
www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1588

 Temporal White Box Testing Using Evolutionary
Algorithm

Ansuman Mahapatra
M.Tech Cs And Is

Kiit University,Bhubaneswar, India
Rajanikanta Malu

Phd IIT Kharagpur, India

Abstract:

Software testing is an investigation conducted to provide stakeholders with

information about the quality of the product or service under test. Software testing can

also provide an objective, independent view of the software to allow the business to

appreciate and understand the risks of software implementation. Test techniques

include, but are not limited to, the process of executing a program or application with

the intent of finding software bugs. Embedded computer systems should fulfill real-

time requirements which need to be checked in order to assure system quality. This

paper stands to propose some ideas for testing the temporal behavior of real-time

systems. The goal is to achieve white-box temporal testing using evolutionary

techniques to detect system failures in reasonable time and little effort.

ISSN: 2278 – 0211 (Online)

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1589

Abstract:

Testing is the most important Quality Assurance (QA) measure which consumes a

significant portion of budget, time and effort in the development process. For real

time systems, temporal testing is as crucial as functional testing. An important activity

in dynamic testing is the test case design. Evolutionary testing has shown promising

results for the automation of test case design process at a reasonable computational

cost. Evolutionary white-box software testing has been extensively researched but is

not yet applied in industry. In order to investigate the reasons for this, we evaluated a

prototype version of a tool, representing the state-of-the-art for evolutionary

structural testing, which is targeted at industrial use.. McMinn provides a survey on

search based software test data generation. My future work include comparing the

random testing and evolutionary testing and finding out the better result between the

two and how temporal white box testing is carried out with the help of evolutionary

algorithm. In this paper, a software measure will be introduced which estimates the

test effort for every test goal of evolutionary white-box testing. With the aid of this

software measure, it will be possible to individually adjust the termination criterion

for every sub-goal. Experiments will show whether or not this increases the

effectiveness of evolutionary white-box testing. We have developed a novel algorithm

for generating test cases for the full system which achieve pairwise coverage of the

sub-operations. We have evaluated the algorithm using a case study, which indicates

the practicality and effectiveness of the approach.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1590

1.Introduction

Evolutionary white-box software testing has been extensively researched but is not yet

applied in industry. In order to investigate the reasons for this, we evaluated a prototype

version of a tool, representing the state-of-the-art for evolutionary structural testing,

which is targeted at industrial use. The focus was on the applicability of the structural

test tool in the industrial context and not on assessment of the test cases generated. Real-

time systems raise up many constraints, the most important one is timing. In real-time

systems, each functionality must be executed during a specific time interval, otherwise

an error will raise due to an encountered system violation. Testing of real-time systems is

possible by going through all possible paths and catching any risky functionality which

might violate the time constraint. Testing real time systems is cost-intensive and time-

consuming.

This paper thus proposes ideas on how to test real-time systems using evolutionary

algorithms. Real time systems are the systems in which temporal correctness is also

crucial with the functional correctness. Timing analysis of real time systems has to be

employed when guarantee of timelines is concerned. Dynamic timing analysis is based

on the execution of the software under test on the target hardware unlike static timing

analysis, which is carried out without actual execution of the software on the target

hardware. Execution time of software depends upon the test inputs to that software. A

challenging task in dynamic timing analysis is finding the specific test inputs which lead

to the minimum and maximum execution times by that program. The former is known as

Best Case Execution Time (BCET) and the later is known as Worst Case Execution

Time (WCET). Hence forth , dynamic timing analysis is as such an optimization problem

i.e. finding the right test inputs for best or worst case .

Puschner et al. provide a good review of WCET analysis tools and techniques devised by

different research groups. There has been a considerable amount of work dedicated to

find the optimal parameter settings of EAs, but this kind of optimal settings does not

exist in general. Often this is accomplished manually, using the detailed knowledge of

the problem domain. Finding the optimal parameters in itself is another optimization

problem. One technique in finding the optimal parameter settings is by using Meta

Evolutionary Algorithm (Meta-EA). In this research paper, this technique of Meta EA is

used to tune the parameters of another EA to perform WCET analysis. In contrast to

black-box tests where functional requirements are audited, white-box testing uses

knowledge of the actual implementation for test specification. In this paper, a software

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1591

measure will be introduced which estimates the test effort for every test goal of

evolutionary white-box testing. With the aid of this software measure, it will be possible

to individually adjust the termination criterion for every sub-goal. Experiments will show

whether or not this increases the effectiveness of evolutionary white-box testing

2.Literature Review

2.1 Software Testing

Software testing is an investigation conducted to provide stakeholders with information

about the quality of the product or service under test. Software testing can also provide

an objective, independent view of the software to allow the business to appreciate and

understand the risks of software implementation[1]. Test techniques include, but are not

limited to, the process of executing a program or application with the intent of finding

software bugs. Software testing, depending on the testing method employed, can be

implemented at any time in the development process.

2.2 Testing Methods

Software testing methods are traditionally divided into white- and black-box testing.

These two approaches are used to describe the point of view that a test engineer takes

when designing test cases.[2]

2.2.1 White-Box testing

White-box testing (also known as clear box testing, glass box testing, transparent box

testing, and structural testing) tests internal structures or workings of a program, as

opposed to the functionality exposed to the end-user. In white-box testing an internal

perspective of the system, as well as programming skills, are used to design test cases.[3]

The tester chooses inputs to exercise paths through the code and determine the

appropriate outputs. While white-box testing can be applied at

the unit, integration and system levels of the software testing process, it is usually done

at the unit level. It can test paths within a unit, paths between units during integration,

and between subsystems during a system–level test. Though this method of test design

can uncover many errors or problems, it might not detect unimplemented parts of the

specification or missing requirements. Techniques used in white-box testing include:

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1592

2.2.2 Black-Box Testing

Black box testing treats the software as a "black box", examining functionality without

any knowledge of internal implementation. The tester is only aware of what the software

is supposed to do, not how it does it. Black-box testing methods include: equivalence

partitioning, boundary value analysis, all-pairs testing, state transition tables, decision

table testing, fuzz testing, model-based testing, use case testing, exploratory testing and

specification-based testing.[4]

2.3 Evolutionary Testing

Evolutionary Testing automates the test data generation process by transformation into

an optimization problem that is solved by applying Meta heuristic search techniques such

as genetic algorithms. Evolutionary Structural Testing is an ET approach for generating

test data achieving high structural coverage.[5] Evolutionary temporal behavior testing

aims at finding test data that produces particularly long or short execution times when

used for executing the system under test. This way, test data are supposed to be found

which cause timeliness violations.

