## THE INTERNATIONAL JOURNAL OF BUSINESS \& MANAGEMENT

# Prof. SRC \& Dr. KB Innovations in Measuring the Impact and Action Recourse for Changes in Costs Prices Product Mix and Volume on Profits, Developed as an Effective Mathematical Tool for Reporting and Decision Making by Interlinking the Economic Analysis and Financial Analysis through Breakeven Analysis 

Sreedhara Ramesh Chandra<br>Professor \& HOD MBA, MLEng. College, Singarayakonda, Andhra Pradesh, India<br>Research Scholar, Acharya Nagarjuna University, Guntur, Ongole Campus, Andhra Pradesh, India Dr. Krishna Banana<br>Assistant Professor, Department of Commerce Business Administration, Acharya Nagarjuna University, Guntur, Ongole Campus, Andhra Pradesh, India


#### Abstract

: The innovative applications of BEA for the study and measurement of effect of changes in any one or some or all the variables under consideration in BEA on the rate of profit with simple mathematical calculations is developed for single product firm in the research paper published in IJBM in June 2016. This is the model developed as a useful tool for measuring the impact of changes in volume along with changes in proportions of output and sales of a multiproduct firm apart from changes in price \& costs (both fixed \& variable) on profits and profitability. This model further pay the way for measurement of impacts of changes in the economic/market/demand like external environment factors and or the impact of changes in internal factors like marketing efficiency (buying/selling) operational efficiency/ (material/Labour)/promotional efficiency (advertisements/campaigning)on profits through a given change in price/costs/volume/volume proportions directly on profits and profitability. Further the very basis forms as the basis for effective and timely decision on recourse in consideration of the changes in costs and cost-drivers. Further it is hoped that it become a useful tool for decision making under strategic considerations for attaining competitive edge under the situations of multidimensional dynamic changes in costs and prices. This is the tool/system that works as a monitoring/observatory and controlling of profits. Further is plays a pivotal role in framing/development and implementation of competitive strategy.


## 1. Introduction

The breakeven analysis is confines to determination of Breakeven Point and mostly for studying the effects of changes in volume/value of sales on costs and profits. Till date the concept is ringing around the Break Even Point. The breakeven point is a referring variable more for risk verification and little for the profit planning implications. It had not involved on profitability analysis. This is the innovative analysis considers the actual market trend effects on variables viz. the price, cost, volume and in turn measures the effect of the on the aggregate profits and profitability. In tandem it helps to measure the effect and effectiveness of the remedial action/measures on the aggregate profitability that to what extent it is possible to redeem the negative impact of the environmental effects on the profitability. This further helps to measure the net impacts at each variable and in aggregate in a sequence.
This innovation is projected for determining exact level of impact of changes in external (market) forces and internal (efficiency) on profits and profitability of a multi-product firm on one hand and the same process ensures exact measurement of effectiveness of corrective measures in narrow down negative impact of the external/internal forces. Further at present the purpose of strategic pricing and price changes are made mostly under the economic analysis which is in different dimension in assessment of costs and profits when compared to cost and management accounting systems. The BEA is the tool which has bearing/roots in both the systems and has the ability to interlink these two systems. The strategic implications of cost and pricing invariably need interlinking of both the systems in analysis. Several economists and financial analysts have theoretically explained in their respective way in experimenting under the BEA but no major breakthroughs have evolved. Further my research paper published in IJBM in June 2016 is meant for the single product organization. This is the tool that works in the same way for a multi-product manufacturing organization/ firm.
In continuation/expansion of the applicability of the formulations from a single product firm (elaborated in my research paper published in IJBM in June 2016), here the thought is extended and explained how the innovations are applicable for a multi-product firm i.e. the firm uses the same plant for producing more than one product or a firm producing joint products and by products. Simply
to say the application of the innovations for a firm that has a mix of products in its production and sales and that followed a most effective product mix.

## 2. Objectives

1. Application of BEA as a strategic profit monitoring tool through measuring the impact of changes in costs, price and promotion even for a multi-product firm.
2. Prescription of common formulae for the above that can be used to ensure the scope of applicability of assumptions of BEA to a negligible level.
3. Ensuring the BEA as a deterministic analytical model for determination of strategic cost/price changes for multi-product business.
4. Ensuring the study of effects of changes in $\mathrm{VC} / \mathrm{FC} / \mathrm{SP} / \mathrm{mix}$ proportions and sales volume individually and in combination on rate of profit with respect to initial planned levels with simple calculations makes the planning of profits as dynamic concept and it is any more a static concept.
5. Interlinking of economic analysis and financial analysis in solving the problems of effective and timely decision making on ensuring the best way to realize the profits as planned through effective monitoring and controlling of effect on profits and profitability that affected by changes in determinants i.e. costs price volume mix proportions.

## 3. Methodology

1. Innovative formulations with existing concepts for extended applications of BEA for a multi-product firm.
2. Innovative approach in application of basic fundamental theme and thoughts of BEA in solving the managerial decision problems in monitoring and controlling the negative impacts of environmental forces on profits and profitability.

## 4. Limitation

1. Here only the hypothetical example is used and no live example is used.
2. It considers and works on the theme of usual inconsistent economic/demand/marketing environment effects.
3. Though it serves for all favorable, normal and difficult constraint conditions, it is to explain the normal conditions in explaining the process or the way it ensures the possibility to measure the impact and how does it works for control.

## 5. Literature Review

As the concept of the paper is to formulate the calculations innovatively, the common existing formulae were collected from the review of literature.

1. The concepts used in BEA:
2. Sales(S): sales or selling price.
3. Variable costs (V): unit cost / proportional variable total cost.
4. Fixed costs (F): total fixed cost irrespective of level of output.
5. Contribution margin: it is the amount calculated with the following: $\mathrm{C}=\mathrm{S}-\mathrm{V}$
6. P/V Ratio (Profit Volume ratio) it is the ratio of between the contribution and sales.
7. P/V Ratio: C/S* 100
8. All formulas of BEA ring aground the following equation: $\mathrm{S}-\mathrm{V}=\mathrm{C}=\mathrm{F}+\mathrm{P}$
9. $\frac{\mathrm{S}-\mathrm{V}}{\mathrm{S}}=\frac{\mathrm{C}}{\mathrm{S}}=\frac{\mathrm{F}+\mathrm{P}}{\mathrm{S}}$

### 5.1. Existing Other Formulas in Breakeven Analysis for Profit Planning

Calculation of Breakeven Point (BEP) I units: F/Cpu
In sales value/revenue: F/p/v Ratio.
Determination $n$ of sales required to get a profit of Rs. P
Required sales $\{$ in units $\}$ : $\mathrm{F}+$ desired P
Cpu
Required sales \{in units \}: F+ desired $P$
P/V Ratio
Amount of profit ( P ) when sales are S units: $\mathrm{P}=(\mathrm{S} \times \mathrm{Cpu})-\mathrm{F}$
Amount of profit ( P ) when target sales are ' S ' rupees: $\mathrm{P}=(\mathrm{S} \times \mathrm{P} / \mathrm{V}$ Ratio $)-\mathrm{F}$
Calculation of safety margin sales SM/MS/SMS:
SMS = TS-BEP (in units or value)
SMS in units: $\mathrm{P} / \mathrm{Cpu}$
SMS in value: $\mathrm{P} /$ ( $\mathrm{P} / \mathrm{V}$ Ratio)
The newly invented formulae with the existing concepts are
\% of $\mathrm{P}=\mathrm{P} / \mathrm{V}$ Ratio (1-BEP Ratio) or P/V Ratio- (P/V Ratio*BEP Ratio)
Generally accessible from any text book of cost and management accounting and drawn from the references

Apart from the above some of the additional concepts/proportions are innovatively applied in deriving the desired results in BEA as given hereunder. Further though there are different mathematical models the end result of them are projected only to derive the above simple formulae and they have unable to provide a needed new dimension for application.

