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1. Introduction 
 The stock market is the hub in which people can buy and sell shares systematically. It has an important 
contribution to the rapidly growing world economy. The fluctuation in the stock market can have a significant influence on 
people and the entire economy. The Stock market is one of the best alternatives for many business firms for further 
expansion. Generally, it is well-known that financial markets across all asset classes exhibit trends. These trends have been 
exploited very successfully by the trading industry over the past decades. Nevertheless, the main objective of investors 
should be to buy a stock to have capital appreciation. 
 Various reasons, such as politic-economic situation, natural disasters, poor-corporate governance, and differing 
policy of the governing company, influence the overall trend of stock markets. In this regard, the return on the investment 
made by people and corporates in the stock market relies on the decision to purchase stocks. The decision to choose the 
most beneficial options in the stock market relies on how well people are informed in the stock analysis. This is why it is 
important to identify the statistical models and their analysis (Sen & Chaudhuri, [1]). These models assist in forecasting 
the share price movement of stocks. There are various statistical models to study the phenomena of stock behavior. For 
example, the Brownian motion model predicts the stock market using past information. Initially, models with incomplete 
information were investigated by Dothan and Feldman [2] using dynamic programming methods in linear Gaussian 
filtering. Many models are used to predict stock executions, such as "Exponential Moving Average" (EMA) and the "head 
and shoulders" methods. However, many of the forecast models require a stationary input time series. In reality, financial 
time series are often non-stationary, and hence, non-stationary time series models are needed. Auto-regression models 
have been modified by adding time-dependent variables to adapt to the non-stationarity of time series. Some recent 
papers using these models are [3]-[4]. Otherwise, in the paper [5], the authors developed an interesting method based on a 
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Abstract: 
We define a method for predicting the stochastic behavior of the Bull and Bear periods of the stock market. In this 
paper, initially, we carry on a comprehensive evaluation of more frequently used statistical methods for evaluating 
Stock markets. Our work is based on collecting 40 years of data from the Italian stock market. The proposed solution 
is defined using the statistical analysis of the Bear and Bull Stock markets. We defined a new system to predict the 
trend of a stock market price, where the trend of the succession of Bull and Bear markets can be described by a 
probability density function given by a Gaussian distribution. Furthermore, we consider the inverses of the relative 
time intervals as a measure of the speed with which the phenomenon of the Bear market (or, equivalently, the Bull 
market) develops in that interval of time. Therefore, this factor can ultimately represent the first statistical weight of 
the single percentage variation. Again, the time intervals of the individual Bear and Bull market periods are 
considered, calculated from 01/01/1973. This allows us to consider the hypothesis that a secondary factor of 
probability is the temporal distance of the event that has already occurred. This work includes a criterion for 
statistically generating the most probable values of the next Bear and Bull markets and the length of the time 
intervals corresponding to these market situations. This criterion is based on the following hypothesis:  
To obtain the distribution of the predictive points of max and min in the succession of Bull and Bear markets, it is 
assumed that, in the long period, the random distribution of the successive max and min takes the trend of the 
distribution of the distance fluctuations between the zeroes of the Riemann's function which, in turn, is approximated 
by a Unitary Gaussian Distribution (GUE). Our results show that:  

 The linear interpolation of the Variations of the market (positive and negative) relative to different and 
successive sampling sets for future trends do not show high percentage variations between them,  