2.4 Evolutionary Temporal White-Box Testing

Evolutionary temporal behavior testing can be supported by considering the internal

structure of the system under test and applying the principles of EST in order to direct

the search towards reaching worst case execution times (WCET) or best case execution

times (BCET) respectively. Therefore the system needs to be instrumented with

timestamps, which allow for calculating the execution time of any statement, path, block

and sub-structure.[6]

2.5 Code Partitioning And Evaluation

In order to apply temporal behavior testing to embedded systems, their code structure

must be partitioned into several code segments, e.g. loops, conditions or statements.

Every code segment may contain smaller code segments, such as inner loops or

conditions within loops[7]. In case of loops, the body of the loop is considered as a code

segment repeated for n times. Subsequently weights are assigned to these segments,

which will be used in the calculation of the fitness function. Program paths can be

evaluated according to the blocks and branches it executes, by using the control flow

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1593

graph that represents all the possible paths in the code of the system under test during

execution. Possible evaluations of the code segments are described as follows

 Blocks: a block is a sub-structure consisting of one or more nodes of the control

flow graph. By applying static code analysis blocks can be classified into

dependent or independent. The execution of the independent blocks is

independent from the input arguments while the execution of the dependent

blocks is dependent on the input arguments. Therefore the execution time of the

independent blocks in the system under test does not need to be considered when

comparing the execution times of two paths[8]. Reaching WCET will be possible

by selecting the paths including the dependent and independent blocks that

require long execution times. In contrast, short execution times are favored when

searching for BCET.

 Branches: A branch is a static path in the code. A branch can contain other

branches and blocks. A weight will be assigned to every branch relative to

WCET and BCET with a special consideration for independent blocks inside

branches, loop boundaries and recursive function stopping conditions.[9] When

looking for BCET for example, a branch containing a “jump forward” is assigned

a bigger weight than another branch which does not contain the jump, given that

the destination of the jump is located near exit statement.

2.6 Fitness Function

 The individuals generated by Evolutionary Structural Testing are evaluated using the

fitness function. It assigns a specific value to every test datum to evaluate the input.

Smaller fitness values are favored when looking for BCET and bigger values are favored

when looking for WCET. To guide the optimization process towards interesting test

scenarios, reaching the longest and shortest execution times faster,[10] the fitness

function needs to be changed. The execution time would be the main part of the fitness

function in addition to some other factors. Every code segment will be assigned a weight

as discussed before. This weight will be considered in the evaluated fitness value for

every individual. When looking for WCET for instance, break branches have a smaller

weight than continue branches. White-box testing methods can be used for temporal

testing techniques by providing information about the internal structure of the system

under test. This can be done by assigning weights to each code segment depending on

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1594

execution times and its structure. These weights extend evolutionary structural testing

and shape its fitness function in order to detect temporal system failures in less time and

effort.

Parameter Tuning of Evolutionary Algorithm by Meta-EAs for WCET Analysis Testing

is the most important Quality Assurance (QA) measure which consumes a significant

portion of budget, time and effort in the development process. For real time systems,

temporal testing is as crucial as functional testing. An important activity in dynamic

testing is the test case design. Evolutionary testing has shown promising results for the

automation of test case design process at a reasonable computational cost. The

disadvantage of evolutionary testing is that its time consuming and it depends on the

parameter settings. [11]

Evolutionary algorithms can be used to find the optimal parameter settings of another

evolutionary algorithm. In this research paper, a Meta level Evolutionary Algorithm

(Meta-EA) is utilized to tune the parameters of evolutionary algorithm for Worst Case

Execution Time (WCET) analysis. Real time systems are the systems in which temporal

correctness is also crucial with the functional correctness. Timing analysis of real time

systems has to be employed when guarantee of timelines is concerned.[12]

Dynamic timing analysis is based on the execution of the software under test on the

target hardware unlike static timing analysis, which is carried out without actual

execution of the software on the target hardware. Execution time of software depends

upon the test inputs to that software. A challenging task in dynamic timing analysis is

finding the specific test inputs which lead to the minimum and maximum execution

times by that program. The former is known as Best Case Execution Time (BCET) and

the later is known as Worst Case Execution Time (WCET). Henceforth, dynamic timing

analysis is as such an optimization problem finding the right test inputs for best or worst

case. Puschneret al.provide a good review of WCET analysis tools and techniques

devised by different research groups.[13]

2.7 Experimental Setup

All the experiments for this research paper were performe don the sorting algorithms of

Bubble Sort and Insertion Sort as the programs for which WCET analysis is required.

X32 soft core [implemented on Spartan 3 FPGA was used for the se experiments as the

real time target hardware. Evolutionary algorithm was running on PC (Dell Latitude,

1.86 GHz system running Ubuntu Linux operating system in VM Ware virtual machine)

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1595

and program under test was running on X32. RS232serial communication link was

established between the PC and FPGA for sending input test arrays and receiving

execution time of the program under test for that particular test array.[14]

2.8.Evolutionary Algorithm

In evolutionary algorithm, an initial population is randomly generated or manually

selected . This generation reproduces and mutates based on certain probabilities to find

the new population. Fittest of the population survives and is then used again to repeat the

same process for a preset number of maximum generations or until certain termination

condition is reached.[2]

2.9 .Meta-Ea Experimental Results

The core idea of the Meta EA is very similar to the EA discussed in previous section.

The fitness function of the Meta EA is based on the performance of base level EA.A

random population of P, Pm and PC was initialized at the start of the experiment. With

these parameters, the base level EA was run for a fixed number of times (50 in our case).

The fitness of this population of Meta EA was the highest WCET found after this run.

The fittest population found was combined and mutated to give a new set of parameter

population (P, Pm, Pc). This process was repeated for 25generations of Meta EA. shows

the WCET of two sorting algorithms for different array sizes as the input test arrays.[16]

These experiments were carried out for 100 generations. Table 3 lists the WCETSP

(WCET found With Standard Parameters: P = 50,Pm=0.001, Pc=0.6 etc.; these are the de

facto standard settings known as Dejong Settings) [15]and the WCETTP (WCET found

with Tuned Parameters by our Meta EA).Entries in bold text clearly show that in almost

all the cases ,EA was able to find highest WCET with the tuned parameters. Timing

analysis is essential for testing the temporal correctness of real time systems. Essential to

dynamic timing analysis is the test case generation for the best and worst case response

of the system. In this research work, it is shown that evolutionary testing produces much

better results compared to Tuning the parameters by Meta-EA is time consuming process

due to the long running times of the programs. Apart from the running time,

experimental setup and devising the suitable fitness function also takes time and effort,

but once established, rest of the process is automatic. Tradeoff exists between saving the

time by EAs with tuned parameters and saving the time by not tuning the parameters and

using the standard parameter settings. The choice between tuning and not tuning is also

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1596

affected by the strictness of the deadlines ofthe real time software under test and further

research is required for a quantitative discussion of this tradeoff.[16]

2.10. Evolutionary White-Box Software Test With The Evotest Framework, A Progress

Report

Evolutionary white-box software testing has been extensively researched but is not yet

applied in industry. In order to investigate the reasons for this, we evaluated a prototype

version of a tool, representing the state-of-the-art for evolutionary structural testing,

which is targeted at industrial use. The focus was on the applicability of the structural

test tool in the industrial context and not on assessment of the test cases generated. Four

case studies, each consisting of an embedded software module from the automotive

industry implemented in the C language, were evaluated with the tool. The case studies

had to be customized to cope with the limitations of the tool and in all, test case

generation succeeded for 37% of the functions selected for the evaluation. Weaknesses

of the tool were reported to the developers and subsequently eliminated, resulting in a

later version of the tool being able to process 82% of the selected case study functions.

