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1. Introduction  

Since the Weibull distribution has the ability to imagine the characteristics of many different types of distributions, it is a very popular 

model for modeling data in reliability, engineering and biological studies and is flexible enough to model a variety of data sets. The 

Weibull distribution can also model hazard functions that are decreasing, increasing or constant, allowing it to describe any phase of 

an item’s lifetime. 

Recently, there has been an increased interest among statisticians in defining new generators of distributions by adding one or more 

shape parameters to provide flexibility in modeling data in several areas such as finance, reliability, engineering, biological and medi-

cal studies. in the same vein as the extended Weibull Gurvich et al. (1997) and gamma Zografos and Balakrishnan  (2009) families, 

using the Weibull generator applied to the odds ratio �(�)/[1 − �(�)].The term “generator"  means that for each baseline distribution 

G we have a different distribution F. Shaw and Buckley (2007) introduced an interesting technique -via Quadratic Rank Transmuta-

tion Map- of adding a new parameter to an existing distribution called the transmuted family, which is a mixture of the baseline and  

exponentiated F with power 2. Several transmuted distributions have been investigated such as Aryal and Tsokos (2009, 2011), 

Merovci (2013 a& b), Merovci and Puka (2014) and Merovci et al. (2016). 

In this paper we introduce a generalization of the Logistic distribution via Weibull-G family distribution and the Quadratic Rank 

Transmutation Map. This leads to Transmuted Weibull Logistic Distribution (TWL). Our aim is that this generalization is flexible 

enough to model different types of lifetime data important in reliability, engineering, marketing and in other areas of research. 

Proposing a new model, the so-called Transmuted Weibull Logistic (TWL) distribution, the article is outlined as follows. In Section 2 

we introduce the TWL distribution, provide plots of density function and cumulative distribution function, along with the hazard and 

survival function. Section 3 introduces some properties of the TWL distribution as well as a complete discussion in deducing the 

Quantile function, mode and the characteristic function followed by the deduction of Renyi and Shannon entropies. In Section 4 we 

derive the maximum likelihood estimators of the unknown parameters and the Fisher information matrix. We present, in Section 5, a 

simulation study, followed by an application to real data to illustrate the importance of the TWL distribution, in Section 6. 

 

2. The Transmuted Weibull Logistic Distribution 

A random variable is said to have the Weibull distribution if its cumulative distribution function  (cdf) is given by 																																				�(�) = 1 − 
���� ,			� > 0  

 with positive parameters a and b. Henceforth, let G be a continuous baseline distribution. For each G distribution, we define the 

Weibull-G distribution by introducing the generator  
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�(�)/[1 − �(�)] to obtain the cdf family given by 

�(�; �, �, �) = � �������(�;�)/[���(�;�)]	
� 
�� � 	!�	 

																																																													= 1 − 
��" �(�;�)���(�;�)#�	, � ∈ % ⊆ ', �, � > 0																(1)	 
where �(�; �) is a baseline cdf, which depends on a parameter vector	�. The family probability density function (pdf) reduces to 

																																((�; �, �, )) = ��*(�; )) [�(�; �)]���[1 − �(�; �)]�+� 
��" �(�;�)���(�;�)#�	.																				(2)	 
 If we take �(�) to be the Type I Logistic distribution in Equation (1) �(�) = 11 + 
��� ,					� > 0,				 − ∞ < � < ∞, 
then the Weibull-Logistic distribution (cdf) is 																													�01(�; �, �, �) = 1 − 
��23�4 ,					�, � > 0, � > 5, −∞ < � < ∞.					(3) 
A random variable X is said to have a transmuted distribution T(x) if its cumulative distribution function (cdf) defined by Shaw and 

Buckley (2007) is given by  

              7(�) = (1 + 8)�(�)91 − 8�(�):,								|8| ≤ 1.                                                      (4)     

From (3) and (4) the cdf and pdf of Transmuted Weibull Logistic (TWL) distribution are defined as follows �=01(�) = >1 − 
��23�4? >1 + 8
��23�4? ,			�, � > 0, � > 5	�@!			|8| ≤ 1, −∞ < � < ∞	. 	(5)	 (=01(�) = ���
9�����23�4: 	>1 − 8 + 28
��23�4?, 																																																																																		�, � > 0, � > 5	�@!	|8| ≤ 1, −∞ < � < ∞	.		(6)		 
Plots of the pdf and cdf of the TWL for different values of the parameters are given in Figures (1) and (2). 
 

