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1. Introduction 

This research work is concerned with the determination of solution to a class of problem in Ordinary Differential 
Equations (ODEs). There have been three major directions in which research have been channeled, namely: the modeling 
and simulation group, the abstract and classical analysis group and the computerized group, Aashikpelokhai, 2014. 
The modeling and simulation group looks at real-life problems, Obodi, 2001 observed the rate at which a given real-life 
problem is changing with respect to an observable single variable and then goes ahead to model and simulate an ODE 
based on the observations. Enright and Pryce, 1987 compiled a collection of modeled ODE from various industries which 
today are used in testing the power and direction of computerized method highlighted in group three. 

Our second group: Abstract and Classical Analysis group considered an ODE with specific unknown parameters or 
unknown coefficients of the ODE terms, subjects the ODE to certain constraints and then obtain conditions or forms under 
which the coefficients or parameters According to (Aashikpelokhai, 2014), Most current research work in classical 
mathematics to which ODE belongs have been in existence since 1642 AD; that is, in the past 362 years. It is not therefore a 
surprise that this area is richest and even tending towards abstraction, Aghajani and Moradifan, 2007. 

The researchers in the computerized group concern themselves with the development, analysis, testing 
implementation of methods to solve problems in ODE, Aashikpelokhai, 1991. This group handles effectively problems 
whose solutions cannot be established with ease through abstract and classical methods but to evaluate them without 
computational methods becomes extremely difficult. These are the main reasons why in today’s world of ODE, emphasis is 
drifting to computerized mathematics whenever one is handling most crucial problems in this area. We implement   
Aashikpelokhai, 1991, rational integrator formula using a matlab software to establish our result. Examples of most recent 
work in this area include Onianwa and Aashikpelokhai, 2010; Elakhe and Aashikpelokhai, 2013; and Ukpebor and 
Aashikpelokhai, 2014; Ebhohimen and Anetor 2017. 
The problem for this research paper is to find a numerical solution to the IVP which is represented by, 
    (    )     (  )                                                   (1.1) 

Where f(x, y) is defined and continuous in a region D  [a, b], 
However, this research paper is therefore to design and implement One –Step rational integrators method that 

can cope effectively well with such problems. Our aims in this research paper is to solve problem represented by (1.1) 
where f(x,y) must satisfy a Lipchitz condition with respect to y.  
Definition 1.1: A one-step method is said to be A-STABLE if when applied to the test equation y1=y withRe () < 0, it gives, 

yn+1  =  ( ̅)   with the stability function  hS  satisfying, 
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| ( ̅)|   for all Re( ̅)< 0,  ̅     
Definition 1.2. A given One-Step Method is said to be L-Stable if it is A-Stable and in 

 
 
 

 
2. The Derivation of the One - Step Rational Integrator Method 
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Let Xn = nh 
Expanding yn+1 aboutxn in Taylor series expansion the integrator 1.2 becomes 
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The Taylor series expansion for theoretical solution yn+1 about the point xn is given as: 
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Assumed that  (  ) =    and  ( )
(  )

 =   
 1.5 

Hence a direct result of application of equation (1.4) makes the first 2k terms to be written as: 
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Equating the terms in powers of h we get: 
       =                      1.7 
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 +      1.8 

Next, we combine equation 1.7 and 1.8 as we equate the terms in    to get  
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                         1.9 

If we continue with this procedure of equating corresponding coefficients in powers of h and writing the resulting 
equations as a combination of all the previous equations we get: 

  = 
          

(       )
    