- Important terms: 1 selling price, mix selling price/weighted average selling price, variable cost, mix /

Weighted average variable cost/, product proportion, breakeven point (BEP), breakeven point ratio (BEPR),
Weighted average variable cost ratio/ weighted average P/V Ratio.

## 6. The Terms and Acronyms Used in Formulation and Calculation

| concept | acronym |
| :---: | :---: |
| selling price per unit | SP |
| variable cost per unit | VC |
| total fixed cost | F |
| product mix/ mix | ( $\mathrm{\sum abc}$ ) |
| proportion of products in total output and sales | mix proportion |
| product proportion weighted selling price | WSP |
| product proportion weighted variable cost | WVC |
| product proportion weighted contribution | WC |
| mix P/V Ratio or multi-product combined P/V Ratio | mix P/V Ratio |
| mix variable cost ratio or multi-product combined variable cost Ratio | WVCR |
| multi-product combined BEP | mix BEP |
| product wise BEP on the basis product proportion | product wise BEP |
| multi-product combined BEP as percentage on mix sales | BEP ratio |
| percentage of mix profit on mix sales | \%profit at present |
| revised variable cost | RVC |
| amount of change in variable cost | $\Delta \mathrm{vc}$ |
| weighted change in variable cost | $\Delta \mathrm{wvc}$ |
| percentage change in weighted variable cost on mix WVC | \%of $\Delta w v e$ mix |
| percentage change in VC effect on weighted variable cost ratio | or $\Delta$ wvermix |
| effect of change in VC on profit percentage | $\% \Delta \mathrm{Pvc}$ |
| percentage of profit on sales after the effect of change in VC | revised profit rate |
| new selling price | NSP |
| change in SP | $\Delta \mathrm{sp}$ |
| weighted change in SP | $\Delta \mathrm{wsp}$ |
| percentage of weighted change in WSP | \% of $\Delta$ wspmix |
| effect of change in SP on profit percentage | $\Delta \mathrm{Psp}$ |
| percentage of profit on sales after the effect of change in SP | revised profit rate |
| old or initial planned proportion of products in total quantity of mix sales | omix |
| revised proportion of products in total quantity of mix sales | nmix |
| change in proportion of products in total quantity of mix sales | $\Delta$ mix |
| change in mix SP with respect of change in mix proportion in sales | $\Delta$ mix.wsp |
| change in mix VC with respect of change in mix proportion in sales | $\Delta$ mix.wve |
| change in mix C with respect of change in mix proportion in sales | $\Delta$ mix.wC |
| change in mix P/V ratio with respect of change in mix proportion in sales | $\Delta \mathrm{p} / \mathrm{v}$ Ratio |
| effect of change in mix proportion on profit percentage | $\Delta \mathrm{pmix}$ |
| percentage change in mix sp on mix SP with respect of change in mix proportion in sales | \% of $\Delta$ mix.wsp |
| percentage of profit on planned sales revenue after the effect of change in mix | revised profit rate |
| percentage of profit on revised mix sales revenue | \% of P at newmix |
| effect of change in vc on mix vc | $\Delta \mathrm{vc} . \Delta \mathrm{mix}$ |
| effect in percentage of change in vc on changed mix vc | $\%$ of $\Delta$ mix. $\Delta \mathrm{vc}$ in wve |
| effect of change in mixvc on WVCR | $\Delta$ mix. $\Delta$ vc in WVCR |
|  | $\Delta \mathrm{sp}$ |
|  | $\Delta$ mix |
| effect of changes in SP \& mix on mixsp | $\Delta \operatorname{mix} \Delta \mathrm{wsp}$ |
| effect of changes in sp on mixsp / mixp p/v Ratio | $\Delta$ spmix (\% of $\Delta \operatorname{mix} \Delta$ wsp in wsp) |
| change in volume | $\Delta \mathrm{vol}$ |
| change in volume as percentage in revised new volume | $\%$ of $\Delta \mathrm{vol}$ on nvol |
| change in BEP ratio with respect of change in volume | $\Delta$ bepr.vol |
| new BEP Ratio after a change in volume | NBEPR |
| change in profit ratio with respect to change in volume | $\triangle$ P.vol. |
| change in fixed cost | $\Delta \mathrm{fc}$ |
| change in fixed cost as a percentage on base planned fixed cost | $\% \Delta \mathrm{f}$ |
| change in BEPR/NBEPR vol. with respect ot change in Fixed cost | $\triangle$ BEPRfc |
| effect of change in fixed cost on profit ratio | $\Delta \mathrm{P} . \Delta \mathrm{fc}$. or $\Delta \mathrm{P} . \Delta \mathrm{fc} . \Delta \mathrm{vol}$ |

## Table 1

## 7. Analysis

1. The following Innovative application of breakeven concept: for measurement of effect of changes in costs, price, volume and mix proportions of multiproduct firm are developed from the theme of my paper published in June 2016 in IJBM where the same concept is published for a single product firm.

Page no 235 of Vol 4 Issue 6June 2016(ISSN 2321-8916) SRCSPS Karivena Effects... point 6.2. The Innovations Enable the Breakeven Analysis as an Analytical Tool for Strategic Cost and Pricing Model

Following is the example helps to understand the way that the innovative formulations works on measuring the impact of changes in costs and prices of products in total and in isolation of the variables (mix, costs price \& volume), effected by changes in forces of economic environment, on profits and profitability of the mix of products in aggregate for the firms under the multi-product operations. The effects are possible view variable wise independently and in combination with other others for all products individually or in combinations with simple calculation. Further using an excel work sheet it is possible to know within no time the effects of changes in factors on profit/profitability.

| particulars | total | a | b | c |
| ---: | :---: | :---: | :---: | :---: |
| Total fixed cost | 50000 | - | - | - |
| planned volume of output and sales | 10000 | 2000 | 3000 | 5000 |
| Proportions in product mix |  | 0.2 | 0.3 | 0.5 |
| sp |  | 200 | 100 | 50 |
| vc |  | 100 | 75 | 25 |