 
Figure 1: The pdf of the TWL distribution for different values of the parameters 

 

 
Figure 2: The cdf of the TWL distribution for different values of the parameters 
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The survival (reliability) function of the TWL, is defined as  																																														C(�) = 
��23�4 	D1 − 8 + 8
��23�4E,																																																						(7) 
Also, the hazard rate function of the TWL is given by 

																																											ℎ(�) = ((�)C(�) = ���
��� 	>1 − 8 + 28
��23�4?H1 − 8 + 8
��23�4I .																																							(8) 
Figure (3) illustrates the shape of the hazard rate function for different values of the parameters. 

 

 
Figure 3: The hazard rate of the TKL distribution for selected values of the parameters 

 

Section 3 introduces some properties of the 7KL(�, �, �, 8) as well as a complete discussion in deducing an explicit form for the 

Quantile function, numerical values for mode at different values of parameters and characteristic function followed by the deduction 

of Renyi and Shannon entropies. Section 4 we discuss maximum likelihood estimation and determine the observed information matrix 

and expected fisher information matrix. Section 5 we present a simulation study. Applications to real life data are used in Section 6 to 

illustrate our work. 

 

3. Properties of the BGL Distribution  

 

3.1. Quantile Function 

Theorem 1: 

Let X be a random variable following  7KL(�, �, �, 8) distribution and let  u∈ (0,1) .  

A value of x such that F(x) = u  is called a quantile of order u for the distribution. A quantile of order u   is at the following approx-

imate value 																																														� ≈ 1��	log	 " Q�(1 + 8)#	.																																																										(9) 
Proof: 

Since	�(�)  is continuous and strictly increasing, then the quantile function 

 � = ���(Q), Q ∈ (0,1) can be straightforward computed by inverting (5) to obtain  Q = >1 − 
��23�4? >1 + 8
��23�4? 
 1 − Q = (1 − 8)
��23�4 + 8
�S�23�4  

1 − Q = (1 − 8)T(−1)U∞

UV�
�UW! 	H
���UI + 8T(−1)U (2�)UW! 	H
���UI	∞

UV�  

The summation on the right-hand side converges absolutely for 1
1

1
<

+ − x
e

λ
. Using the approximation technique, then the second 

approximation yields 1 − Q ≅ (1 − 8)H1 − �
���I + 8H1 − 2�
���I Q ≃ (1 + 8)�
��� 
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Therefore, an approximate Quantile function of order u of the TWL distribution is given by (9). In particular, the median of the TKL 

distribution is given by [
!\�@ ≈ 1��	log 	" Q�(1 + 8)#	.																																																																														(10) 
The random sample can also be easily generated from (6) by taking U as a uniform random variable in (0, 1). 

 

3.2. Mode 

Mode is one of the most important characteristic features for the distribution. 

 The mode of the 7KL(�, �, �, 8) is deduced by differentiating the pdf (6).  (/(�, �, �, 8) = �(��)S
���
��23�4 >1 − 8 − 4�8
���
��23�4 − �
���(1 − 8) + 28
��23�4? 
This implies that >1 − 8 − 4�8
���
��23�4 − �
���(1 − 8) + 28
��23�4? = 0 

 But we cannot obtain an explicit form so we calculate the mode numerically for different values of parameters, using Maple software 

package. 