(      )       
                 , j = 1(1)k – 1               1.10   

 
Where    = 1              1.11 
   

  =                1.12   
We are still left with k equation to cope with. Equation 1.10 gives the result for pi’s as being fully dependent on some or on 
all of the parameters qi’s. 
Let consider the case of k = 3, one can have the remaining equations written exclusively in terms of only unknown 
parameters. 
qi, i = 1(1)k                                             1.13    
Applying the process, we already used above, we write the equation resulting from equating a given power of h as a 
combination of the immediate k preceding equations, the following results were obtained.  
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    0    hS - hRe Limit      0    hS - hRe Limit  
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To obtain an expression for solving for the integrator parameters qi, i = 1(1)k, we express k equations namely 
equation 1.14 – 1.19, in a matrix form as shown below: 
Sq   =   b                                         1.20  
Where 
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        ,i, j = 1(1)k                                                       1.21 

defines the entries of the matrix S, 
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and 
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  and  
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 are given by 1.11 and 1.12 respectively. 
 
3. Local Truncation Error 

The (2k – 1)th term is the series expansion for    in the case of an arbitrary positive integer k is expressed as a 
combination of the k proceeding terms in the series to yield: 
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Which is the same thing as: 
     

  =   b . q                                                                          1.25 
 
Where the vectors b and q are given in equation 1.22 and 1.23above. By neglecting the term in      , we have the 
truncation error given by: 
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         1.26 

 
4. The Convergence of the Scheme 
According to Fatunla (1982), a One – Step rational integrators scheme is given as: 
          + h (   ,  ,  h)                                                                        1.27 
is said to be convergent if for arbitrary initial vector     and an arbitrary point x   [a,b], the global error is given as: 
      =       -  (    )                                                     1.28  
satisfies the following relationship 

h
     
→     max   = 0                                                                                                                                                                 1.29 

provided x is always a mesh point.    
 
5. Theorem:  Convergence and Consistency 
One – step rational integrator if  
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is convergent. 
Proof  
A One – step rational integrator of the form 
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          + h (   ,  ,  h) 
where  (   ,  ,  h) is the increment function and h is the meshsize adopted in the subinterval [   ,     ,is convergent if 
and only if it is consistent [Lambert (33)].To establish the convergence of the One - step integrators formula, we have to 
show that the integrator is consistent as noted in Lambert (1978). 
From equation 1.6P0 =  for every k which when adopted in the expression for     give the above yields:  
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byre-arranging 1.2 we obtain 
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where is the increment function. 
This leads us to, 

(xn, yn, 0)  =  (p1 – q1yn) (n + 1) i.e.    
    

 
  

(xn, yn, 0)  =  (p1 – q1yn).
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p1 – ynq1  = 
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putting equation 1.36 into 1.34 

(xn, yn, 0)  = 
   

( )

    
 
    

 
     

(xn, yn, 0)  =    
( )

 = f(xn, yn)  =   f(x, y) 
Hence, we conclude that the One-Step rational integrators are consistent with the initial value problem (ivp). 
 
6. The Stability of Our Scheme 
Considering     and      as function h and we obtain: 

  (   )= 
(  ) (      )( 

 
)  

(    )      
 , i =  0(1)k                              1.37 

 

  (   )= 
(      )  (   

 
)  

(    )      
   , i =  0(1)k-1                                                            1.38 

Consequently we have; 
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Given an arbitrary positive integer k, applying One-Step rational integrators to equation y1=  y, we obtain the stability 
expression: 
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The stability function s(h) of the One- Step rational integrators for arbitrary positive integer k is therefore given by: 
 

s(h) =
    

  
                                  1.42   
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7. Numerical Computations and Results 
Problem 1: Aashikpelokhai (1991) and Fatunla (1983) 
y1= y, y(0)= 1, Exact Solution y = ex  , 0 ≤ x ≤ 1. 
 

 
xn 

 
h 

 
Theoretical Solution 

(Tsol) 

 
Numerical Solution 

(Nsol) 

 
One-Step Rational Integrators of 

order 5; k=3.   Error(En) 

