functions 

Deflection function, w �dfdg�
e
 

defdge . f 

A sin πR A
2
π

2
 Cos

2
πR -A

2
π

2
 Sin

2
πR 

A (1 - Cos2πR) 4A
2
π

2
 Sin

2
 2πR -4A

2
π

2
 Sin

2
 2πR 

A(R - 2R
3
 + R

4
) A

2
(1-12R

2
+8R

3
+36R

4
 -48R

5
+ 16R

6
) -12A

2
(R

2
 - R

3
 -2R

4
+ 3R

5
-R

6
) 

A(R 
2
- 2R

3
 + R

4
) A

2
(4R

2
-24R

3
+52R

4
 -48R

5
+ 16R

6
) 2A

2
(R

2
 - 8R

3
 + 19R

4
 – 18R

5
 + 6R

6
) 

A(1.5R
2
-2.5R

3
 + R

4
) A

2
(9R

2
-45R

3
 + 80.25R

4
 – 60R

5
 + 16R

6
) 3A

2
(1.5R

2
-10R

3
+19.5R

4
 -15R

5
 + 4R

6
) 

Table 1: Product of functions continued 

Deflection function, w fe 

A sin πR A
2
 Sin

2
 πR 

A (1 - Cos2πR) A
2
(1 - 2 Cos2πR + Cos

2
2πR) 

A(R - 2R
3
 + R

4
) A

2
(R

2 
- 4R

4 
+ 2R

5
 + 4R

6 
- 4R

7
+ R

8
) 

A(R 
2
- 2R

3
 + R

4
) A

2
(R

4 
- 4R

5 
+ 2R

6
 + 4R

6 
- 4R

7
+ R

8
) 

A(1.5R
2
-2.5R

3
 + R

4
) A

2
(2.25R

4 
- 7.5R

5
 + 9.25R

6
 – 5R

7
 + R

8
) 

Table 1: Product of functions continued 

Deflection function, w $ �defdge�e dgj
k  $ dhfdgh . fj

k dg $ difdgi . dfdgj
k dg $ fdgj

k  

A sin πR 0.5A
2
π

4
 0.5A

2
π

4
 -0.5A

2
π

4
 2A/π 

A (1 - Cos2πR) 8A
2
π

4
 8A

2
π

4
 -8A

2
π

4
 A 

A(R - 2R
3
 + R

4
) 4.8A

2
 4.8A

2
 -4.8A

2
 A/5 

A(R 
2
- 2R

3
 + R

4
) 0.8A

2
 0.8A

2
 -0.8A

2
 A/30 

A(1.5R
2
-2.5R

3
 + R

4
) 1.8A

2
 1.8A

2
 -1.8A

2
 3A/40 

Table 2: Values of integrals 



www.ijird.com                                                                                     April, 2017                                                                                     Vol 6 Issue 4 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT           DOI No. : 10.24940/ijird/2017/v6/i4/DEC16019 Page 59 

 

 

Deflection function, w $ �dfdg�
ej

k dg $ defdge . fj
k dg $ fedgj

k  

A sin πR 0.5A
2
π

2
 -0.5A

2
π

2
 A

2
/2 

A (1 - Cos2πR) 2A
2
π

2
 -2A

2
π

2
 3 A

2
/2 

A(R - 2R
3
 + R

4
) 

17?35  −17?35  31 A
2
/630 

A(R 
2
- 2R

3
 + R

4
) 

2?105 −2?105 A
2
/630 

A(1.5R
2
-2.5R

3
 + R

4
) 

3?35  −3?35  570 A
2
/75600 

Table 2: Values of integrals continued 

 

Continuums Deflection at center 

 f�je , je� 

Buckling Load, 

Ncr 

Natural frequency, 

λ 

 present Ibearugbulem et 

al., 2013 

present Ibearugbulem et 

al., 2013 

present Ibearugbulem et al., 

2013 

SS 5QR�384ST 5QR�384ST 168ST17R  
9.8824STR  

1.001lR aSTm+ 
9.8767R aSTm+ 

CC QR�384ST QR�384ST 42STR  
42STR  

2.275lR aSTm+ 
22.4521R aSTm+ 

CS 2QR�384ST 2QR�384ST 21STR  
21STR  

1.566lR aSTm+ 
15.4511R aSTm+ 

Table 3: Values of integrals continued 
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