 

 

Parameters 

 

Mode 

 � = 0.5			� = 0.5			� = 2			8 = 0.3 

 

0.4446572576 

 � = 0.3				� = 2			� = 0.9			8 = 0.03 

 

0.6563830551 

 � = 1.5   � = 0.5   � = 1.5   8 = 0.2 

 

-0.7568152066 

 � = 2.5   � = 3   � = 0.5   8 = 0.5 

 

-0.8844701292 

 � = 0.5   � = 0.2   � = 5   8 = 0.75 
 

 

0.1202212746 

Table (1): f Mode for sum chosen different values of parameters. 

 

3.3. Characteristic Function 

In this subsection, we derive the characteristic function of TWL distribution.   

The characteristic function (cf) of the TWL (a, b, λ, t) distribution can be deduced to yield 

 

Φ(Θ)=01 = 	�^Θ��	Γ _1 − \Θ��`	"1 − 8 + 2^Θ��	8# ,			�, � > 0, � > 5	�@!|8| ≤ 1		(11	) 
From equation (12) we find the first mean, second mean and variance as follows 

                           a(b) = 	 ��� 	�log � + 8	 log 2 + 	c	.	                                                (12) 

a(bS) = 	 1(��)S 	H(log �)S + 8	 log 2	9log 2 − 2Γ′(1) + 	2 log �: +	Γ′′(1) − 	2Γ′(1) log �I	.	 																																																																																																																																																																					(13) 																																	d(�) = 1(��)S 		[8	(1 − 8)(log 2)S +	e′(1)].																																									(14) 
where )(log)( x

dx

d
x Γ=ψ  is known as digamma function 

 and   

 )()( x
dx

d
x ψψ =′   is known as polygamma function. 

 In fact, 577215.0)1( =−= ψγ   is called the Euler’s constant. 

 

3.4. Reni and Shannon Entropies 

The notion of entropy is of fundamental importance in different areas such as physics, probability and statistics, communication theo-

ry, and economics. Since the entropy of a random variable is a measure of variation of the uncertainty, the Renyi entropy can be de-

duced to yield 



www.ijird.com                                                                                     April, 2017                                                                                     Vol 6 Issue 4 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT           DOI No. : 10.24940/ijird/2017/v6/i4/113503-258338-1-SM Page 126 

 

fg(h) = 11 − h 	log[(��)i�� 	T 	( 1 − 8h + j)i
∞

kV� 	D hjE	( 281 − 8)k	Γ(h)]											h ≥ 0, h ≠ 1			. (15) 
A special case, defined in Shannon’s (1948) pioneering work on the mathematical theory of communication, given by Shannon entro-

py - a major tool in information theory and in almost every branch of science and engineering is 

ℎno((=01) = 	− p2 log � + log � + log � + c + 8 log 2 − _1 − 82` + log(1 − 8)
+T(−1)q 	( 281 − 8)q

∞

qV� 	"1 − 8r + 1 + 28r + 2#s.																																																																(16) 
 

4. Maximum Likelihood Estimation 

Here, we consider the maximum likelihood estimators (MLE) of the TWL (a, b, λ, t) distribution given in (7). Let  

),...,,( 21 nXXXX =  be a random sample of size n from this distribution. The log-likelihood function can be written as follows 

log L = @ log � + @ log � + @ log � + ��T�^t
^V� − �T
���ut

^V�  

+Tlog >1 − 8 + 28
��23�4u?t
^V� . 