Table 2: hypothetical example problem
A. Calculate the rate of profit expected form the above.
B. As the time progresses, if the situation leads to any one case or all of the following at once, calculate the effect of change in variables (cost and prices and volume/mix) on aggregate profits separately of each case and variable and in aggregate considering each case as distinct.
In the light of trends in demand, market, economic conditions for short or long run forced to the following:
a. Rise in Variable cost of products: product A to Rs. 110/- product C to Rs 27.5 and a fall of VC to Rs. 73.5
b. A reduction in selling price of products: product A to Rs. 190/- B to Rs. 98/- and C to 47.5/-
c. Change in only mix proportion to $.4, .2, .4$ respectively of products a, b, c. (irrespective of change in mix volume) and together with (i) changes in VC and (ii) changes in SP. (iii) changes in VC \& SP.
d. The actual trends in quantities of sale of the products would likely a $20 \%$ increase with revised proportions said in c above as: A 4800 units B: 2400 units and C 4800 units.
e. The fixed costs would likely increase by $20 \%$. To Rs $60000 /-$ and sales volume would decrease by $20 \%$ to 8000 units You are requested to provide the information of:
I. The effect of change in variable costs, prices, mix, volume and fixed costs individually as B. a,b,c,d,e, above and in combination of changes in all on the rate of profit in aggregate with effect to the effects of all.
The economic reports of the firm reveal the following. In the light of the economic reports suggest the most profitable action recourse to the likely fall of sales by $10 \%$ as given in point no1 of the following. The combined promotion costs cover $60 \%$ of total fixed costs at present.

|  | Particulars | Product a | Product b | Product c |
| ---: | ---: | ---: | ---: | ---: |
| 1 | market/systematic effects observed as 10\% fall in demand of all products equally | -0.1 | -0.1 | -0.1 |
| 2 | price elasticity in $\%$ | -0.7 | -1 | -0.5 |
| 2 a | As a measure the possible $\%$ change in price | -5 | -5 | -5 |
| 3 | The possible $\%$ change in advt. exp. | 40 | 40 | 40 |
| 3 a | Advt. elasticity\% | 0.6 | 0.8 | 0.7 |

Table 3: applicable economic factors with hypothetical values
Note the common advt. cost cover60\% of fixed cost. The plant has just sufficient plant capacity to the effect of the above. Use information of the base planned data for showing the impact of the above
Determine the rate of profit on sales to the effect of the above.
a. With a restructure of plant the variable costs of products will reduce by $5 \%$ each but it increases the fixed cost by $40 \%$
b. What would be the volume of sales required to maintain the same rate of profit on present/planned sales revenue/ on ROI as planned?
c. You are required to calculate the \% of profit on total sales and on Investment where the investment is Rs. $25,00,000 /-$

| Solution: part A of the hypothetical problem |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| acronym | formula | products |  |  |  |
|  |  | a | b | c | $\operatorname{mix}\left(\sum \mathrm{abc}\right)$ |
| planned volume of sales | given or base plan volume of sales | 2000 | 3000 | 5000 | 10000 |
| SP | base plan selling price | 200 | 100 | 50 |  |
| VC | base plan variable cost | 100 | 75 | 25 |  |
| F | base plan Fixed cost |  |  |  | 50000 |
| mix proportion | initial planned | 0.2 | 0.3 | 0.5 | 1 |
| WSP | mix proportion*SP | 40 | 30 | 25 | 95 |
| WVC | mix proportion*VC | 20 | 22.5 | 12.5 | 55 |
| WC | WSP-WVC | 20 | 7.5 | 12.5 | 40 |
| mix P/V Ratio | WC/WSP*100 of mix |  |  |  | 42.11 |
| WVCR | WVC/WSP*100 |  |  |  | 57.89 |
| mix BEP | F/ WC |  |  |  | 1250 |
| product wise BEP | $\mathrm{F} / \mathrm{wC}$ mix and BEP * product mix proportion for each product | 250 | 375 | 625 | 1250 |
| BEP ratio | BEP/Sales*100 |  |  |  | 12.5 |
| \%profit at present | P/V Ratio (1-BEP Ratio) | (42.11*87.5/100) |  |  | 36.84 |

Table 4: solution to the problem No $A$ of the table 2

| verification: | a |  | b |  | c |  | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PER UNIT | TOTAL | $\begin{gathered} \hline \text { PER } \\ \text { UNIT } \end{gathered}$ | TOTAL | PER UNIT | TOTAL | mix |
| UNITS OF SALE |  | 2000 |  | 3000 |  | 5000 | 10000 |
| sales | 200 | 400000 | 100 | 300000 | 50 | 250000 | 950000 |
| variable cost | 100 | 200000 | 75 | 225000 | 25 | 125000 | 550000 |
| contribution |  | 200000 |  | 75000 |  | 125000 | 400000 |
| total fixed cost |  |  |  |  |  |  | 50000 |
| net profit |  |  |  |  |  |  | 350000 |
| \% profit on sales |  |  |  |  |  |  | 36.84 |

Table 5: verification of the results of table 4
point No7 B a Determination/measurement of effects of changes in VC on Profits (When the change is only in VC)

| particulars | FORMULA | a | b | c | Mix ( $\sum \Delta \mathrm{abc}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VC | as given | 100 | 75 | 25 |  |
| RVC | **as given | 110 | 73.5 | 27.5 |  |
| $\Delta \mathrm{vc}$ | (vc-rvc) | -10 | 1.5 | -2.5 |  |
| $\Delta \mathrm{wvc}$ | $\Delta \mathrm{c}^{*} \mathrm{w}$ | -2 | 0.45 | -1.25 | -2.8 |
| \%of $\Delta \mathrm{wvc}$ mix | $\begin{array}{r} \left(\sum \Delta \mathrm{wvc} \operatorname{mix} / \sum_{\operatorname{mix} *} \mathrm{WVC}\right. \\ \hline \end{array}$ | (-2.8/55*100) |  |  | -5.09 |
| or $\Delta \mathrm{wvermix}$ | (\%of $\triangle \mathrm{WVC}$ <br> mix*100/WVCR mix)= | (-5.09*57.89/100) |  |  | -2.95 |

Table 6: solution to the point No7 B a
The net effect on rate of profit with respect to change in VC is a fall of $2.95 \%$. Therefore, the rate of profit after the change in VC is: $36.84-$ $2.95=33.89 \%$

Verification of the effect of the above

| particulars | a |  | b |  | c |  | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PER UNIT | TOTAL | PER <br> UNIT | TOTAL | PER UNIT | TOTAL |  |
| UNITS OF SALE |  | 2000 |  | 3000 |  | 5000 | 10000 |
| sales | 200 | 400000 | 100 | 300000 | 50 | 250000 | 950000 |
| variable cost | 110 | 220000 | 73.5 | 220500 | 27.5 | 137500 | 578000 |
| contribution |  | 180000 |  | 79500 |  | 112500 | 372000 |
| total fixed cost |  |  |  |  |  |  | 50000 |
| net profit |  |  |  |  |  |  | 322000 |
| \% profit on sales | (322000/950 | 0*100) |  |  |  |  | 33.89 |

Table 7: verification of results of table 6
point No7 Bb Determination/measurement of effects of changes in SP on Profits (When the change is only in SP)

| particulars | FORMULA | a | b | c | mix |
| ---: | ---: | ---: | ---: | ---: | ---: |
| SP | as given | 200 | 100 | 50 | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |
| NSP | **as given | 190 | 98 | 47.5 |  |
| $\Delta \mathrm{sp}$ | as given | -10 | -2 | -2.5 |  |
| $\Delta \mathrm{wsp}$ | $\mathrm{w}^{*} \Delta \mathrm{sp}$ | -2 | -0.6 | -1.25 | -3.85 |
| $\%$ |  |  |  |  | -4.05 |