 Above all, the lengths of the single time intervals of the future variations, relative to different and successive 
sampling sets, are quite similar to each other. Hence, the method appears to be basically stable and 
promising.  
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Neural Network Model. Again, in the paper [6], the authors developed a different method based on the forecast of stock 
volatility, building a prediction model for the stock volatility price.  
 An important and interesting line of analysis in the Statistical Models of Financial Analysis relates to the analysis 
of the Brownian motion in the context of the performance of stock indexes. The interesting studies [7] and [8] belong to 
this area. Instead, Bahrens et al., in the paper [9], use the Generalized Pareto Distributions (GPD), considering the 
uncertainty about the threshold explicitly. They introduce a mixture model that combines a parametric form for the center 
and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters. Elbahloul 
[10] applies some statistical analysis methods, such as Exponential smoothing and Mean Squared Error (MSE), to analyze 
time-series data to make some determinations. Wen et al. [11] developed a method based on the co-integration theory, 
building Full Graphs (FGs) and Minimum Spanning Trees (MSTs) in terms of the co-integration matrix by using daily stock 
prices from the Chinese stock market. Again, Shen et al. [12], in their paper, defined a method for Short‑term stock market 
price trend prediction using a comprehensive deep learning system obtained by collecting two years of data from the 
Chinese stock market. 
 A different approach to the statistical study of stock markets takes place through the Hidden Markov Model 
(HMM) method. It can be considered a tool to deal with time series problems. It is not affected by whether the data is 
linear or not while analyzing market conditions and the transition law between these states. Some very recent works 
regarding the Hidden Markov Model are [13]-[14]-[15]-[16]. They first divide the market situation into three types: bull 
market, mixed market, and bear market, and establish a hidden Markov model of state estimation to solve the problem of 
market situation estimation. Then they propose a Markov estimation trading strategy. 
 In recent years some authors have tried to introduce a quantum theory for financial markets. Some of the most 
recent papers that can be cited in this regard are [17]-[18]-[19]-[20]. The stocks have always been traded at certain prices, 
which, from the point of view of quantum mechanics, present corpuscular property. Meanwhile, the stock prices fluctuate 
in the market, representing the wave property. Due to this wave-particle dualism, they suppose the micro-scale stock is a 
quantum system. Unlike the other works, the one by Durmagambetov [17] actually presents an analysis of various 
mathematical models for stock markets, in addition to the one related to quantum mechanics. In particular, in this work, 
the possibility of deriving symmetry is also considered between different assets in phase with other assets and vice-versa 
(change in anti-phase). As a consequence, this work is formally considered a change in trends as a change in symmetries 
and as a change in conservation laws from the point of view of Noether's theorems. Particularly, this author studied the 
functional Riemann equations for the Zeta Function, and he solved the problem of constructing solutions of equations with 
mirror symmetry for the stock market. 
 In our new work, we will start as a basis from our recent paper [21]. We believe that a fundamental point in the 
study of stock markets is given by the ability to predict when either a Bear market or a bull market will occur. In other 
words, we will define market phases characterized either by a progressive decrease in the prices of financial assets and by 
pessimistic expectations or by a more or less rapid increase in prices. Being able to establish in advance, with a good 
approximation, the beginning of a Bear market period (or Bull market period) is clearly the fundamental factor for selling 
(buying) the stocks in advance. We started with the statistical method described in the previous work on this argument 
[21] and partially derived from the method defined in two previous works ([22] and [23]) by the author. We consider a 
financial market that will define the successive max and min points of the statistical curve of the market analyzed (FTSE 
MIB Italia), corresponding to price variations of more than 20% (generally accepted definition for Bear and Bull markets). 
That is, to be defined as Bear or Bull markets, depending on whether prices are falling or rising. We assume that the 
unobservable and future processes are modeled by a stochastic process. Precisely, we define a Gaussian trend of the 
probability distribution to obtain the values of the predictor variables. Based on this method, a criterion is established for 
statistically generating the most probable values of the next Bear and Bull markets and, above all, the lengths of the time 
intervals corresponding to these market situations. Nevertheless, herein lies the fundamental novelty of this work, in 
order to obtain the distribution of future max and min points in the sequence of Bull and Bear markets, we make the 
fundamental assumption that, in the long period, the random distribution of successive max and min has the behavior of 
the Distribution of the distance fluctuations between the zeroes of Riemann function, which, in turn, is approximated by a 
Unitary Gaussian Distribution (GUE). Based on this assumption, we predictively calculate the distribution of future max 
and min points, i.e., the individual percentage changes and the corresponding time intervals. 
 The paper is organized as follows:  

 In Section 2, we describe the Statistical method used.  
 In Section 3, we describe the Zeroes of Riemann's Zeta Function and the GUE's Random Matrices.  
 In Section 4, the application of Riemann's function Zeroes to the statistical method for generating the trend of the 

Bull and Bear markets is defined.  
 In Section 5, some results and relative discussion are developed.  
 In the end, in Section 6, the concluding remarks are defined. 