Nf 
 

0.1 0.1 1.10517092 1.261390920 -0.15622E-8 1 
0.2 0.1 1.221400276 1.394050276 -0.17265E-8 2 
0.3 0.1 1.34985881 1.540668810 -0.19081E-8 3 
0.4 0.1 1.49182470 1.702707000 -0.21088E-8 4 
0.5 0.1 1.64872127 1.882026270 -0.23305E-8 5 
0.6 0.1 1.82211880 2.575782212 -0.25756E-8 6 
0.7 0.1 2.01375271 2.298402710 -0.28465E-8 7 
0.8 0.1 2.22554093 2.540130930 -0.31459E-8 8 
0.9 0.1 2.45960311 2.807283110 -0.34768E-8 9 
1.0 0.1 2.71828183 3.102521830 -0.38424E-8 10 

Table 1: Efficiency of Our One- Step Rational Integrators Method of Order 2k – 1 on Problem 1 for H = 0.1 
 

 
 
 

h 

 
 

Theoretical 
Solution 

 
Aashikpelokhai (1991) 

 
Fatunla (1983) 

 
 

Nf Error x 1012 

Order = 11 
Error x 1012 

Order = 9 
Error x 1012 

Order = 7 
Error x 106 

Order = 4 
0.1 1.10517092 0.00000 0.00000 0.00799 0.60450 1 

0.2 1.22140027 0.00022 -0.00022 0.00866 0.48269 2 

0.3 1.34985881 0.00000 0.00000 0.00955 0.38781 3 

0.4 1.49182470 -0.00022 0.00000 0.01066 0.36697 4 

0.5 1.64872127 0.00022 0.00000 0.01177 0.32105 5 

0.6 1.82211880 -0.00022 -0.00022 0.01288 0.02256 6 

0.7 2.01375271 0.00000 0.00000 0.01465 0.35937 7 

0.8 2.22554093 -0.00044 0.00000 0.01554 0.34473 8 

0.9 2.45960311 0.00000 0.00000 0.01731 0.30697 9 

1.0 2.71828183 0.00044 0.00000 0.01954 0.03030 10 

Table 2: Error in Numerical Integrators with Uniform Mesh Size H = 0.1 on Problem 1 
 

From table 1, we observed that our One-Step rational integrators method of order 5 when compared with table 2 
above shows that the One -step rational integrators method are efficient at resolving differential equations with 
exponential solutions. They compare favorably with Aashikpelokhai (1991) and Fatunla (1983). 
Problem 3: Fatunla(1988) and Lambert(1978) 

   = 1 +    ; y(0) = 1 .    0 ≤ x ≤ 1   Exact Solution y = tan( x + 
 

 
 ) and h = 0.05 

 
 

x 
 

H 
 

Theoretical 
Solution 

Lambert and 
Shaw(1965 

order 4 

 
Niekerk(1985) 

order 2 

 
Fatunla(1988) 

Order 4 

 
One–Step Rational 
Integrators order 5 

 
Nf 

0.10 0.05 1.22304888 9(-9) 2(-6) 6(-4) 2(-10) 1 
0.20 0.05 1.50849765 2(-7) 8(-10) 6(-5) 2(-10) 2 
0.30 0.05 1.89576512 4(-7) 2(-10) 5(-5) 2(-10) 3 
0.40 0.05 2.46491276 7(-7) 5(-10) 2(-4) 2(-10) 4 
0.50 0.05 3.40822234 1(-6) 1(-10) 2(-4) 3(-10) 5 
0.60 0.05 5.33185522 4(-6) 5(-10) 7(-4) 5(-10) 6 
0.65 0.05 7.34043658 8(-6) 1(-10) 1(-3) 7(-10) 7 
0.70 0.05 11.6813738 2(-2) 3(-10) 3(-3) 1(-9) 8 
0.75 0.05 28.2382529 1(-4) 2(-10) 1(-2) 4(-9) 9 

Table 3 
 
Problem 4:Fatunla (1980, 1982) 

   =√(     ) , y(0) = 1, 0       , Exact Solution y = Cos(x)  and h = 
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H 

 
 

Theoretical 
Solution 

 
Fatunla 

 
 