However, the study shows that significant engineering work is still required before

evolutionary structural testing is ready for industrial application.[17] In contrast to black-

box tests where functional requirements are audited, white-box testing uses knowledge

of the actual implementation for test specification. It is the aim, during white-box testing,

to achieve maximal coverage of the code body with as little effort as possible through the

efficient selection of test cases. White-box testing is most commonly applied during the

unit-testing phase of a software project. In the context of white-box testing a test case is

an input vector to the code under test, generally consisting of a set of values for the

global and local variables referenced in the code. The execution of the code under test

with each input vector causes a specific control flow through the code to be followed.

Through the formulation of a set of test cases ,which achieve maximum coverage of the

software module under test, confidence can be increased that software errors will be

detected by the tests.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1597

3.Evolutionary Structural Test

Evolutionary algorithms can be used to solve a wide range of optimization problems. In

the field of structural or white-box testing, evolutionary algorithms can assist in finding

test cases which cover the code base under test to a maximum extent . The aim is to

execute the code under test with as many different input parameters as possible, in order

to maximize the chance of detecting errors in the code. In order to detect these errors

with the minimum of effort, the set of tests is reduced to that which is sufficient to cover

the structure of the code according to the specific coverage metric in use. Coverage

metrics include statement coverage, decision coverage, various condition coverage

variants and path coverage .Decision coverage, also known as branch coverage,

measures the extent to which all outcomes of branch statements (such as if, do-while or

switch statements)are covered by test cases.[18] A test case consists of a set of defined

values for all input variables used in the code under test. In the C language, it is

convenient to perform white-box testing on the function level and as such the input

variables consist of all global variables referenced by the function under test as well as

all function parameters declared within the function prototype. Executing the function

under test using the input variables from a particular test case causes a particular control

path through the function to be taken. In the case ofthe branch coverage metric and

assuming the function under test contains branch statements, the function will typically

need to be executed using several test cases in order to exercise (cover) each branch. For

small functions containing few branch statements ,the task of finding test cases, which

exercise all branches, is relatively simple. For more complex functions with many branch

statements and input variables it makes sense to automate the task, and one approach is

to use evolutionary algorithms .Evolutionary algorithms use the principles of evolution

to perform optimization based on the result of a fitness function. The fitness of a first

generation of random individuals is tested, and the characteristics, known as genes, of

the fittest individuals are propagated to the next generation. This process is governed by

rules regarding which percentage of individuals have their genes propagated to the next

generation, how their genes are combined to form the next generation’s individuals and

how the genes are randomly mutated. In the context of evolutionary structural test, each

gene corresponds to the value of a specific input variable of the function under test.

When assigning values to a gene, the range of valid values for the type (e.g. unsigned

integer) of the input variable, which the gene represents, must be taken into account. The

first generation of individuals typically uses random, but valid, values for the genes.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1598

Figure 1

Figure 2

After customizing the bounds, the user clicks on Start to begin test case generation. The

function under test is automatically instrumented by the tool, which replaces each

condition within a branch statement (such as if, while, switch and for) with a call to a

fitness calculation function., the first branch statement contains two conditions, and the

second branch statement contains one condition. Fitness calculation functions are

inserted at each of these three conditions in the instrumented function . Conditions,

which appear outside of a branch statement are not instrumented. The goal of our

evaluation was to investigate why evolutionary testing is seldom used in industry even

though a large number of research results covering the topic have been published in the

last decade. To achieve this we evaluated the ETF Structural Test tool, representing the

state-of-the-art of tool support, on four real-life software modules.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1599

4.Benefits of Software Measures for Evolutionary White-Box Testing

White-box testing is an important method for the early detection of errors during

software development. In this process test case generation plays a crucial role, defining

appropriate and error sensitive test data.[19]

The evolutionary white-box testing is a promising approach for the complete automation

of structure oriented test case generation. Here, test case generation can be completely

automated with the help of evolutionary algorithms. However, problem cases exist in

which the evolutionary test is notable to find valid test data. Thus, in the case of not

achieving a test goal, it is not known whether this is due to non-executable program code

or a problem case.

4.1.Advantages Of Evolutionary Software Measures

The quality of objective functions plays an important role in determining the success of

evolutionary white-box tests Searching out valid test data, especially for complex test

objects, can present difficulties if the objective function cannot make details available for

the optimization of test data. Such situations are designated in the following text as non-

achievability

problems.[20]

5.Test Goal Specific Termination Criteria for Evolutionary White Box Testing by

Means of Software Measures

 In this paper, a software measure will be introduced which estimates the test effort for

every test goal of evolutionary white-box testing. With the aid of this software measure,

it will be possible to individually adjust the termination criterion for every sub-goal.[21]

Experiments will show whether or not this increases the effectiveness of evolutionary

white-box testing.

5.1 Definition Of An Evolutionary Software Measure

The average number of test data generations is taken as a measure in order to quantify

the test effort (E). This can easily be determined for every test goal and is of a

sufficiently exact, but not too detailed value range.[22]

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1600

5.2.Application Of Evolutionary Software Measures

If one wants to calculate the test effort necessary for reaching a sub-goal, it is necessary

to know all paths in the control flow graphs that lead from the starting node to the test

goal. Along with this, all the conditional statements on each of these paths must be

combined by way of an AND-Link. If there are multiple possible paths by which a test

goal can be reached, they can be combined with one another using an OR-Link, since

each of these paths presents an independent possibility.[23]

5.3.Results From Complete Applications

Without an evolutionary software measure, a uniform termination criterion was chosen

for the

evolutionary white-box test, which delivers a good trade-off between test effort and

coverage

for instance, for 200 generations of test data. When the test-goal-specific termination

criterion is applied, in contrast, the tests are terminated if test effort exceeds the 95%-TC

of a

test goal.[24] A maximum of more that 500 test data generations are not, however,

carried out.