Table 8: solution to the point No7 B b
The net effect on rate of profit with respect to change in SP is a fall of $4.05 \%$. Therefore the rate of profit after the change in SP at the base/initial planned revenue is: $36.84-4.05=32.79 \%$ and
The profit rate on the revenue at revised SP is $(32.79 * 100 / 100+-4.05)=34.17 \%$

| Verification |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | a |  | b |  | c |  | total |
| UNITS OF SALE | 2000 |  | 3000 |  | 5000 |  | 10000 |
| sp/sales | 190 | 380000 | 98 | 294000 | 47.5 | 237500 | 911500 |
| variable cost | 100 | 200000 | 75 | 225000 | 25 | 125000 | 550000 |
| contribution | 90 | 180000 | 23 | 69000 | 22.5 | 112500 | 361500 |
| total fixed cost |  |  |  |  |  |  | 50000 |
| net profit |  |  |  |  |  |  | 311500 |
| \% profit on sales at the revised sp rates | (3115 | 0/911500 | 100) |  |  |  | 34.17 |
| \% profit on sales at the base sp rates | (311 | 00/950000 | 100) |  |  |  | 32.79 |

Table 9: verification of results of table 8
point No7 B c: Determination/measurement of effects of changes in product mix proportion on Profits (When the change is only in mix)

| particulars | FORMULA | a | b | c | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| omix | as given | 0.2 | 0.3 | 0.5 | 1 |
| nmix | $* *$ as given/calculated | 0.40 | 0.20 | 0.40 | 1 |
| $\Delta$ mix | $($ NEWmix-Old mix $)$ | 0.20 | -0.10 | -0.10 | 0 |
| $\Delta$ mix.wsp | $(\Delta$ mix/mix1*wsp $)$ | 40.00 | -10.00 | -5.00 | 25.00 |
| $\Delta$ mix.wvc | $(\Delta$ mix/mix1*wvc) | 20.00 | -7.50 | -2.50 | 10.00 |
| $\Delta$ mix.wC | $\Delta$ mix.wsp- $\Delta$ mix.wvc |  |  |  | 15.00 |
| $\Delta$ p/v Ratio | $(\Delta$ mix.C/mixwsp)*100 | $(15 / 95)^{*} 100$ |  |  | 15.79 |
| $\%$ of $\Delta$ mix.wsp | $(\Delta$ wsp.mix/wsp.mix $) * 100$ | $\left(25 / 95^{*} 100\right)$ |  |  | 26.32 |

Table 10: solution to the point No7 B c
The net effect on rate of profit with respect to change in mix is a rise of $15.79 \%$. Therefore the rate of profit after the change in mix at the base/initial planned revenue is: $36.84+15.79=52.63 \%$ and
The profit rate on the revenue at revised SP is $(52.63 * 100 / 100+-26.32)=41.67 \%$

| Verification |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | a |  | b |  | c |  | total |
| UNITS OF SALE | 4000 |  | 2000 |  | 4000 |  | 10000 |
| sp/sales | 200 | 800000 | 100 | 200000 | 50 | 200000 | 1200000 |
| variable cost | 100 | 400000 | 75 | 150000 | 25 | 100000 | 650000 |
| contribution | 100 | 400000 | 25 | 50000 | 25 | 100000 | 550000 |
| total fixed cost |  |  |  |  |  |  | 50000 |
| net profit |  |  |  |  |  |  | 500000 |
| $\%$ profit on sales at the revised sp rates | $\left(500000 / 1200000^{*} 100\right)$ |  |  |  | 41.67 |  |  |
| $\%$ profit on sales at the base sp rates | $\left(500000 / 950000^{*} 100\right)$ |  |  |  | 52.63 |  |  |

Table 11: verification of results of table 10

The additional calculations to determine /measure the impact/effect of change in mix together with changes in VC in this regard apart from the above the following are need to be calculated(B.c.i)
Point No7 B $c(i)$ : Determination/measurement of effect of change in VC \& mix on profit with respect to change in mixVC ( $\Delta \mathrm{VC}$ sub effect to $\Delta$ mix)

| particulars | FORMULA | a | b | c | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta \mathrm{vc}$ | as calculated in VC change effect | -10 | 1.5 | -2.5 |  |
| $\Delta$ mix | as calculated in mix change effect | 0.2 | -0.1 | -0.1 |  |
| $\Delta \mathrm{vc} . \Delta \mathrm{mix}$ | $\Delta$ mix* $\Delta$ wve | -2 | -0.15 | 0.25 | -1.9 |
| \% of $\Delta$ mix. $\Delta \mathrm{VC}$ in wve | ( $\Delta \mathrm{mix}^{*} \Delta \mathrm{WVC}{ }^{*} \mathrm{wvc} / 100$ ) | (-1.9/55*100) |  |  | -3.45 |
| $\Delta$ mix. $\Delta$ VC in WVCR | $\%$ of $\Delta$ mix. $\Delta$ VC in wvc*vcr/100 | (-3.45*57.89/100) |  |  | -2 |

Table 12: solution to the point No7 B c(i)
The net effect on rate of profit with respect to change in VC \& mix (VC effect + mix effect + mix VC effect) is a rise of $10.84 \%$. ( -$2.95+15.79+-2$ ) Therefore the rate of profit after the change in VC \& mix at the base/initial planned revenue is: $36.84+10.84=47.68 \%$ and the rate of profit on the revenue at revised mix revenue $(47.68 * 100 / 100+26.32)=37.75 \%$

| Verification of results of the above |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| verification: | a | b |  | c |  | total |  |
| UNITS OF SALE | 4000 |  | 2000 |  | 4000 |  | 10000 |
| sp/sales | 200 | 800000 | 100 | 200000 | 50 | 200000 | 1200000 |
| variable cost | 110 | 440000 | 73.5 | 147000 | 27.5 | 110000 | 697000 |
| contribution | 90 | 360000 | 26.5 | 53000 | 22.5 | 90000 | 503000 |
| total fixed cost |  |  |  |  |  |  | 50000 |
| net profit |  |  |  |  |  |  | 453000 |
| \% profit on sales at the revised sp rates | $\left(453000 / 1200000^{*} 100\right)$ |  |  |  | 37.75 |  |  |
| $\%$ profit on sales at the base sp rates | $(453000 / 950000 * 100)$ |  |  |  | 47.68 |  |  |