 
2. Description of the Statistical Method  

In this section, we will refer particularly to the previous work of the author [21]. Our goal is to describe the 
statistical method for obtaining the values of the predictive variables relating to the peaks corresponding to the Bear 
market and the Bull market and the time intervals in which these transitions take place. A Bull market can be defined as a 
period in financial markets when the price of an asset or security rises. The commonly accepted definition of a Bull market 
is when stock prices rise by 20% or more. On the contrary, Bear markets occur when stock prices fall 20% or more for a 
sustained period. Bull markets are generally powered by economic strength, whereas bear markets often occur during the 
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economic slowdown and higher unemployment. 
The statistical method for predicting Bull and Bear markets is based on the following steps: 

 We generated the data of the Bull and Bear markets using the historical Global Comit Index for the Italy Stock 
Market, which has been available since the beginning of 1973, thus resulting in the longest index available on the 
Italian stock market. The fundamental inferred data for the Bull and Bear markets have been included in table 1, 
shown below. 

 We hypothesize that the trend of the succession of bull and bear markets can be described by a probability density 
function given by a Gaussian distribution defined by eq. (1).  
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where μ is the expected value, and σ is the variance of the Gaussian function.   
 

Pos. Peak Date 
(mm/dd/yyyy) 

Trough Date 
(mm/dd/yyyy) 

Initial 
Price 

Final Price Percent. 
Variation 

(ΔVi) 

Number of 
working Days        

(Δti) 
1 01/02/1973 06/19/1973 111.35 162.21 45,6 121 
2 06/19/1973 08/07/1973 162.21 117.51 -27,5 14 
3 08/07/1973 04/18/1974 117.51 154.25 31,2 183 
4 04/18/1974 12/20/1974 154.25 85.97 -44,2 177 
5 12/20/1974 03/11/1975 85.97 107.63 25,2 58 
6 03/11/1975 10/17/1975 107.63 75.41 -29,8 159 
7 10/17/1975 07/20/1976 75.41 88.12 16,8 198 
8 07/20/1976 11/10/1976 88.12 64.93 -26,3 82 
9 11/10/1976 12/07/1976 64.93 75.76 16,6 20 

10 12/07/1976 06/16/1977 75.76 58.55 -22,5 138 
11 06/16/1977 09/21/1978 58.55 84.03 43,5 331 
12 09/21/1978 12/19/1978 84.03 67.50 -19,6 64 
13 12/19/1978 06/03/1981 67.50 292.03 332,6 642 
14 06/03/1981 10/20/1981 292.03 172.22 -41 100 
15 10/20/1981 03/19/1982 172.22 212.66 23,4 109 
16 03/19/1982 07/22/1982 212.66 147.23 -30,7 90 
17 07/22/1982 05/20/1986 147.23 908.19 516,8 999 
18 05/20/1986 06/20/1986 908.19 653.83 -28 24 
19 06/20/1986 06/16/1987 653.83 719.03 9,9 258 
20 06/16/1987 02/10/1988 719.03 427.51 -40,5 172 
21 02/10/1988 06/14/1990 427.51 763.53 78,6 612 
22 06/14/1990 01/29/1991 763.53 486.25 -36,3 164 
23 01/29/1991 06/20/1991 486.25 612.32 25,9 103 
24 06/20/1991 12/10/1991 612.32 482.89 -21,1 124 
25 12/10/1991 02/25/1992 482.89 545.03 12,8 56 
26 02/25/1992 09/07/1992 545.03 361.52 -33,6 140 
27 09/07/1992 05/11/1994 361.52 817.17 126 438 
28 05/11/1994 12/13/1994 817.17 581.64 -28,8 155 
29 12/13/1994 07/20/1998 581.64 1623.52 179,1 940 
30 07/20/1998 10/09/1998 1623.52 1063.50 -34,5 60 
31 10/09/1998 11/15/2000 1063.50 2095.95 97 549 
32 11/15/2000 09/21/2001 2095.95 1082.91 -48,3 223 
33 09/21/2001 04/17/2002 1082.91 1513.03 39,7 149 
34 04/17/2002 07/24/2002 1513.03 1077.76 -28,7 71 
35 07/24/2002 08/27/2002 1077.76 1226.88 13,8 25 
36 08/27/2002 10/09/2002 1226.88 974.37 -20,5 11 
37 10/09/2002 05/18/2007 974.37 2149.12 120,5 1203 
38 05/18/2007 03/09/2009 2149.12 655.07 -69,5 472 
39 03/09/2009 05/02/2011 655.07 1153.75 76,1 561 
40 05/02/2011 09/12/2011 1153.75 744.54 -35,4 96 
41 09/12/2011 12/01/2015 744.54 1273.81 71 1102 
42 12/01/2015 06/27/2016 1273.81 916.83 -28 150 
43 06/27/2016 01/29/2018 916.83 1394.58 52,1 416 
44 01/29/2018 12/27/2018 1394.58 1073.50 -23 239 
45 12/27/2018 02/19/2020 1073.50 1479.33 37,8 300 
46 02/19/2020 03/23/2020 1479.33 917.29 -38 24 
47 03/23/2020 01/05/2022 917.29 1654.74 80,3 468 
48 01/05/2022 09/29/2022 1654.74 1200.69 -27,4 192 