If we compare the results from with those which are provided when using the

evolutionary

software measure, the values presented in table 2 result

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1601

6.White Box Pair wise Test Case Generation

Pair wise testing is an intuitive approach to test case generation, and has already seen use

in commercial tools and practical applications. Pair wise testing is black box, in the sense

that the test selection is independent of the internal structure of the system. We present a

white box extension which selects additional test cases for the system based on

specifications for one or more internal sub operations. [25]We have developed a novel

algorithm for generating test cases for the full system which achieve pair wise coverage

of the sub-operations. We have evaluated the algorithm using a case study, which

indicates the practicality and effectiveness of the approach.

Software systems normally have extremely large input spaces. Individual parameters

often have many possible values; with multiple parameters, the numberof parameter

combinations is huge. Because only a tiny fraction of the input combinations can be

tested,input selection is an important problem. The goal is efficient algorithms which

select a relatively smallnumber of test cases and are effective in fault detection.With

pairwise testing, test sets are usually

modest in size even with enormous input spaces. With pairwise testing, a system S is

modeled as an operator with n parameter domains. Each test case is an ntuple; the test

space is the Cartesian product of the parameter domains. In a pairwise cover of S, for

each pair of input parameters, every combination of valid values of these two parameters

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1602

must be covered by at least one test case. Figure 1(a) shows a simple system S with three

Boolean input parameters and a tablecontaining a pairwise cover. To achieve coverage of

S, we must include all four pairs of Boolean values for each pair of parameters. For the

Y/Z pair, for example, the table contains (F,F) in row 2, (F,T) in row 4, (T,F) in row 3,

and (T,T) in row 1.

In the diagram in Figure 1(b), F is implemented using the binary functions F0 and F1.

Suppose that each of F, F0, and F1 computes ∧(Boolean “and”).While the test set shown

in Figure 1(a) does achieve pair wise coverage of S, it does not achieve pair wise

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1603

coverage of F1: the pair (T,F) is absent. The test set in Figure 1(b), however, does

achieve pair wise coverage of F, F0, and F1. This improvement in pair wise coverage

also improves fault coverage. Suppose that F1 is incorrectly implemented as “∨” instead

of “∧”.The test set in Figure 1(b) reveals this fault while the test set in Figure 1(a) does

not. For example, when the triple (T,T,F) that is in Figure 1(b) but not in Figure1(a) is

applied to the fault system, the output will be T while the correct output is F. The next

section summarizes previous work in pair wise testing. Section 3 presents an algorithm

for generating test sets achieving white box coverage. Section 4 uses a case study to

explore the cost and effectiveness of the algorithm.

6.1.The WB Pairwise Algorithm

The algorithm is recursive and traverses the system

tree depth first. For each visited node N there are

three phases:

 Child processing. Two kinds of test sets aregenerated. First, a pairwise test set is

generated for N’s inputs, based solely on thedomains of N’s children. More

precisely, test

 set B is generated by applying an algorithm such as IPO [2] to the Cartesian

product of

 N.c0, N.c1, … , N.cn-1, where n = N.c.len. Then, the sequence W of test sets is

 generated, by recursively calling WBPairwise once for each of N’s children.

 Horizontal expansion. Each test case b in B is expanded horizontally by replacing

bi with

 an element of Wi. Initially, b has one element for each child of N. At the end of

this phase, b will have one element for each leaf in the subtree rooted at N.

 Vertical expansion. The horizontal expansion phase inserts elements of W into

elements of

 B. Because the elements of W provide pairwise coverage of N’s children, it is

essential that every element of W be selected for insertion at least once. If this is

not the case then new test cases are added in this phase for the uncovered

elements of W.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1604

7.Combining Software Quality Predictive Models: An Evolutionary Approach

During the past ten years, a large number of quality models have been proposed in the

literature. In general, the goal of these models is to predict a quality factor starting from a

set of direct measures. The lack of data behind these models makes it hard to generalize,

to cross-validate,

and to reuse existing models. As a consequence, for a company, selecting an appropriate

quality model is a difficult, non-trivial decision. In this paper, we propose a general

approach and a particular solution to this problem. The main idea is to combine and

adapt existing models (experts) in such way that the combined model works well on the

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1605

particular system or in the particular type of organization. In our particular solution, the

experts are assumed to be decision

tree or rule-based classifiers and the combination is done by a genetic algorithm. The

result is a white-box model: for each software component, not only the model gives the

prediction of the software quality factor, but it also provides the expert that was used to

obtain the prediction. Test results indicate that the proposed model performs significantly

better than individual experts in the pool.

7.1.Problem Formulation

In this section we introduce the formalism used throughout the paper and give a short

overview of the techniques used to combine the models. The notation and the concepts

originate from a machine learning formalism. To make the paper clear and transparent,

we shall relate them to the appropriate software engineering notation and concepts

wherever

it is possible.The data set or sample is a set Dn =f(x1;y1); : : : ; (xn;yn)g of n examples or

data points where xi 2 Rd is a attribute vector or observation vector ofd attributes, and yi

2 C is a label. In the particular domain of software quality models, an example xi

represents awell-defined component of a software system (e.g., a class in the case of OO

software). The attributes of xi(denoted by x(1)i ; : : : ;x(di) are software metrics (such

asthe number of methods, the depth of inheritance, etc.)that are considered to be relevant

to the particular software quality factor being predicted. The label yi of the software

component xi represents the software quality

factor being predicted. In this paper we consider the caseof classification where the

software quality factor can take only a finite number of values, so C is a finite set ofthese

possible values. In software quality prediction the output space C is usually an ordered

set c1; : : : ;ck of labels.

In the experiments described in Section 5, we conside rpredicting the stability of a

software component. In this case, yi is a binary variable, taking its values from the setC =

f�1(unstable); 1(stable)g. For the sake of simplicity,the machine learning method in

Section 3 is described for

the binary classification case (it can easily be extended to the k-ary case). The genetic

algorithm-based technique in Section 4 considers the general n-ary case.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1606

7.2.The Adaboost Algorithm

The basic idea of the algorithm is to iteratively find the best expert on the weighted

training data, then reset the

weight of this expert as well as the weights of the datapoints. Hence, the algorithm

maintains two weight vectors,

the weights b =(b1; : : : ;bm), bi _0; i=1; : : : ;m of the data points and the weights w =

(w1; : : : ;wN), wj _ 0; j =1; : : : ;N of the expert classifiers. Intuitively, the weight

biindicates how “hard” it is to learn the point xi, while theweight wj signifies how

“good” expert f j is. The tth iterationstarts by finding the expert f j_t that minimizes the

weighted training error

7.3.The Fitness Function

To measure the fitness of a decision function f represented by a chromosome, one could

use the correctness function

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1607

where ni j is the number of training vectors with real label

ci classified as cj (Table 1). It is clear that C(f) = 1�L(f)

where L(f) is the training error defined in (1)

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1608

8.Results

To accurately estimate the correctness and the J-index of the trained classifiers, we used

10-fold cross validation. In this technique, the data set is randomly split into 10 subsets

of equal size (69 points in our case). A decision function is trained on the union of 9

subsets, and tested on the remaining subset. The process is repeated for all the 10

possible combinations, and mean and standard deviation values are computed for the

correctness and J-index for both the training

and the test sample. Table 5 shows our results. The relatively low correctness rates

indicate that the chosen problem of predicting software quality factor itself is difficult

problem. Nevertheless, test results show that our comparison of our approach to other

white-box techniques. To show the universality of our technique, we also intend to

evaluate our method on data coming from other domains where representative

benchmarks exist.