Differentiating with respect to a, b, λ and t we obtain the following equations v log Lv� = @� −T
���ut
^V� −T 28
���u
��23�4uD1 − 8 + 28
��23�4uE	 ,

t
^V�  

v log Lv� = @� + �T�^t
^V� − ��T�^
���ut

^V� −T 28���^
���u
��23�4uD1 − 8 + 28
��23�4uE	 ,
t
^V�  

v log Lv� = @� + �T�^t
^V� − ��T�^
���ut

^V� −T 28���^
���u
��23�4uD1 − 8 + 28
��23�4uE	,
t
^V�  

											v log Lv8 = T 2
��23�4u 	 − 1>1 − 8 + 28
��23�4u 	?
t
^V� 	, 

For interval estimation and hypothesis tests on the model parameters, we require the information matrix. The Fisher information ma-

trix	w = w(x), x = (�, �, �, 8)= , is  

w =
y
z{
w�,� w�,� w�,� w�,|w�,� w�,� w�,� w�,|w�,�w|,� w�,� w�,� w�,|w|,� w|,� w|,| 				}

~� 

       whose elements are 

w|,| = a �−vS log Lv8S � = @1 − 8T(−1)�( 281 − 8)�[	 11 + � + 43 + � − 42 + �	]
∞

�V�  

w|,� = a �−vS log Lv8 	v� � = −2@8�(1 − 8)T(−1)�( 281 − 8)�[	 2(3 + �)S − 1(2 + �)S	]
∞

�V� + @2�, 
w|,� = a �−vS log Lv8 	v� � = −28@�(1 − 8)T(−1)�( 281 − 8)�

∞

�V� { −Γ(2)(� + 2)S 	 [	e(2) − log(�(� + 2))] 
+ 2Γ(2)(� + 3)S [	e(2) − log(�(� + 3))]} + @Γ(2)2� 		[	e(2) − log(2�)], 

w|,� = a �−	vS log Lv8	v� 	� = −28@�(1 − 8)T(−1)�( 281 − 8)�
∞

�V� { −Γ(2)(� + 2)S 	 [	e(2) − log(�(� + 2))] 
+ 2Γ(2)(� + 3)S [	e(2) − log(�(� + 3))]} + @Γ(2)2� 		[	e(2) − log(2�)], 
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w�� = a �−	vS log Lv�S 	� = @�S + 8@8�S(1 − 8)T (−1)�(� + 3)� ( 281 − 8)�
∞

�V� −	 @82�S,	 
w�,� = a �−vS log Lv�v�	 � = @�� 	�(1 − 8)[e(2) − log �] + 82	[e(2) − log 2�]� 
+ 8@8S��(1 − 8)	T (−1)�(� + 3)� ( 281 − 8)�

∞

�V� 	[e(3) − log(�(� + 3))] + @82��	[e(2) − log 2�] 
−	 @82�� 	[e(3) − log 2�], 
w�,� = a �−	vS log Lv�v� 	� = @��	�(1 − 8)[e(2) − log �] + 82	[e(2) − log 2�]� 
+ 8@8S��(1 − 8)	T (−1)�(� + 3)� ( 281 − 8)�

∞

�V� 	 [e(3) − log(�(� + 3))] + @82��	[e(2) − log 2�] 
−	 @82�� 	[e(3) − log 2�], 
w�,� = a �−vS log Lv�S � = 	 @�S 

+ @�S {	(1 − 8)9[e(2) − log �]S + �(2,2): + 82	9[e(2) − log 2�]S + �(2,2):} 	
+ 8@8S�S(1 − 8)	T (−1)�(� + 3)� ( 281 − 8)�

∞

�V� 	9[e(3) − log((�(� + 3))]S + �(2,3): − 8@2�S 	9[e(2) − log 2�]S + �(2,2):
+ 8@2�S 	9[e(3) − log 2�]S + �(2,3):, 

where the Riemann’s Zeta function is given by 

                   ζ (x, q) =
1

(q + n)x
, Re x >1, q ≠ 0. −1,−2,...

n=0

∞

∑  

	w�,� = a �−	vS log Lv�S 	� = @�S 

+ @�S {	(1 − 8)9[e(2) − log �]S + �(2,2): + 82	9[e(2) − log 2�]S + �(2,2):} 	
+ 8@8S�S(1 − 8)	T (−1)�(� + 3)� ( 281 − 8)�

∞

�V� 	9[e(3) − log(�(� + 3))]S + �(2,3): − 8@2�S 	9[e(2) − log 2�]S + �(2,2):
+ 8@2�S 	9[e(3) − log 2�]S + �(2,3):, 

w�,� = a �−	vS log Lv�v� 	� = −@�� 	[log � + 8 log 2 + c] 
+ @��	�(1 − 8)[e(2) − log �] + 82	[e(2) − log 2�]� + @��	"(1 − 8)9[e(2) − log �]S + �(2,2): + 82	9[e(2) − log 2�]S + �(2,2):#

+ @82��	[e(2) − log 2�] + 24@8S��(1 − 8)	T (−1)�(� + 3)� ( 281 − 8)�
∞

�V� 	9[e(3) − log(�(� + 3))]S + �(2,3):
+ @82��		9[e(2) − log 2�]S + �(2,2): −	3@82�� 	9[e(3) − log 2�]S + �(2,3):, 

where, 577215.0)1( =−= ψγ   is called the Euler’s constant. 

The MLE θ� = (���1 , ���1 , ���1 , 8̂�1)= ofθ  is determined from the solution of the nonlinear system of equations given earlier. Under 

conditions that are fulfilled for the parameter θ  in the interior of the parameter space but not on the boundary, the asymptotic distribu-

tion of	[√@(���1 − �), √@9���1 − �:, √@9���1 − �:, √@(8̂�1 − 8)]=is ��(0, w��(�, �, �, 8)=). The asymptotic 

normal		�� D0, w��9���1 , ���1 , ���1 , 8̂�1:=E distribution of  θ� = (���1 , ���1 , ���1 , 8̂�1)= can be used to construct confidence regions for 

some parameters and for the hazard and survival functions. In fact, a )1(100 γ− % asymptotic confidence interval (ACI) for each 

parameter is given by 

 ��f� = 9���1 − �� S⁄ �w��, ���1 + �� S⁄ �w��:, 
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 ��f� = 9���1 − �� S⁄ �wSS, ���1 + �� S⁄ �wSS:, 
 ��f� = 9���1 − �� S⁄ �w��, ���1 + �� S⁄ �w��:, 
 ��f| = 98̂�1 − �� S⁄ �w��, 8̂�1 + �� S⁄ �w��:. 
where iiK denotes the i

th
 diagonal element of w�� = (���1 , ���1 , ���1 , 8̂�1)= for  

i= 1, 2, 3, 4 and 2/γz is the ( 2/1 γ−  )of the standard normal distribution. 

 

5. Simulation Study 

We conducted Monte Carlo simulation studies to assess the finite sample behavior of the TWL (a , �, �, 8). All results were obtained 

from 1000 Monte Carlo replication simulations. The TWL random number generation was performed using the inversion method. In 

each replication, random sample of size n is drawn from the TWL(	�, �, �, 8) distribution and the maximum likelihood estimates 

(MLEs) of the parameters were obtained. The mean, variance, bias and mean squared error (MSE) for each parameter was computed 

under different sample size n=10, 25, 75, 100, and 200. 

 

N parameter Mean Variance Bias MSE 

10 α 

β 

λ 

t 

5.9699687 

5.5676314 

0.0317631 

-0.4800461 
 

7.13282673 

4.908126474 

0.0000409187 

0.646595999 
 

-0.0300 

2.56763 

0.00176 

-1.1801 
 

7.13373 

11.5009 

0.00044 

2.03910 
 

25 α 

β 

λ 

t 

6.62644714 

6.43122571 

0.02860015 

-0.4027871 
 

0.005892637 

0.14099112 

0.00000157753 

0.002182292 
 

0.62645 

3.43123 

-0.0014 

-1.1028 
 

0.3983286 

11.914301 

0.0000021 

1.2183120 
 

75 α 

β 

λ 

t 

6.53272286 

6.35177743 

0.0292078 

-0.3365234 

0.730695427 

0.008180484 

0.000010835 

0.290009664 
 

0.532723 

3.351777 

-0.00079 

-1.03652 
 

  1.01448907 

  11.2425905 

  0.000011463 

  1.364390482 

 
 