Table 1: Global Comit Index - Bear and Bull Markets and Corresponding Corrections Since 1973 
*Variations with a Negative Sign Correspond to Bear Markets, with a Positive Sign to Bull Markets 
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 We calculated the time distance ti from the origin of the times by adding the working time intervals Δti of the 
various periods reported in table 1, which is set on 01/01/1973. 

 The inverses (1/Δti) of the working time intervals Δti are also calculated. These inverses can be considered a 
measure of the speed (and, therefore, the strength) with which the phenomenon of the Bear market (or, 
equivalently, the Bull market) develops in that interval of time. Therefore, in deep analysis, it can represent the 
first statistical weight of the single percentage variation (ΔVi) in that time interval with respect to the entire 
Gaussian probability distribution. 

 After that, we calculated the normalized values ϕi of the primary weights described above. They are defined as 
follows: 

                (2) 
 Now, we consider the time intervals of the individual Bear and Bull market periods, calculated from the origin of 

the time axis, i.e., from 01/01/1973. In this regard, we make a second hypothesis: that a secondary factor of 
probability is the temporal distance of the event that has already occurred. In other words, the more distant the 
phenomenon, the more likely it will happen. Therefore, with this assumption, we make the chain of events non-
Markovian. However, to avoid making this secondary factor too important, we consider it a logarithmic power, 
thus smoothing out the difference between the extreme values. In this way, starting from the time distances ti from 
the origin of the times of the single events, we define the normalized coefficients ϒi of the secondary weights as:                     

            (3) 
 As a consequence of the previous considerations, the overall normalized coefficients [ϕiϒi] are defined, for each 

time interval Δti, in the following way: 

                         (4)     
 Based on overall normalized coefficients [ϕiϒi], it is possible to define the probability density given by a Gaussian 

distribution. For this purpose, being ΔVi the single percentage variation in the time interval Δti, we have to 
determine based on (1) the expected value μ and the variance σ of the Gaussian function: 

                        (5) 

               (6) 
 We define two Gaussian distributions, relating respectively to the Bull and Bear markets, i.e., in practice relating to 

the positive percentage changes (ΔVi)p and negative percentage changes (ΔVi)n in subsequent time periods. So we 
will have, relatively to the expected values μ and to the variances σ of  the two Gaussian functions: 

                      (7) 

                                                                                                              (8) 

                          (9) 

        (10) 
 The two Gaussian distributions, relating to the Positive Variations (Bull market) and the Negative Variations (Bear 

market), will therefore be given, respectively, based on (1) by: 
 

        (11) 
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being: 

                  (13) 

                  (14) 
 
3. Zeroes of Riemann's Zeta Function and GUE's Random Matrices 

In this section, we will base ourselves on the work of Berry [24]. The well-celebrated Hypothesis of Riemann can 
be defined by saying that all the complex zeros of his function 𝜻(z) have real part ½. In this way, the quantities {Ej} are 
defined by: 

1
0

2
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                              (15)  

are all real. That is supported by a fact: the first few millions {Ej} have been calculated and are all-real. 
As well-known, 𝜻(z) can be defined by the following expressions: 
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Nevertheless, neither representation converges on the line Re(z)=1/2, where the zeroes are based on Riemann’s 
hypothesis and the experiment. Many representations are valid for Re(z)=1/2, such as the following, derived by eq. (16b): 

   
1

1
1

1
1

1 2

n z

z
n

z n


 




 


              (Re z > 0)                                                       (17) 

The symmetry of the eq. (15) relating 𝜻(z) to 𝜻(1-z) involves that each of the zeroes (15) with real Ej has a 
counterpart with -Ej. 