Table 13: verification of results of table 12
The additional calculations to determine /measure the impact/effect of change in mix together with changes in SP. in this regard apart from the above the following are need to be calculated (B.c.ii)
point No7 B c(ii): Determination/measurement of effect of change in SP \& mix on profit with respect to change in mixSP ( $\Delta \mathrm{SP}$ sub effect to $\Delta$ mix)

| particulars | FORMULA | a | b | c | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta \mathrm{SP}$ | as calculated in SP change effect | -10 | -2 | -2.5 |  |
| $\Delta$ mix | as calculated in mix change effect | 0.2 | -0.1 | -0.1 |  |
| $\Delta$ mix $\Delta \mathrm{wsp}$ | $\Delta$ mix* $\Delta \mathrm{wsp}$ | -2 | 0.2 | 0.25 | -1.55 |
| \% of $\Delta \mathrm{mix} \Delta \mathrm{wsp}$ in wsp | $\Delta$ mix* $\Delta \mathrm{wsp} / \mathrm{wsp} * 100$ | (-1.55*100/95) |  |  | -1.63 |
| $\Delta \mathrm{mix} \Delta$ wsp mixsp on P | As the above |  |  |  | -1.63 |

Table 14: solution to the point No7 B c(ii)
The net effect on rate of profit with respect to change in SP \& mix (SP effect + mix effect + mix SP effect) is a rise of $10.11 \%(15.79$ $-4.05-1.63$ ) further the rate of profit after the change in SP \& mix at the base/initial planned revenue is: $36.84+10.11=46.95 \%$ and the rate of profit on the revenue at revised SP \& mix is $(46.95 * 100 / 100+26.32+-1.63+-4.05)=38.92 \%$

| Verification of results of the above |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| verification: | a | b |  | c | total |  |  |
| UNITS OF SALE | 4000 |  | 2000 |  | 4000 |  | 10000 |
| sp/sales | 190 | 760000 | 98 | 196000 | 47.5 | 190000 | 1146000 |
| variable cost | 100 | 400000 | 75 | 150000 | 25 | 100000 | 650000 |
| contribution | 90 | 360000 | 23 | 46000 | 22.5 | 90000 | 496000 |
| total fixed cost |  |  |  |  |  |  | 50000 |
| net profit |  |  |  |  |  |  | 446000 |
| $\%$ profit on sales at the revised sp rates | $(446000 / 1146000 * 100)$ |  |  |  | 38.92 |  |  |
| $\%$ profit on sales at the base sp rates | $(446000 / 950000 * 100)$ |  |  |  |  | 46.95 |  |

Table 15: verification of results of table 14
(B. c. iii) or otherwise (B. a, b\& c) When changes are together in SP, VC and mix and their combined effect on rate of profit is:

Effect of change in SP + effect of change in VC+ effect of change SP effect of change in mix + effect of change in mixVC+ effect of change in mixSP
$=-2.95+-4.05+15.79+-2+-1.63=5.16 \%$
The net profit rate after the changes in SP, VC and mix on base planned revenue is: $36.84+5.16=42 \%$
The net profit rate after the changes in SP, VC and mix on revised revenue to all the effect of changes in sp, vc\& mix): is $42 * 100 /$ $(100+15.79-4.05-1.63)=34.82 \%$

| Verification of results of the above |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | a |  | b |  | c |  | total |
| UNITS OF SALE | 4000 |  | 2000 |  | 4000 |  | 10000 |
| sp/sales | 190 | 760000 | 98 | 196000 | 47.5 | 190000 | 1146000 |
| variable cost | 110 | 440000 | 73.5 | 147000 | 27.5 | 110000 | 697000 |
| contribution | 80 | 320000 | 24.5 | 49000 | 20 | 80000 | 449000 |
| total fixed cost |  |  |  |  |  |  | 50000 |
| net profit |  |  |  |  |  |  | 399000 |
| \% profit on sales at the revised sp rates | (399000/1146000*100) |  |  |  |  |  | 34.82 |
| \% profit on sales at the base sp <br> rates | (399000/950000*100) |  |  |  |  |  | 42.00 |

Table 16: verification of results B. $a, b \& c$.
Note: as the measurement of changes in volume and fixed costs are calculated through the changes in BEP, the effects though measured separately but be considered together as follows:
Solution to: B.d. Effect on profit when change in volume with or without changes in SP/VC/mix/proportions irrespective of change in fixed costs (even when there is a change in PS, VC, mix they will be calculated as usual as said above)

| particulars | FORMULA |  | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |
| ---: | ---: | :---: | ---: |
| Revised volume | (n vol -o vol) | $(12000-10000)$ | 12000 |
| $\Delta \mathrm{Vol}$ | $(\Delta \mathrm{vol} / \mathrm{nvol} * 100)$ | $(2000 / 12000 * 100)$ | 2000 |
| $\%$ of $\Delta \mathrm{vol}$ on nvol | $(12.5 * 16.67 / 100)$ | 16.67 |  |
| $\Delta$ bepr.vol | (base bep ratio*\%change in voume) | 2.08 |  |
| NBEPR | base BEPR -change in BEPR | $(12.5-2.08)$ or $($ base BEPR $(1-\Delta \mathrm{BEPR})$ | 10.42 |
| $\Delta$ P.vol. | (PV Ratio* $\Delta$ BEPRvol./100) | $42.11 * 2.08 / 100$ | 0.88 |

Table 17: solution to the point No7 B d.
Net impact of change in total mix volume is: $.88 \%$ and the rate of profit on revenue at the changed new volume of sales is: base profit ratio + change impact $=36.84+.88=37.72$. Further the $\%$ of profit after the change in volume on base revenue $=\%$ p at new revenue*new vol/old vol. $=37.72 * 12000 / 10000=45.26$

|  |  | ication |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | a |  | b |  | 'c |  | total |
| UNITS OF SALE | 2400 |  | 3600 |  | 6000 |  | 12000 |
| sp/sales | 200 | 480000 | 100 | 360000 | 50 | 300000 | 1140000 |
| variable cost | 100 | 240000 | 75 | 270000 | 25 | 150000 | 660000 |
| contribution | 100 | 240000 | 25 | 90000 | 25 | 150000 | 480000 |
| total fixed cost |  |  |  |  |  |  | 50000 |
| net profit |  |  |  |  |  |  | 430000 |
| \% profit on sales revised volume | 430000/1140000*100) |  |  |  |  |  | 37.72 |
| \% profit on sales at the base revenue | 430000/950000*100) |  |  |  |  |  | 45.26 |
|  |  |  |  |  |  |  | 45.26 |

Table 18: verification of results given in table 17
Point No B. e measurement of effect of change in fixed cost on profit rate

| acronym | FORMULA |  | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| NFC |  | new fixed cost is | 60000 |  |  |
| $\% \Delta \mathrm{~F}$ | $\mathrm{FCo}-\mathrm{FCn}$ | $(50000-60000)$ | -10000.00 |  |  |
| $\% \Delta \mathrm{FC}$. | $(\Delta \mathrm{FC} / \mathrm{FC} 1 * 100)$ | $(-10000 / 50000 * 100)$ |  | -20.00 |  |
| $\Delta \mathrm{BEPRfc}$ | $\mathrm{BEPR} * \% \Delta \mathrm{~F}$ | $(12.5 *-20 / 100)$ |  | -2.50 |  |
| $\Delta \mathrm{P} . \Delta \mathrm{fc}$ | $\Delta \mathrm{BEPRFc} / \mathrm{BEPR} * \mathrm{P} / \mathrm{V}$ Ratio | $(-2.08 / 12.5 * \mathrm{P} / \mathrm{V}$ Ratio $)$ |  | -1.05 | -1.05 |

Table 19: solution to the point No7 B e.(i)