100 α 

β 

λ 

t 

6.80724714 

5.26421286 

0.02940053 

0.01146629 

0.241429107 

0.650199061 

0.000000483 

0.649386246 

0.807246 

2.264213 

-0.0006 

-0.68853 

  0.89307475 

  5.776858924 

  0.000000820 

  1.123464922 
 

200 α 

β 

λ 

t 

6.94612714 

4.82563429 

0.02773161 

0.77389171 

 

2.237077824 

0.347052798 

0.0000669672 

0.660652135 

0.946127 

1.825634 

-0.00227 

0.073892 

  3.132234395 

  3.679993344 

  0.0000721127 

  0.666112121 
 

Table 2: Mean estimates, bias, variance and mean square errors of the (MLEs) when α=6, b=3, λ=0.03, t=0.7. 

 

We note that the MSE of the parameters a, b and t decrease as the sample size increases. The mean estimates of the parameters tend to 

be closer to the true parameter values. It is observed that for all values of n, the variance and MSE of the estimator of λ are small as 

expected. 

 

6. Numerical Example 

In this section, we study the transmuted Weibull logistic distributions and provide detailed mathematical treatment for this distribu-

tion. As applications, the first set due to Smith and Naylor (1987) consists of 63 observations of the strengths of 1.5 cm glass fibers, 

originally obtained by workers at the UK National Physical Laboratory. Unfortunately, the units of measurement are not given in the 

paper. The data are: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 

1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 

1.67,1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. These data have also been 

analyzed by Smith and Naylor (1987). 
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For all data, we fit the Transmuted Weibull Logistic (TWL) distribution defined in (7) and compare it with Trans muted Logistic (TL) 

(for−∞ < � < ∞) and Weibull Logistic (WL) (for−∞ < � < ∞) models with corresponding densities: (=1 = �
��∗�(1 + 
��∗�)�S(1 + 8 − 28(1 + 
��∗�)��), 		(01 = ���
���
��23�4 , 
Where		�, � > 0, � > 5	�@!	|8| ≤ 1		 
The maximum likelihood method is applied to estimate the parameters of the three models Transmuted Logistic (TL), Weibull Lo-

gistic (WL) and Transmuted Weibull Logistic (TWL) distribution. The resulting estimates with the negative of the likelihood function 

( −ℓ	). 
 

Model maximum likelihood estimates −� 

TL �� = 2.079760 8̂	 = 0.015320 

310.974 

WL ��	 = 0.0624001 �� = 2.1150200 �� = 1.0018969 

−29.46 

TWL ��	 = 0.0051595 �� = 3.1058101 �� = 1.0324516 8̂	 = 0.3692410 

−129.27 

Table 3: The maximum likelihood estimated and Log- likelihood function for the first data set. 

 

The variance covariance matrix	f(x)�� of the MLEs under the TKL distribution for the first data set is computed as 

� 	 0.000047−0.0049631−0.00164987		0.015919
					−0.0049631			0.6188710.144618−1.72172 		−0.001649870.144618120.0683900−0.572345

					0.015919−1.72172				−0.572345									5.69709� 

Thus ���	(��	) = 0.000047, ���	9��: = 0.618871, ���9��: = 0.0683900, ���(8̂	) = 5.69709. 
There for, 95% confidence interval for a. b, λ and t are [ 0.003467, 0.006852], [ 3.0444, 3.1672], 

 [0.9679, 1.0970], [ -0.2202, 6.2864], respectively. 