An optimal separation of the {Ej} into an average part and a fluctuating part can be obtained by the Riemann 
staircase. This is defined as: 
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where: Θ represents the unit step function. In fact, NR(E) is the number of zeroes with Ej < E. The average <NR(E)> 
is a smooth approximation of the staircase function, whose form is given by: 

7
( ) ln 1

2 2 8
R

E E
N E

 

  
    

  

                                                                                       (19) 

The deviations from the average <NR(E)> represent the fluctuations in {Ej}. The statistics of these fluctuations can 
be analyzed numerically. The researchers found that, with high accuracy, these fluctuations have the statistics of the 
eigenvalues of a typical Gaussian Unitary Ensemble (GUE) relative to complex Hermitian matrices. The elements of these 
matrices are distributed according to a Gaussian function in an invariant way under unitary transformations. 

One such statistic is the probability distribution of the normalized spacing {Sj} between adjacent zeroes. These are 
defined as: 

   1 1 2j j j R j jS E E d E E 
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                                                                     (20) 

where <dR(E)> is the average density of zeroes, obtained by eq.(19) as: 
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The spacing Gaussian distribution PGUE(S) is given using the random-matrix theory [25] with the following 
approximation: 

   2 2

2

32
exp 4GUEP S S S 


                                                                                       (22) 

In figure 1, we represented the Gaussian distribution PGUE(S) that approximates the Spacing distribution P(S) 
relative to the first 10100 Zeroes of the Riemann’s Function, obtained by the table of A. Odlyzko [26] relative to the zeroes 
of the Riemann Zeta Function. 
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Figure 1: Spacing Distribution P(S) Approximation: Gaussian Unitary Ensemble PGUE(S). 

 
 
4. Application of Riemann's Function Zeroes to a Statistical Method for Generating the Trend of the Bull and Bear 
Markets  

In order to determine the trend of the Bull and Bear markets through statistical analysis, the case study related to 
the Global Comit Index for the Italy Stock Market, which has been available since the beginning of 1973, is used. From the 
data of this Index, we obtained those defined in table 1, i.e., the succession of Bear and Bull Markets, the corresponding 
positive and negative Corrections since 1973, and the corresponding working time intervals. 

Using the method and process described in detail in Section 2 for this data, we generate two Gaussian 
distributions, relating respectively to the Bull and Bear markets, i.e., in practice relating to the positive percentage changes 
(ΔVi)p and negative percentage changes (ΔVi)n in subsequent time periods. At this point, we implement the following 
procedure: 

 The method used is based on the following assertion. Since both the distribution of the distance fluctuations 
between the Zeros of the Riemann function and the trend of the sequences of the Bull and Bear markets can be 
approximated by Gaussian probability Distributions, then we hypothesize that the trend of the future Bull and 
Bear markets can be predicted pseudo-randomly, generating a succession of points on the Gaussian curve 
PGUE(S) relating to the Distribution of the distance fluctuations between the Riemann Zeroes. It is evident that, by 
increasing the number of points and increasing the sequence of tests carried out, the results will tend to be, on 
average, best fitted to the future trends. This hypothesis is based on the assumption defined by us, in a more 
general way, that as the number of points considered tends to infinity, each random probability distribution 
should be generated by a PGUE(S), approximating the Distribution of the fluctuations of the distances between the 
zeroes of the Riemann function. 

 Now, we practically define the procedure for obtaining the predictive values of the variables considered. With this 
aim, first of all, we define a pseudo-random number generator using an algorithm based on Linear Congruential 
Generators (LCG). 

 Using the LCG algorithm, we generate four pseudo-random positions on the Gaussian distribution PGUE(S). These 
pseudo-random positions are relative to future trends for Bull markets. In the same way, after that, we generate 
four other pseudo-random positions on the PGUE(S) for negative market changes (Bear markets). Obviously, the 
procedure can be repeated with a greater number of generated positions. 

 At each generated pseudo-random position, we compute the corresponding percentile on the Gaussian PGUE(S). 
 Subsequently, we determine the position of the next future Positive (Bull markets) and negative (Bear markets) 

values on the corresponding Gaussian Distributions given by eq. (11) and from eq. (12), calculating on these 
distributions the percentiles corresponding to those of the individual pseudo-random positions generated on the 
PGUE(S), as described in step 3. This allows us to determine both the amount of time necessary to reach the single 
point of the Bull (Bear) market and the value of the corresponding percentage change. 