8.1. An Analysis Of Evolutionary Algorithms For Finding Approximation Solutions To

Hard Optimisation Problems

In practice, evolutionary algorithms are often used to find good feasible solutions to

complex optimisation problems in a reasonable running time, rather than the optimal

solutions. In theory, an important question we should answer is that: how good

approximation solutions

can evolutionary algorithms produce in a polynomial time? This paper makes an initial

discussion on this question and connects evolutionary algorithms with approximation

algorithms together. It is shown that evo-lutionary algorithms can’t find a good

approximation solution to two families of hard problems.

8.2Analysis

In many applications, evolutionary algorithms (EAs) are used to find a good feasible

solution for complex optimisation problems [1, 2]. There are some exper-iments that

claim EAs can obtain higher quality solutions in a shorter running time than existing

algorithms. But in theory, we know little about this. We should answer the question of

how good approximation solutions EAs can pro-duce in a polynomial time. In this paper,

we aim to obtain some initial answers to this question. In combinatorial optimisation,

there have already existed a theory on this topic, i.e., approximation algorithms for NP-

hard problems [3, 4]. Approxima-tion algorithms have been developed in response to the

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1609

impossibility of solving a great variety of important problems. It aims to investigate the

quality of solution an algorithm can produce in a polynomial time for hard problems. In

this paper we investigate evolutionary algorithms under the framework of approximation

algorithms. The first thing that we will study is to identify what kind of problems is hard

to EAs and to describe their characteristics. Of course NP-hard problems are naturally

hard to EAs, but some problems in P class are hard to EAs too. In this paper, we

introduces a classification of EA-hard problems, i.e., wide-gap far-distance and narrow-

gap far-distance problems.

8.3.Approximation Algorithms and Evolutionary Algorithms

Aroximation algorithms have developed in response to the impossibility of solving a

grate of important optimisation problems. If the optimal solution is unattainable, then it

is reasonable to sacrifice optimality and settle for a good feasible solution that can be

computed efficiently. In practise, we expect we can find a good and satisfying, but

maybe not the best solution in a polynomial time.A survey about the past and recent

achievements on this topic can be found in. In this section, we use some definitions and

statements directly from .Foremost among the concepts in approximation algorithms is

that of a ǫ-approximation algorithm. An approximation algorithm is always assumed to

be efficient or more precisely, polynomial. We also assume that approximation algorithm

delivers a feasible solution to some hard combinatorial optimization problem that has a

set of instance .

8.4.Classification of EA-hard Problems

If a problem is easy to an EA, there is no need to investigate its approximation solutions.

So we should restrict our discussion on EA-hard problems. The first question we should

answer is what kind of problems is difficult to a given EA. The study of this question

leads to a classification of problems into the classes of easy problems and hard problems

for the EA.

8.5.EAs and Drift Analysis

Drift analysis is the mathematical tool used in this paper to investigate the behaviour of

EAs, more details can be found in [5–7]. In this paper EAs are considered for solving a

Pseudo-Boolean minimization optimisation problem: Given an objective function f : S !

R, where S is the

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1610

space {0, 1}n and R is the space of real numbers, the optimisation problem is to find an

xmin 2 S such that f(xmin) = min{f(y), y 2 S},where such an xmin is called a global

optimal solution.

Let x = {x1, · · · , xN} be a population of N individuals, E be the population space

consisting of all populations, and ξt be the t-th generation of the popula-tion. Given an

initial population ξ0 and let t = 0, EAs can be described by thefollowing three major

steps.

Recombination: Individuals in population ξt are recombined. An offspring population

ξ(c)t is the obtained.

Mutation: Individuals in population ξ(c)t are mutated. An offspring populationξ(m)t is

then obtained.

Selection: Each individual in the original population ξt and mutated popula-tion ξ(m)t is

assigned a survival probability. Individuals are then selected to survive into the next

generation ξt+1 according to their survival probabilities.

9.Knowledge-Based Software Testing Agent Using Evolutionary Learning with

Cultural Algorithms

Software testing is extremely difficult in the context of large-scale engineering

applications. We suggest that the application of the white and black box testing methods

within a Cultural Algorithm environment will present a successful approach to fault

detection. In order to utilize both a functional approach and a structural approach, two

Cultural Algorithms will be applied within this tool. The first Cultural Algorithm will

utilize the black box testing by learning equivalence classes of faulty input foutput pairs.

These equivalence classes are then passed over to the second Cultural Algorithm that

will apply program slicing techniques to determine program slices from the data. The

goal will be to pinpoint specific faults within the program design. Through the searching

of the program code this approach can be considered as behavioral mining of a program.

Maletic suggested an agent-based framework for automatically supporting large-scale

software development and maintenance. The system was called the Software Service

Bay and presented a framework in which programs design and maintenance was

supported by a team of

autonomous cooperating agents . Recently, Reynolds and Cowan proposed an automated

software development environment for the support of large-scale software system

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1611

design based upon this framework . The environment consists of a set of software agents

that monitor and interact with the programming team for a given project.In this paper,

the goal is to introduce a automatic software testing agent that performs both black and

white box testing

on a software system and learns to improve its testing strategies over time based upon

evolutionary techniques. We will develop the system within a Cultural Algorithm

framework and focus on the ability of the system to acquire knowledge from its problem

solving experience to improve its performance over time. The system itself consists of

two components, one for black box testing and one for white box testing as shown in

figure 1

The initial input to the system is a program in which one is interested in obtaining

information about possible defects. The first process involves a black box procedure in

which

the goal is to determine a suitable set of test cases for the data. The goal is to evolve the

test set population to produce tests that are more likely to expose defects. Once a

certainnumber of defects have been found, or tests generated, the process is stopped. The

tests that produce defects will be input into a white box test process that will generate

program slices in order to identify program segments associated with the specific defects.