 

Model  −� AIC AICC BIC 

TL 310.974 625.948 626.148 625.547 

WL −29.46 -52.92 -52.5132 -53.522 

TWL −129.27 -250.54 -249.850 -251.343 

Table 4: Criteria comparison for the first data set 

 

The second data set were used by Birnbaum and Saunders (1969) and correspond to the fatigue time of 101 6061-T6 aluminum cou-

pons cut parallel to the direction of rolling and oscillated at 18 cycles per second (cps). The data are: 70, 90, 96, 97, 99, 100, 103, 104, 

104, 105, 107, 108, 108, 108, 109, 109, 112, 112, 113, 114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123,124, 124, 124, 124, 124, 

128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 136, 137, 138, 138, 138, 

139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 

159, 162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212. 

 

Model maximum likelihood estimates −� 

TL �� = 0.00550992 8̂	 = 0.0035320 

602.005 

WL ��	 = 0.0931514 �� = 4.1730230 �� = 0.00415942 

150.919 

TWL ��	 = 0.0391714 �� = 3.1810230 �� = 0.00615942 8̂	 = 0.0511610 

109.662 

Table 5: The maximum likelihood estimated and Log- likelihood function for the second data set. 

 

The variance covariance matrix	f(x)�� of the MLEs under the TKL distribution for the second data set is computed as 
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 	 0.0000373−0.00057279−0.0000011						0.0001101		
					−0.00057279										0.03462102								0.00003699						0.010132400

			 	−0.00000110.00003699					1.2980 × 10�¢0.000019
					0.00011010.0101324				0.000019									0.02274£ 

Thus ���	(��	) = 0.0000373, ���	9��: = 	0.03462102, ���9��: = 1.2980 × 10�¢, ���(8̂	) = 0.02274. 
There for, 95% confidence interval for a. b, λ and t are [ 0.03798, 0.040363], [ 3.1447, 3.21731], 

 [0.00609, 0.00623], [ 0.02175,0.08057], respectively. 

 

Model  −� AIC AICC BIC 

TL 602.005 1208.01 1208.132 1208.019 

WL 150.919 307.838 308.085 307.851 

TWL 109.662 47.324 47.741 227.341 

Table 6: Criteria comparison for the second data set 

 

In order to compare the three distributions, we consider criteria like AIC (Akaike information criterion), AICC (corrected Akaike in-

formation criterion) and BIC the Bayesian information criterion, for the first data set given by Smith and Naylor (1987) and the second 

data set given by Birnbaum and Saunders (1969). As shown in table (4) and table (6), the better distribution corresponds to smaller −ℓ, 
AIC, AICC and BIC values  

where �f� = 2w − 2ℓ, AICC = �f� + 2W(W + 1)@ − W − 1, §f� = W r5* @ − 2ℓ, 
Here k is the number of parameters and n is the number of observations. The values of the parameters’ estimates are used to plot the 

pdf for the three distributions TL, WL and TWL in Fig (4) and Fig (5) 

 

 
Figure 4: Estimated densities of the models for the first data set.  Figure 5: Estimated densities of the models for the second data set. 

 

7. Concluding Remarks 

In this paper, we proposed a new distribution, named the transmuted Weibull Logistic distribution which extends the Weibull Logistic 

distribution. Several properties of the new distribution were investigated, including moments, median, mode, Rényi and Shannon en-

tropy. The model parameters are estimated by maximum likelihood and the information matrix is derived. An application of the 

transmuted Weibull Logistic distribution (TWL) to real data is considered. The results of our study indicate that the TWL distribution 

has the lowest AIC, AICC and BIC statistics among all the sub-models. From the plots of the fitted densities and histogram, cleary, the 

TWL distribution provides a closer fit to the histogram than the other Weibull Logistic and Transmuted Logistic model. Therefore, the 

new TWL model can be used quite effectively in analyzing data. Also, we note that the Monte Carlo simulation indicate that the per-

formance of the maximum likelihood estimation are quite satisfactory. Finally, the application to the real data sets shows that the fit of 

the new model is superior to the fits of its main sub- models. We hope that the proposed model can be used effectively as a competi-

tive model to fit real data.  
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