Net impact of change in total FC is: $-1.05 \%$ and the rate of profit on base plan revenue are: base profit ratio + change impact $=36.84+-1.05=35.79$.

| Verification of results of effect of change in FC on profits |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | a |  | b |  | 'c |  | total |
| UNITS OF SALE | 2000 |  | 3000 |  | 5000 |  | 10000 |
| sp/sales | 200 | 400000 | 100 | 300000 | 50 | 250000 | 950000 |
| variable cost | 100 | 200000 | 75 | 225000 | 25 | 125000 | 550000 |
| contribution | 100 | 200000 | 25 | 75000 | 25 | 125000 | 400000 |
| total fixed cost |  |  |  |  |  |  | 60000 |
| net profit |  |  |  |  |  |  | 340000 |
| \% profit on sales revised volume | $(420000 / 1140000 * 100)$ |  |  |  | 35.79 |  |  |

Table 20: verification of results given in table 19
Net impact of change in total FC is: $-1.05 \%$ and the rate of profit on base plan revenue are: base profit ratio + change impact $=36.84+-$ $1.05=35.79$. Further the $\%$ of profit after the change in volume to be affect to BEPR and to the effect the FC impact needs to calculate the correlative factor impact of change in FC \&volume apart from the above (volume effect and FC effect) to determine the rate of profit to the effect of total of both as:

Correlative factor of impact of changes volume and fixed cost (this is deduction to Volume \& FC impact)

| $\Delta \mathrm{bepr} . \mathrm{vol}$ | $\mathrm{BEPR} *(\Delta \mathrm{vol} / \mathrm{nvol} * 100)$ |  | 2.08 |  |
| ---: | ---: | :---: | ---: | ---: |
| $\% \Delta \mathrm{~F}$ | $(\Delta \mathrm{FC} / \mathrm{FC} 1 * 100)$ | $\left(-10000 / 50000^{*} 100\right)$ | -20.00 |  |
| .$\% \Delta \mathrm{vol} \Delta \mathrm{F}$ in $\Delta \mathrm{bepr}$ | $\Delta \mathrm{beprvol} * \mathrm{~F} / 100$ | $\left(2.08^{*}-20 / 100\right)$ | -0.42 |  |
| $\Delta \mathrm{vol} \Delta \mathrm{F}$ sub effect on | .$\% \Delta \mathrm{vol} \Delta \mathrm{F}$ in $\Delta \mathrm{bepr} * \mathrm{P} / \mathrm{V} \mathrm{Ratio} / 100$ | $(-.42 * 42.11 / 100)$ | -0.18 |  |
| $\Delta \mathrm{p}$ vol.fc |  |  | -0.18 |  |

Table 21: solution to the point No7 Be.(ii)
Or (alternatively)
Table 7-: solution to the point No7 B e.(i \& ii)
Point No B. e: Effect on profit when change is in fixed costs (it will be measure after the measurement of change impact of volume on BEP (i.e. on NBEPR) if there is no change in volume consider the initial BEPR

| particulars | FORMULA |  | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |
| ---: | ---: | :---: | ---: |
| $\Delta \mathrm{FC}$ | FCo-FCn | $(50000-60000)$ | -10000.00 |
| $\% \Delta \mathrm{~F}$ | $(\Delta \mathrm{FC} / \mathrm{FC} 1 * 100)$ | $(-10000 / 50000 * 100)$ | -20.00 |
| $\Delta \mathrm{BEPRfc}$ | NBEPRol $\% \Delta \mathrm{~F}$ | $(10.42 *-20 / 100)$ | -2.08 |
| $\Delta \mathrm{P} . \Delta \mathrm{FC}$. or $\Delta \mathrm{P} . \Delta \mathrm{FC} . \Delta \mathrm{vol}$ | $\Delta \mathrm{BEPRFc} / \mathrm{NBEPR} * \mathrm{P} / \mathrm{V}$ Ratio | $\left(-2.08 / 10.42^{* P / V ~ R a t i o) ~}\right.$ | -0.88 |

Table 22: solution to the point No7 Be.
Note: The impact of change in volume can be calculated independently but impact of change in fixed costs need to be measured on the BEP after the change if any there in volume. When there is change in total mix volume the net impact of change in FC has to be measured together as: $.88+-.88=0$. If there is no change in mix volume the effect of change in FC will be determined on base BEP ratio independently.

Or
When consider and calculated independently the impacts of changes in volume and fixed costs, the change in total mix volume the net impact of change in FC has to be measured together as: $(.88+-1.05--.18)=0+$ base P 36.84
Therefore, the new profit ratio on the revenues after the effect of changes in fixed costs with new BEPR is $36.84+0=36.84$ The profit ratio at the base planned revenues (base Profit ratio*new vol/old vol) is $=36.84 * 12000 / 10000=44.21 \%$
Verification results of (table $17,19,21$ or 8-22)

| particulars | a |  | b |  | c |  | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNITS OF SALE | 2400 |  | 3600 |  | 6000 |  | 12000 |
| sp/sales | 200 | 480000 | 100 | 360000 | 50 | 300000 | 1140000 |
| variable cost | 100 | 240000 | 75 | 270000 | 25 | 150000 | 660000 |
| contribution | 100 | 240000 | 25 | 90000 | 25 | 150000 | 480000 |
| total fixed cost |  |  |  |  |  |  | 60000 |
| net profit |  |  |  |  |  |  | 420000 |
| \% profit on sales revised volume | (420000/1140000*100) |  |  |  |  |  | 36.84 |
| \% profit on sales at the base revenue | (420000/950000*100) |  |  |  |  |  | 44.21 |

Table 23: verification of results given in table 19

| Extent of Impact to be | End result after the effect | Determinant Variable | extent of impact in \% |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | P |
| add to base profit rate | gives the revised \% P on base revenue | effect of change in VC |  | -2.95 |
| add to base profit rate | gives the revised \% P on base revenue | effect of change in SP |  | -4.05 |
| add to base profit rate | gives the revised \% P on base revenue | effect of change in mix proportion | 15.79 |  |
| add | gives the revised \% P on base revenue | $\Delta \mathrm{VC}$ sub effect to $\Delta$ mix | -2 |  |
| add | gives the revised \% P on base revenue | $\Delta$ SP sub effect to $\Delta$ mix | -1.63 | 12.16 |
| add to base profit rate | gives the revised \% P on new revenue | effect of change in volume |  | 0.88 |
| add to base profit rate | gives the revised \% P on base revenue | effect of change in FC | -1.05 |  |
| Less | gives the \% P on new revenue | $\Delta$ Vol. sub effect to $\Delta$ volume | -0.18 | -. 88 |
|  |  | total effect |  | 5.16 |
|  | add | initial planned profit |  | 36.84 |
| \%of profit at initial price with new volume(initial P + total effect)(5.16+36.84) |  |  |  | 42.00 |
| \%of profit on the revenue after all the changes incl. volume ( $42 * 100 /(100+26.32+-4.05+-1.63)$ |  |  |  | 34.82 |
| \%of profit on thebase plan revenue after all the changes incl. volume(42*new vol/old vol) |  |  |  | 50.40 |