The white-box system will also undergo an evolutionary process in which the most

efficient slices will be selected for. There can also be a feedback loop in which the white

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1612

box process will feedback information to the black-box phase, to allow additional

testing. The learning component of the evolutionary agent is

based upon Cultural Algorithms, a knowledge based approach to evolutionary learning

based upon computational models of Cultural Evolution [4]. Both the Black box and

White box components will work within a Cultural Algorithm framework. While

evolutionary based

methods have been applied to testing, many rely on approaches such as path testing

which alone may become exhaustive within application to a complex changing

environment. Here we propose a broad-based evolutionary approach to software testing

which takes into consideration

program function and structure.

9.1.Black Box Testing Methods

Biezer made a distinction between a functional approach to testing software as opposed

to a structural approach .Within a functional approach, a system can be considered a

black box where the user is not interested in the internal design. Since Black box testing

is not concerned with the inner workings of software, the focus is on what is being

input as data. Complete functional testing is impractical if not impossible and consists of

subjecting a program to all possible input. Considering a binary representation of any

problem, a simple 10-character input would have 2 to the 80" possible input/output pairs.

An exhaustive test strategy designed to exercise all of the input would take an exorbitant

amount of time and resources. Such problems can be limited through the means of

establishing equivalence partitions within the test data sets. This can be performed by

categorizing the input test data within a set number of classes. More complex examples

of classes might be groups

of data that produce particular output states within the program. Even with the use of

equivalence partitions, the black box testing can become very complex as well as

resource intensive . The first step in successful black box testing is the development of

test data. There is a systematic approach to the process of establishing the test data that is

to be used in the context of a black box test. This approach was developed through the

process of adding structure to the different types of data by putting them into different

classes. These classes can maintain characteristics that are suitable to the application.

This process can be equated to the derivation of cases based upon sets of establishing pre

and post-conditions. The definitions of the input equivalence partitions is that they are

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1613

sets of data , where the set members are processed in an equivalent way by theprogram.

The output equivalence partitions are program output which have common

characteristics. After a set of partitions have been identified, particular test cases from

each of these partitions are chosen. A good guideline to follow is to always test the

boundaries of the partitions as well as the mid points. The logic with boundary testing is

that the system is initially developed to work with the test cases that would fit into the

most likely categories.

10.Tabulation For Comparisions Of Paper

PAPER

 1

Real-time systems raise up many constraints, the most

important one is timing. In real-time systems, each functionality

must be executed during a specific time interval,

otherwise an error will raise due to an encountered system

violation[1]. Testing of real-time systems is possible by going

through all possible paths and catching any risky functionality

which might violate the time constraint. Testing realtime

systems is cost-intensive and time-consuming[2]. This

paper thus proposes ideas on how to test real-time systems

using evolutionary algorithms.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1614

PAPER

 2

All the experiments for this research paper were performed

on the sorting algorithms of Bubble Sort and Insertion Sort as

the programs for which WCET analysis is required. X32 soft

core [12] implemented on Spartan 3 FPGA was used for these

experiments as the real time target hardware. Evolutionary

algorithm was running on PC (Dell Latitude, 1.86 GHz system

running Ubuntu Linux operating system in VM Ware virtual

machine) and program under test was running on X32.[13] RS232

serial communication link was established between the PC and

FPGA for sending input test arrays and receiving execution

time of the program under test for that particular test array.

 PAPER

 3

Berner & Mattner Systemtechnik GmbH (BMS) is often

required to test embedded software for clients in the

automotive, rail, defense and aerospace sectors.[3]

In contrast to black-box tests where functional

requirements are audited, white-box testing uses knowledge

of the actual implementation for test specification. It is the

aim, during white-box testing, to achieve maximal coverage

of the code body with as little effort as possible through the

efficient selection of test cases. White-box testing is most

commonly applied during the unit-testing phase of a

software project.[4]

In the context of white-box testing a test case is an input

vector to the code under test, generally consisting of a set of

values for the global and local variables referenced in the

code. The execution of the code under test with each input

vector causes a specific control flow through the code to be

followed. Through the formulation of a set of test cases,

which achieve maximum coverage of the software module

under test, confidence can be increased that software errors

will be detected by the tests

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1615

PAPER 4

The quality of objective functions plays an important role in determining

the success of evolutionary white-box tests [1, 2]. Searching out valid test

data, especially for complex test objects, can present difficulties if the

objective function can not make details available for the optimization of

test data. Such situations are designated in the following text as non-

achievability problems.[5]

In order to judge the efficiency of an evolutionary software

measure, we consider the frequency of the occurrence of

individual non-achievability problems using the 23 examined test

objects.[6] From the 767 total test goals, the evolutionary white-box

test could not attain 181 test goals in at least one of five test runs

due to the problems listed above.

PAPER 5

This paper researches the evolutionary white-box test [1, 2, 3] which has

proved itself during numerous experiments. With its application it is

possible to completely automate white-box test case generation.[7] In the

past, different papers have shown that evolutionary algorithms, compared

to other optimisation procedures such as hill-climbing or random search,

have proven to be more robust and are able to provide good results for all

sorts of optimization tasks [4]. Mores imple heuristic methods, such as

Simulated Annealing [5] are less suitable than evolutionary algorithms

because of their local orientation and because they are not as powerful for

the respective search space [1, 6, 7].In this paper, a software measure will

be introduced which estimates the test effort for every test goal of

evolutionary white-box testing.[8] With the aid of this software measure, it

will be possible to individually adjust the termination criterion for every

sub-goal. Experiments will show whether or not this increases the

effectiveness of evolutionary white-box testing.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1616

PAPER 6

Real-time systems are computer systems in which

the correctness of the system behavior depends not

only on the logical results of the computations, but

also on the physical instant at which these results are

produced [1], in these systems every function has to

be executed within a specific time interval.[9]

Otherwise fatal system violations will occur. Any

bug in real-time embedded systems then, can be

extremely expensive [2] [3]. Automatic testing is

important and crucial step in the development of realtime

systems.[10]

PAPER

7

Maletic [22] suggested an agent-based framework for automatically

supporting large-scale software development and maintenance. The system

was called the Software Service Bay and presented a framework in which

programsdesign and maintenance was supported by a team of

autonomous cooperating agents [I]. Recently, Reynolds and

Cowan proposed an automated software development

environment for the support of large-scale software system[11]

design based upon this framework [2]. The environment

consists of a set of software agents that monitor and interact

with the programming team for a given project.

In this paper, the goal is to introduce a automatic software

testing agent that performs both black and white box testing

on a software system and learns to improve its testing[12]

strategies over time based upon evolutionary techniques[3].