Aashikpelokhai 

 
 

One–Step Rational 
Integrators order 5 

 
 

Nf (1980) (1982) 
Order 4 Order 10 Order 3 Order 7 

 

  
 0.951056516 0.00000 0.0000 -0.91617 0.09686 0.19780 1 

  

  
 

0.809016994 0.13767 0.20110 -0.71639 0.08607 0.22292 2 

  

  
 

0.587785252 0.36666 0.50407 -1.17123 0.06105 0.30635 3 

  

  
 

0.309016994 0.42474 0.80596 -0.64517 0.03582 0.48789 4 

  

  
 

0.612574227 0.00152 1.39152 -0.25006 0.01531 0.95893 5 

  

  
 

-0.309016994 0.28291 0.69429 0.05819 -0.00183 5.81880 6 

  

  
 

-0.587785252 0.00411 0.59572 0.34945 -0.01860 -1.39682 7 

  

  
 

-0.809016994 0.32607 0.32176 0.68814 -0.03795 -0.36124 8 

  

  
 

-0.951056516 0.03518 0.03729 1.12100 -0.06133 -0.32195 9 

  1.000000000 0.29774 0.0000 1.61343 -0.08512 -0.22508 10 
Table 4 

 
Our One–step rational integrators compare favourably with Fatunla (1980, 1982) and Aashikpelokhai (1991) in 

the solution of initial value problems (ivps) with oscillatory solution.  
Problem 5: Modeling Advertising Awareness 
y^1 = y(1 – y),    y(0) = 1,   0≤x≤ 1  ;Exact Solution y = 1 - e^(-0.693x) ,    h = 0.05 
 

      Anetor and 
Ebhohimen 

(2013) 

 

X h Theorical 
Solution 

Numerical 
Solution 

Error Fatunla  
(1983) 

Order 11 Nf 

    (Order 5) Order = 4   
0.1 0.05 0.800029 I.404529433 6.05E-13 6.05E-07 -1.39E-10 1 
0.2 0.05 0.899985 1.382785 4.83E-13 4.83E-07 1.80E-10 2 
0.3 0.05 0.849978 1.237788 3.88E-13 3.88E-07 3.05E-10 3 
0.4 0.05 0.799971 1.166941 3.67E-13 3.67E-07 1.01E-10 4 
0.5 0.05 0.749963 1.071013 3.21E-13 3.21E-07 1.53E-10 5 
0.6 0.05 0.699956 0.722516 2.26E-14 2.26E-08 1.43E-10 6 
0.7 0.05 0.649948 1.009318 3.59E-13 3.59E-07 9.57E-10 7 
0.8 0.05 0.599941 0.944671 3.45E-13 3.45E-07 5.00E-10 8 
0.9 0.05 0.549934 0.856904 3.07E-13 3.07E-07 2.16E-10 9 
1 0.05 0.499926 0.530226 3.03E-14 3.03E-08 8.09E-10 10 

Table 5 
 

From the table above, we observed that our one - step rational integrator method of order 5 are efficient and also 
cope favorably when compared with Fatunla (1983) and Anetor and Ebhohimen 2013.   
 
8.   Conclusion 

The implementations of the One-step rational integrators methodwere coded in Mathlab and run on a digital 
computer. 

In conclusion, from the above results in tables 1,2,3,4 and 5 can be seen that our One-step rational integrators 
method of order five is efficient and accurate when compared with the existing methods of Aashikpelokhai 
1991;Fatunla1983; Lambert and Shaw 1965 and Nieker 1985; Anetor and Ebhohimen 2013which can solve the same set 
of numerical initial value problems.  The Region of Absolute Stability (RAS) of the One-step rational integrators method 
lies entirely on the Left-half of the complex plane. We therefore conclude that the One-step rational integrator methods are 
both A-stable and L-stable for K= 3. Hence, it is recommended for users, who are currently working in the area of research. 
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