Table 24: solution to the point No7 B II

| Verification of results of the above: |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| verification: | a |  | b |  | c |  | total |
| UNITS OF SALE | 4800 |  | 2400 |  | 4800 |  |  |
| sp/sales | 190 | 912000 | 98 | 235200 | 47.5 | 228000 | 1375200 |
| variable cost | 110 | 528000 | 73.5 | 176400 | 27.5 | 132000 | 836400 |
| contribution | 80 | 384000 | 24.5 | 58800 | 20 | 96000 | 538800 |
| total fixed cost |  |  |  |  |  |  | 60000 |
| net profit |  |  |  |  |  |  | 478800 |
| \% profit on sales at all the revised values | 478800/1375200*100 |  |  |  |  |  | 34.82 |
| \% profit on sales at the base sp rates | 478800*100/ (12000*95) |  |  |  |  |  | 42.00 |
| \% profit on initial sales revenue | 478800/950000*100 |  |  |  |  |  | 50.40 |

Table 25: verification of results given in table 24
The above table clearly shows that the extent of impact with nature i.e. negative or positive of change in every variable independently and in combination of any few or all on rate of profit on the revenues initially planned and at the amount of revenue after the changes in price costs and volume separately if necessary with simple formula. Having an excel work sheet that I have prepared with the calculations is more than sufficient to calculate the results just by putting the real time values of any business firm can get the results instantaneously.
With the help of the above it is clear that the exact extent of effect/impact of a given change in volume, SP, VC, FC, mix proportions etc. is possible to determine on profits either in total of all at a time or in any combination of few of them or in each of them independently. This pays the way for integration of economic and financial analysis. The integrated analytical result certainly forms as an effective basis for decision making and reporting to the management apart from working as vigilant analytical to determine the possible market forces forced negative deviations in profits on one hand and the proposed best possible alternative measures of recourse on the other. Further this forms as the only analytical tool that ensures integrative analysis of economic theory of firm and financial analysis of a firm for managerial decision making and reporting.
Further as this helps to measure the extent of impact of changes in the determinants viz. the volume, SP, VC, FC, mix proportions on ensure to keep the business to maintain static future plan for profits on one hand and ensure as a dynamic alert system on the other, being measures everything in terms of the basic plan and provides the exact deviation from the planned. This helps to take the corrective action whose impact also measured on the same terms and the basis alike of the measured effects of resultant changes occurred/presumed with effect from changes in the market system.
Further the measurement of extent of effect that the measure/instrument selected or to be selected as recourse to overcome the negative impact, helps to measure its capabilities to alleviate the negative impact measured/identified of the market system. This further helps to decide the number of possible alternative means available and the extent of impact that each of them can show in alleviation and provide/possible to provide a cushion for reaching the goal of attainment of planned rate of profit at any change environments of market system. As everything is measurable on the same base values, it simplifies the efforts in identifying measuring and impacts accurately, legibly with clarity and simplicity. This ensures no scope for any error in results arrived in application of the tool. Any error if would like to predict is only in respect of the errors in measurement of changes in market system. Once if it is measured accurately the accuracy in attaining/controlling the deviations in the rate of profit measured and determined on basics i.e. interims of planned revenues, this avoids the revision of estimates time and again, that are commonly undertaken by every business. 8. Evaluation of the mathematical tool:

Following is the solution for the data given in example problem in table 3 for the integrated analysis of economic and financial analysis that helps how the system ensures the objectives aforesaid.

| Table showing the effect of changes in market conditions on volume of sales |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| Particulars | Product a | Product b | Product c | total |
| market/systematic effects of trend observed as $10 \%$ fall in demand | -0.1 | -0.1 | -0.1 | $10 \%$ |
| effect of change above on volume | -200 | -300 | -500 | -1000 |

Table 26: measurement of effect on volume table 7-2.1
Measuring the effect of change (trend projected fall of $10 \%$ ) in volume due to change in market system on profits


Table 27: measurement of market effect on profits solution to 7.2.1
Action recourse impact on profits to overcome the negative effect of change in volume to 9000 units from 10000 units as above Effect by reduction of price by $5 \%$ on volume

| possible \% change in price | -5 | -5 | -5 |  |
| ---: | ---: | ---: | ---: | ---: |
| experienced price elasticity in $\%$ |  | -0.7 | -1 | -0.5 |
| effect of price elasticity |  | 3.5 | 5 | 2.5 |
| change in volume: |  | 70 | 150 | 125 |

Table 28: effect of 7-2.2 \& 2 a on volume
Option of increase in promotion costs (fixed cost) by $40 \%$ Effect of increase in promotion cost on volume

| \% change in advt exp |  | 40 | 40 | 40 |
| ---: | ---: | ---: | ---: | ---: |
| experienced advt. elasticity\% |  | 0.6 | 0.8 | 0.7 |
| effect of advt. elasticity |  | 24 | 32 | 28 |
| change in volume: |  | 480 | 960 | 1400 |
| Increase in volume to the effect of both the above |  | 550 | 1110 | 1525 |
| Less market effect |  | -200 | -300 | -500 |
|  |  | 350 | 810 | 1025 |

Table 29: effect of 7-2.3\&3a on volume
Effect of reduction of price by $5 \%$ on profits

| SP | as given | 200 | 100 | 50 | $\operatorname{mix}\left(\sum \Delta\right.$ <br> abc $)$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| NSP | **as given | 190 | 95 | 47.5 |  |  |
| $\Delta \mathrm{sp}$ | as given | -10 | -5 | -2.5 |  |  |
| $\Delta \mathrm{wsp}$ | $\mathrm{w}^{*} \Delta \mathrm{sp}$ | -2 | -1.5 | -1.25 | -4.75 |  |
| $\%$ of $\Delta \mathrm{wspmix}$ | $\Delta$ wspmix/wspmix*100 | $\left(-3.85 / 95^{*} 100\right)$ |  |  | -5.00 | $-5.00 \%$ |

Table 30: solution to effect of table 7-2.2

Effect of reduction of price and increase in promotion costs on mix

| as given | 0.2 | 0.3 | 0.5 | 1 |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $* *$ as given/calculated | 0.193 | 0.313 | 0.494 | 1 |  |
| $($ NEWmix-Old mix $)$ | -0.01 | 0.01 | -0.01 | 0 |  |
| $(\Delta$ mix/mix1*wsp) | -1.43 | 1.27 | -0.28 | -0.44 |  |
| $(\Delta$ mix/mix1*Wvc) | -0.71 | 0.95 | -0.14 | 0.10 |  |
| $\Delta$ mix.wsp- $\Delta$ mix.wvc |  |  |  | -0.54 |  |
| $(\Delta$ mix.C/mixwsp)*100 |  | $(-0.54 / 95)^{*} 100$ |  | -0.56 |  |
| Effect on P |  |  |  |  | -0.56 |
| $(\Delta \text { wsp.mix/wsp.mix) })^{*} 100$ |  | $(-0.44 / 95)^{*} 100$ |  | -0.46 |  |