We will develop the system within a Cultural Algorithm

framework and focus on the ability of the system to acquire

knowledge from its problem solving experience to improve

its performance over time.[13] The system itself consists of two

components, one for black box testing and one for white

box testing as shown in figure 1.[14]

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1617

PAPER

8

Object oriented (OO) design and programming have

reached the maturity stage. OO software products are becoming

more and more complex.[15] Quality requirements

are increasingly becoming determining factors in selecting

from design alternatives during software development.[16]

Therefore, it is important that the quality of the software be

evaluated during the different stages of the development.[17]

During the past ten years, a large number of quality models

have been proposed in the literature.[18] In general, the goal

of these models is to predict a quality factor starting from a

set of direct measures.[19] There exist two basic approaches of

building predictive models of software quality.[20]

PAPER

 9

This paper presents an approach for the automatic generation

of test programs for object-oriented unit testing using

universal evolutionary algorithms. Universal evolutionary

algorithms are evolutionary algorithms provided by popular

toolboxes which are independent from the application

domain and offer a variety of predefined, probabilistically

well-proven evolutionary operators.[21] The generated test programs

can be transformed into test classes according to popular

testing frameworks, such as JUnit. In order to employ

universal evolutionary algorithms, an encoding is defined to

represent object-oriented test programs as basic type value

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1618

structures2.[22] In order to optimize the evolutionary search,

multi-level optimizations are considered. The suggested encoding

does not prevent the generation of individuals which

cannot be decoded into test programs without errors.[23]

Therefore,three measures to be used by the objective function are

presented which guide the evolutionary algorithm to generate

more and more individuals over time that can successfully be decoded

(referred to as convertible individiuals).

PAPER

10

Flexible job shop scheduling problem (FJSP) is a

very important problem in the modern manufacturing system. It

is an extension of the classical job shop scheduling problem.

Because of the importance of FJSP and the multiple objectives

requirement from the real-world production, this research

focuses on the multi-objective FJSP.[8] This paper proposes a

collaborative evolutionary algorithm (CEA) based on Pareto

optimality to solve the multi-objective FJSP. Experimental

studies have been used to test the approach.[9] And the

experimental results show that the proposed approach is a

promising and very effective method on the research of multiobjective

FJSP.[10]

PAPER

11

Fitness functions derived for certain white-box test goals can

cause problems for Evolutionary Testing (ET), due to a lack of sufficient

guidance to the required test data.[23] Often this is because the search does

not take into account data dependencies within the program, and the fact

that some special intermediate statement (or statements) needs to have

been executed in order for the target structure to be feasible. This paper

proposes a solution which combines ET with the Chaining Approach.

The Chaining Approach is a simple method which probes the data

dependencies

inherent to the test goal. [24]By incorporating this facility into

ET, the search can be directed into potentially promising, unexplored areas

of the test object’s input domain. Encouraging results were obtained

with the hybrid approach for seven programs known to originally cause

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1619

problems for ET.

PAPER

 12

White-box testing is an important method for the early detection

of errors during software development. In this process test case

generation plays a crucial role, defining appropriate and errorsensitive

test data. The evolutionary white-box testing is a[25]

promising approach for the complete automation of structureoriented

test case generation. Here, test case generation can be

completely automated with the help of evolutionary algorithms.[24]

However, problem cases exist in which the evolutionary test is not

able to find valid test data. Thus, in the case of not achieving a

test goal, it is not known whether this is due to non-executable

program code or a problem case. This paper will investigate how

successfully a software measure can support an evolutionary

white-box test if the measure can predict the test effort. Hence, the

termination criteria of evolutionary white-box testing can be

adapted to test goals with problem cases in such a way that

problematic test goals are either excluded from the test in advance

or can be covered due to an adequate termination criteria

according to a software measure.

PAPER

13

The quality of objective functions plays an important role in

determining the success of evolutionary white-box tests [1, 2].

Searching out valid test data, especially for complex test objects,

can present difficulties if the objective function can not make

details available for the optimization of test data. Such situations

are designated in the following text as non-achievability

problems.[23]

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1620

PAPER

14

Evolutionary algorithms have been applied successfully

for the unit testing of procedural software ([5, 7], referred

to as conventional evolutionary testing). Hence, it could be

expected that they are equally well-suited for the unit testing

of object-oriented software (referred to as object-oriented

evolutionary testing). The scope of conventional evolutionary

testing is to find test data which serves as input data for

the unit under test. In contrast, with object-oriented evolutionary

testing, the evolutionary search aims at producing

complete test programs because input data is by itself not

sufficient to execute the test[24]

PAPER

15

White-box testing is an important method for the early detection

of errors during software development. In this process test case

generation plays a crucial role, defining appropriate and errorsensitive

test data. The evolutionary white-box testing is a

promising approach for the complete automation of structureoriented

test case generation. Here, test case generation can be

completely automated with the help of evolutionary algorithms.

However, problem cases exist in which the evolutionary test is not

able to find valid test data. Thus, in the case of not achieving a

test goal, it is not known whether this is due to non-executable

program code or a problem case. This paper will investigate how

successfully a software measure can support an evolutionary

white-box test if the measure can predict the test effort. Hence, the

termination criteria of evolutionary white-box testing can be

adapted to test goals with problem cases in such a way that

problematic test goals are either excluded from the test in advance

or can be covered due to an adequate termination criteria

according to a software measure. This could lead to an increase in

efficiency and effectiveness of evolutionary white-box testing

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1621

The quality of objective functions plays an important role in

determining the success of evolutionary white-box tests [1, 2].

Searching out valid test data, especially for complex test objects,

can present difficulties if the objective function can not make

details available for the optimization of test data. Such situations

are designated in the following text as non-achievability

problems.[25]

Table 3

11.Objective

My objective is to achieve temporal white box testing using evolutionary algorithm to

detect system failure in real time and little effort and why WCET is used for random

testing and evolutionary testing. My aim to develop and design an appropriate algorithm

that would reduce the number of test cases. We have developed a novel algorithm for

generating test cases for the full system which achieve pair wise coverage of the sub-

operations. We have evaluated the algorithm using a case study, which indicates the

practicality and effectiveness of the approach.

12.Work Plan

The way ahead is as planned to develop and design an algorithm that basically used to

reduce the number of test cases. We have to develop an appropiate algorithm that will

bring out the practicality approach in which all the experiments were performed of white

box testing using evolutionary algorithms and also to design an algorithm to find out the

bounded reduction and how we are finding out the maximal coverage problem.

We will design an algorithm in which a software measure will be introduced which

estimates the test effort for every test goal of evolutionary white-box testing. With the

aid of this software measure, it will be possible to individually adjust the termination

criterion for every sub-goal. Experiments will show whether or not this increases the

effectiveness of evolutionary white-box testing.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1622

13.Motivation

The things that motivated me to do my thesis on the topic “Temporal white box testing

using evolutionary algorithm” is because as we know that software testing is an latest

emerging field in the area of technology and nowadays in huge demand in the industry.