 To obtain the predictive value of Δti the following expression is used: 
 

               (23) 
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Where: Δtpsrand is the Δti of the determinate element in table 1 by the pseudo-random algorithm LCG, and Δtm is the 
determinate medium Δt, respectively, for the Bull and Bear market intervals. To calculate the Peak values of the Bull and 
Bear markets, respectively peak values of Max and Min, we will use the following expression: 

 

            (24) 
Where: ΔVpsrand is the ΔVi of the element in table 1 determined by the LCG pseudo-random algorithm, and σi is the 

standard deviation obtained by (8) and (10), respectively, for the Bull and Bear markets. 
 At this point, we generate a linear interpolation of the sequence of points relating to the max and min over the 

time interval taken into consideration, i.e., the sequence of Bull and Bear markets, also inserting the max and min 
points, generated with the method described above, relatively to future trends. 

 
5. Results and Discussion 

In order to describe the method defined in the previous Sections, we have generated some explanatory graphics 
using GNU Octave version 5.1.0. 

 Figure 2 and figure 3 give the Random Positions of the points obtained with the pseudo-random procedure in 
Section 4. In Fig. 2a, four points are represented relative to the Bull markets, that is to the positive variations of 
the stock market, while in Fig. 2b, four points are represented relative to the Bear markets, that is, to the negative 
variations of the stock market. These points are defined on the profile of the Gaussian distribution PGUE(S), which 
approximates the Distribution of the distance fluctuations between the zeroes of the Riemann function. 

 Figure 3 gives the linear interpolation of the subsequent Bull and Bear markets, both for the past time and for the 
forecast markets. In particular, the predictive trend of the next Bull and Bear markets, obtained as described in 
Sections 2-3-4, calculating the four points of max (Bull markets) and the four points of min (Bear markets), is 
highlighted with a red line. 

 Finally, in figure 4, we represent the linear interpolation of the percentage Variation of the market (positive and 
negative) in a shorter time interval than that of figure 3. Specifically, in figure 4a and figure 4b, we describe two 
different linear interpolations for the future trend obtained by different series of pseudo-random positions. What 
is important to highlight by looking at these two figures is that there is no big difference in the trends of the red 
lines, i.e., in the interpolating lines relating to future trends. Of course, there are different percentage variations, 
but these differences are not particularly large. 

 Above all, the lengths of the individual time intervals of future changes are quite similar. 
A further refinement of the method could be obtained by averaging several successive extractions of the pseudo-

random sequences. 
 

 
Figure 2: Random Positions Distribution for Bull Markets on the Gaussian Distribution  

Regarding the Normalized Spacing between Adjacent Zeroes 
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Figure 3: Random Positions Distribution for Bear Markets on the Gaussian Distribution  

Regarding the Normalized Spacing Between Adjacent Zeroes 
 

 
Figure 4: Linear Interpolation of the % Variations of the Comit Index and Future Trend (Red Line) 

 
 
 



 www.ijird.com                                                                                                              February, 2023                                                                                                   Vol 12 Issue 2 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT                  DOI No. : 10.24940/ijird/2023/v12/i2/FEB23013                   Page 40 
 

 
Figure 5: Linear Interpolation of the % Variations of the Index and Future Trend (Red Line) 

Limited to the Last Years, Obtained by a First Set of Pseudo-Random Positions 
 

 
Figure  6: Linear Interpolation of the % Variations of the Index and Future Trend (Red Line) 

Limited to the Last Years, Obtained by a Second Set of Pseudo-Random Positions 
 
6. Conclusion 

In this paper, we investigated the Bear and Bull Stock markets and proposed a statistical method to generate the 
most probable variations of the next future Bear and Bull markets. Furthermore, with our statistical method, we generated 
predictive values of the lengths of the time intervals corresponding to these market situations. We relied on 40 years of 
data from the Italian stock market. The fundamental criterion applied in this work is based on the following hypothesis: in 
order to obtain the distribution of future max and min points in the succession of Bull and Bear markets in the long period, 
the random distribution of successive max and min points must have the distribution of the distance fluctuations between 
the zeroes of the Riemann function which, in turn, is approximated by a Unitary Gaussian Distribution (GUE). An 
implementation of the method and the most relevant results are described. 
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