Table 31: partial solution (part-a) to effect of table 7-2.2a.3a
Sub price effect or mix SP effect on profits

|  |  | sp |  |  | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\Delta \mathrm{SP}$ | as calculated in SP change effect | -10 | -5 | -2.5 |  |
| $\Delta \mathrm{mix}$ | as calculated in mix change effect | -0.007 | 0.013 | -0.006 |  |
| $\Delta$ mix $\Delta \mathrm{wsp}$ | $\Delta$ mix $* \Delta \mathrm{wsp}$ | 0.071 | -0.063 | 0.014 | 0.022 |
| $\Delta \operatorname{spmix}(\%$ of $\Delta \operatorname{mix} \Delta \mathrm{wsp}$ in wsp $)$ | $\Delta$ mix* $\Delta \mathrm{wsp} / \mathrm{wsp} * 100$ |  | $(0.02 * 100 / 95)$ |  | 0.02 |
| effect of changes in mixsp on P |  |  |  |  | 0.02 |

Table 32: partial solution (part-b) to effect of 7-2a.3a
Effect of change in volume to the effect of counter measure of change in sp and promotion costs new volume: 12185 units

| variable acronym | FORMULA |  | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |  |  |  |  |  |
| ---: | ---: | ---: | ---: | :--- | :---: | :---: | :---: | :---: |
| $\Delta \mathrm{Vol}$ | $(\mathrm{n}$ vol -o vol) | $(12185-10000)$ | 2185.00 |  |  |  |  |  |
| $\%$ of $\Delta \mathrm{vol}$ on nvol | $(\Delta \mathrm{vol} / \mathrm{nvol} * 100)$ | $\left(2185 / 12185^{*} 100\right)$ | 17.93 |  |  |  |  |  |
| $\Delta$ bepr.vol | ( base bep ratio*\%change in volume) | $(12.5 * 17.93 / 100)$ | 2.24 |  |  |  |  |  |
| NBEPR | base BEPR -change in BEP | $(12.5-2.24)$ or (base BEP $(1-\Delta \mathrm{BEPR})$ | 10.26 |  |  |  |  |  |
| $\Delta$ P.vol. | (PV Ratio* $\Delta$ BEPRvol./100) | $42.11 * 2.24 / 100$ | 0.94 |  |  |  |  |  |
| change in profit ratio with respect to change in volume |  |  |  |  |  |  |  | 0.94 |

Table 33: partial solution (part-c) to effect of 7-2a.3a
Effect of change in FC to the effect of counter measure of change in promotion costs

| FORMULA |  | $\operatorname{mix}\left(\sum \Delta \mathrm{abc}\right)$ |  |
| ---: | :---: | ---: | ---: |
| FCo-FCn | $(50000-60000)$ | -12000.00 |  |
| $(\Delta \mathrm{FC} / \mathrm{FC} 1 * 100)$ | $\left(-10000 / 50000^{*} 100\right)$ | -24.00 |  |
| $\mathrm{BEPR} / \mathrm{NBEPRvol}^{*} \% \Delta \mathrm{~F}$ | $\left(10.26^{*}-24 / 100\right)$ | -2.46 |  |
| $\Delta \mathrm{pFc} * \mathrm{BEPR} / \mathrm{NBEPR}$ | $\Delta \mathrm{p} . \mathrm{fc}-\left(-2.46^{*} 10.26 / 100\right)$ | -1.04 | -1.04 |

Table 34: partial solution (part-b) to effect of 7-3
Total impact and the net profit after the change impacts

| Add |  | effect of change in VC |  | 0.00 |
| :---: | :---: | :---: | :---: | :---: |
| Add |  | effect of change in SP |  | -5.00 |
| Add |  | effect of change in mix proportion | -0.56 |  |
|  | Add | effect of change in mix.vc | 0.000 |  |
|  | Add | effect of change in mix. sp | 0.02 | -0.54 |
| Add |  | volume |  | 0.94 |
| Add |  | effect of change in FC |  | -1.04 |
|  |  | total effect |  | -5.63 |
|  |  | initial planned profit |  | 36.84 |
| \%of profit at initial price/mix with new volume ( 36.84-5.63) |  |  |  | 31.21 |
| \%of profit on the revenue after all the changes incl. volume ( $31 * 21 * 100 /(100+-5+-.46+.02)$ |  |  |  | 33.00 |
|  |  |  |  | 38.03 |

Table 35: final solution w.r.t to all change implications

| verification: | a | b |  | c |  | total |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| UNITS OF SALE | 2350 |  | 3810 |  | 6025 |  | 12185 |
| sp/sales | 190 | 446500 | 95 | 361950 | 47.5 | 286187.5 | 1094638 |
| variable cost | 100 | 235000 | 75 | 285750 | 25 | 150625 | 671375 |
| contribution | 90 | 211500 | 20 | 76200 | 22.5 | 135562.5 | 423263 |
| total fixed cost |  |  |  |  |  |  | 62000 |
| net profit |  |  |  |  |  | 361263 |  |
| \% profit on sales at the revenues at revised mix and volume | $361263 / 1094638 * 100$ |  |  | 33.0 |  |  |  |
| \% profit on sales at the base level revenues | $361263 / 950000^{*} 100$ |  |  | 38.03 |  |  |  |
| $\%$ profit on revised volume at the base price/mix revenues | $361263 /(12185 * 95) * 100$ |  |  | 31.21 |  |  |  |

Table 36: verification of final solution w.r.t to all change implications
Therefore, the net profit after the changes made in the price and fixed cost towards sales promotion and with forecasted economic analytical effects on volume and in turn on the rate of profit would likely be increase from 36.84 to 38.03 instead of fell down to 32.63 if not taken the steps to augment the sales through the reduction of price and increased promotion costs.
This is a useful tool that helps to show the impact on profits with an addition or deletion of a product line. It also helps to measure the impact on profits with effect from using the spare plant capacity for export of an existing product or by hire to others at a fixed or variable consideration. Using the tool in an excel work sheet enable to give automated result in measurement of impact of any kind of variation from the budgeted or base plans with final results after the effects.

## 8. Conclusion

With the help of the above I hope that all the objectives related to measurement of impacts and the results after the impact can be realized with the help of the proposed analytical tool developed on the basis of breakeven analysis. Further with an excel work sheet calculation helps and works as a dynamic vigilant monitoring system for measurement and reporting to the management on the effect of changes in market conditions on profits and performances of the organization.

## 9. References

i. S.P Jain \& K.L Narang, Cost accounting principles and practice, 22nd Revised Edition (2011), Kalyani Publishers.
ii. M.N Arora, A Textbook of Cost and Management Accounting, 10/e, Vikas Publishing.
iii. Management and cost accounting 6e Colin Drury print in India by akash press fourth Indian Reprint 2009.
iv. Chandra Sreedhara Ramesh \& Banana Krishna (June, 2016) Innovative Formulations and Enhanced Scope of Break Even Analysis. IRJBM,Volume - IX (Issue - 6).
v. Chandra Sreedhara Ramesh \& Banana Krishna (May, 2016) Innovative Formulations and Enhanced Additional Applications of Break Even Analysis. IRJBM, Volume - IX (Issue - 5).
vi. SRCSPS Karivena Effects in Application of Breakeven Analysis for Strategic Pricing Advanced Applications in Breakeven Applications, IJMB June 2016, Vol 4, Issue 6.