Evolutionary white-box software testing has been extensively researched but is not yet

applied in industry. In order to investigate the reasons for this, we evaluated a prototype

version of a tool, representing the state-of-the-art for evolutionary structural testing,

which is targeted at industrial use. The focus was on the applicability of the structural

test tool in the industrial context and not on assessment of the test cases generated. As it

is an emerging field in the latest technology it motivated me to do my work in this field

of software testing using evolutionary algorithm.

14.Conclusion And Future Work

White-box testing methods can be used for temporal testing techniques by providing

information about the internal structure of the system under test. This can be done by

assigning weights to each code segment depending on execution times and its structure.

These weights extend evolutionary structural testing and shape its fitness function in

order to detect temporal system failures in less time and effort. Timing analysis is

essential for testing the temporal correctness of real time systems. Essential to dynamic

timing analysis is the test case generation for the best and worst case response of the

system. In this research work, it is shown that evolutionary testing produces much better

results compared random testing. It was further shown that this improvement is enhanced

by the optimal parameter settings. Meta-EA parameter tuning technique was employed to

tune the parameters of another EA to perform the WCET analysis. Common sorting

programs (Bubble sort and Insertion sort)were the pieces of software under test for

WCET analysis onX32 soft core as the real target hardware. Results at the first place

have shown a clear difference between random and evolutionary testing. Secondly,

tuning the parameters by Meta-EA technique has resulted in finding much better results

for WCET compared to EA with standard parameter settings. A difference of almost

25% in WCET was observed even for less number of generations (30 in our case).It can

further be concluded that the requirement of this type of tuning is prominently important

for the programs with large number of inputs. The performance gap between the EA

withstand parameters and EA with tuned parameters was found to be growing with an

increase in size of test input. Tuning the parameters by Meta-EA is time consuming

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1623

process due to the long running times of the programs. Apart from the running time,

experimental setup and devising the suitable fitness function also takes time and effort,

but once established, rest of the process is automatic. Tradeoff exists between saving the

time by EAs with tuned parameters and saving the time by not tuning the parameters and

using the standard parameter settings. The choice between tuning and not tuning is also

affected by the strictness of the deadlines of the real time software under test and further

research is required for a quantitative discussion of this tradeoff. The work described has

been performed within the Sys Test project. The Sys Test project is funded by the

European Community under the 5th Framework Programme(GROWTH), project

reference G1RD-CT-2002-00683.

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1624

15.Reference

1. Temporal White-Box Testing Using Evolutionary Algorithms Noura Al

Moubayed Daimler AG Research and Advanced Engineering Software

Technology, Specification and Test(GR/EST) Boblingen ,GERMANY.

2. Parameter Tuning of Evolutionary Algorithm by Meta-EAs for WCET Analysis

2010 6th International Conference on Emerging Technologies (ICET).

3. Evolutionary white-box software test with the EvoTest Framework, a progress

report Hamilton Gross,Peter M.Kruse,Dr. Joachim Wegener Berner&Mattner

Sysyemtechnik GmbH berlin,Germany

4. Benefits of Software Measures for Evolutionary White-Box Testing,Frank

Lammermann, Germany Stefan Wappler.

5. Test-Goal-Specific Termination Criteria for Evolutionary White-Box Testing by

means of software measures The Sixth Meta heuristics International Conference

6. White Box Pair wise Test Case Generation Jangbok Kim IEEE2007

7. Knowledge Based Software Testing Agent Using Evolutionary Learning with

Cultural Algorithms David A.Ostrowski and Robert G.Reynolds IEEE 1999

8. Combining Software Quality Predictive Models: An Evolutionary Approach

Salah bouktif IEEE 2002

9. An analysis of evolutionary algorithms for finding Approximation Solutions to

Hard Optimisation Problems. Jan He and Xin Yao IEEE 2003

10. Advantages and disadvantages of evolutionary white box testing. An analysis

Xen YANG IEEE 2004.

11. Suitability of evolutionary algorithms for evolutionary testing. Annual

International Conference on Computer Software and Applications,0:287,2002

12. Search based software test data generation: A survey Software Testing,

Verification and Reliability,14(2):105-156,2004

13. Joachim Wegener, Matthias Grochtmann, and Bryan Jones. Testing temporal

correctness of real-time system by means of genetic algorithms. Quality Week

97,1997.

14. John A. Stankovik,”Misconceptions About Real Time Computing”:A Serious

Problem for Next –Generation Systems”,Compute,v.21 n.10,p.10-19,October

1988

www.ijird.com May, 2013 Vol 2 Issue 5

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 1625

15. Hermann Kopetz,Software engineering for real time :a road map, Proceedings of

the conference on The future of Software Engineering,p.201-211,June 04-

11,2000,Limerick,Ireland.

16. Peter Puschner and Alan Burns; “A Review of Worst-Case Execution-Time

Analysis”; Journal of Real-Time Systems, 18(2/3):115–128, May2000.

17. J. Wegner et al. “Testing real-time systems using genetic algorithms”.

Software Quality Journal, 6 (2): 127-135, June 1997.

18. Hart, W.E. and Belew, R.K. “Optimizing an Arbitrary Function is Hard for the

Genetic Algorithm”. In Proceedings of the Fourth InternationalConference on

Genetic Algorithms, 1991, 190-195.

19. P. McMinn. “Search-based Software Test Data Generation: A survey”.Software

Testing, Veri�cation and Reliability, 14(2):105–156,June2004

20. J.J Greffenstette. “Optimisation of Control Parameters for Genetic

Algorithms”. In IEEE Transactions on Systems, Manand Cybernetics,

vol. 16,pages 122–128, 1986.

21. R. E. Mercer et al. “Adaptive Search using a Reproductive Meta Plan”.

Kybernetes, 7: 215–228, 1978.

22. INRIA, “GUIDE, Crossing the chasm between theory and practice in

Evolutionary Algorithms,” GUIDE Project Homepage, Nov. 2008.

[Online]. Available: http://guide.gforge.inria.fr. [Accessed: Dec. 22, 2008].

23. G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer, “CIL:

Intermediate language and tools for analysis and transformation of C programs,”

Proc. 11th Intl. Conf. Compiler Construction (CC 2002) LNCS 2304, Springer,

2002, pp. 213-228, doi:10.1007/3-540-45937-5_16.

24. dSpace GmbH, “TargetLink – automatic production code generator”,

TargetLink product homepage, March 2009. [Online]. Available:

http://www.dspaceinc.com/ww/en/inc/home/products/sw/pcgs/targetli.cfm.

[Accessed: Mar. 09, 2009].

25. The Eclipse Foundation, “Eclipse,” Eclipse Homepage, March 2009.

[Online]. Available: http://www.eclipse.org. [Accessed: Mar. 09,2009].

