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1. Introduction 

The technology industry has been emerging very fast in the past few years. Technology helps people do 
everything more efficiently and effectively, thus its development is increasing because people’s needs become more 
diverse throughout the year. Information Technology (IT) has become a potential sector of the industry that has a positive 
development throughout the years. According to a forecast done by Gartner, Inc. in January 2019, the number of global IT 
Markets was estimated to be $3.76 Trillion US Dollars in 2019, increased by 3.2% from 2018. A report of IT Industry 
Outlook 2020 from CompTIA mentioned that there are some trends to watch in 2020, some of which are Internet of Things 
(IoT), artificial intelligence (AI), and 5G. 

Internet of Things (IoT) is a system that can be described as a collection of interconnected smart devices and 
objects that are provided with unique identifiers that can communicate and transfer data without human or computer 
interaction to fulfill the desired goal (Sicari, 2015). While the major product use is on the smart home system, IoT is 
reaching wider industries including manufacturing, healthcare, retail, agriculture, energy, security, smart buildings, and 
smart cities, and all the industries that have device-based systems. IoT provides many benefits for the business including 
cost reduction, enhanced productivity and customer service, and also the ability to understand consumer behavior. IoT has 
a huge opportunity in Indonesia. According to the Indonesia Internet of Things Forum 2017, the market for IoT in 
Indonesia is expected to grow to 444 Trillion Rupiah in 2022.  

IoT is considered as a new kind of technology in Indonesia. In some conditions, even though the product has a 
breakthrough innovative value, but if the customer is not ready to accept the product, it has a high opportunity to lose its 
sales. Hi!Drops are one of the Indonesian companies that run in the IoT business. Hi!Drops face a huge problem in selling. 
The company struggled to estimate the right consumers willingness to pay, thus their selling price is considered not 
suitable according to some customers. They have made no sales up until now and wonder if the customer is ready to 
accept their innovative product. 

IoT products need big production costs and the price for IoT products in Indonesia is not cheap, and there’s a 
constraint for customers to buy the product because there are still many substitute products that can replace it. Thus, their 
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Abstract:  
The development of technology has emerged positively in these past years and Information Technology (IT) has become 
one of the potential sectors to have positive development. One of the trends of IT to look out for in 2020 is the Internet of 
Things (IoT). Globally, IoT has been a trend. The number of IoT connected devices in the world will be 38.5 billion used in 
2020, and the market for IoT in Indonesia is expected to grow to 444 Trillion Rupiah in 2022. 
However, IoT is considered as a new kind of technology in Indonesia. In some conditions, even though the product has a 
breakthrough innovative value, but if the consumer is not ready to accept the product, it has a high opportunity to lose 
its sales. Using the smart garden as the IoT product example to gather the willingness to pay data from the market, this 
research wants to find out further about the factors that could affect the consumer’s willingness to pay (WTP) for IoT 
products.  
To identify the relationship between the readiness and acceptance of IoT products to the willingness to pay, the 
Technology Acceptance Model (TAM) and Technology Readiness Index (TRI) were used in this research. An external 
variable (Subjective Norm) is added in this research to test the social influence on people's decisions to use IoT products. 
Researchers use a quantitative method using purposive sampling and the analysis used is PLS-SEM analysis to test the 
hypotheses and measure the relationship between one variable to another. Contingent Valuation Method is also used to 
find out the desirable price of IoT products that the market wants. 
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intention to use IoT products is yet questionable considering that they can use substitute products. Intention to use itself is 
included as one of the factors in technology acceptance. More studies and research need to be conducted to analyze this 
phenomenon. The market’s readiness also has to be analyzed because IoT can be considered as something new in 
Indonesia and we still don’t know about how the market reacts towards this technology. Readiness and acceptance have to 
be studied more to prove whether or not there is a relationship between these factors and willingness to pay and how we, 
as the industry players, consider that.  

Technology Acceptance Model (TAM) proposed by Davis (1989) defined a model that is commonly used to 
understand people’s adaptive behavior towards technology. Meanwhile, the basic theory of technology readiness index 
(TRI) was highlighted as the tendency to embrace and use new technology to achieve goals in work and life (Parasuraman, 
2000). Some studies find a correlation between TRI and TAM, which can be said as Technology Readiness and Acceptance 
Model or TRAM (Lin et al., 2007). Some studies connect the intention of use (one of the TAM factors) to consumer’s 
willingness to pay (Wang et al., 2013). Other factors such as subjective norms also found to be correlated to the intention 
of use (Hussein, 2018). However, there’s not much research that linked all of these factors especially related to IoT 
products. Hence, this study aims to contribute to gaining more knowledge about the relationship between consumers' 
acceptance, readiness, and other factors to consumer’s willingness to pay in buying IoT products. 
 
2. Literature Review 
 
2.1. Internet of Things (IoT) 

Internet of Things (IoT) is a system that can be described as a collection of interconnected smart devices and 
objects that are provided with unique identifiers that can communicate and transfer data without human or computer 
interaction to fulfill the desired goal (Sicari, 2015). IoT is a combination of data, web associated items, and integral 
components of the internet. IoT enables people to connect to the internet and other mobile devices via a central server. By 
lessening human interactions, IoT gathers the data using sensors and processes it using a controller, then automates it 
through the actuators (Venkatesan and Tamilvanan, 2017). This enables people to increase their efficiency in working, 
especially in gathering big data and automating machines. IoT adoption is approved to be the development key of 
economic and social life in a country (Bessadok et al., 2018). The future of IoT is potentially good, even experts predict that 
there will be more than 20 billion devices connected to IoT in 2020 (Gartner, 2015).  
 
2.2. Technology Readiness Index 

Parasuraman (2000) stated the basic theory of technology readiness Index (TRI) as the tendency of someone to 
embrace and use new technology to achieve their goals in work and life. There are four dimensions, which are: 

 Optimism; a positive belief that technology would increase control, flexibility, and efficiency of your work 
 Innovativeness; the tendency of the user to be a technology pioneer. 
 Discomfort; the feelings of overwhelmed and lack of control by the technology. 
 Insecurity; the distrust and skepticism towards the ability of the technology to work properly.  

The four dimensions showed us such contrasting traits. This is not surprising, because there is indeed a paradox of 
technology to the emotions of its users. Parasuraman classifies the four technology readiness factors into two groups: 
contributors inhibitors. Optimism and innovativeness bring out positive values, which is why they become the contributor 
of the readiness index. Meanwhile, discomfort and insecurity show negative values, thus they become the inhibitors in TRI. 
Research shows a good result of the TRI model's use of IoT products (Bessadok et al., 2018). Although people believe that 
smart devices will provide them with efficiency in the present and the future, they are still reluctant about the wide use of 
IoT due to the factor of safety that minimizes the overall TRI score in the research.A study by Pires et al. (2011) analyzes 
the potential relation between TRI as being the antecedent to TAM and shows that optimism has the most significant 
influence in making people accept the technology.  
 
2.3. Technology Readiness Acceptance Model (TRAM) 

Technology Readiness Acceptance Model is used to explain how the factors in TRI would influence the adoption of 
new technologies (Lin et al., 2007). Prior experience and knowledge about technology could affect consumer’s perception, 
thus causing acceptance behavior. As there are inhibitors and contributors in TRI factors, they have different effects on 
two of TAM factors (perceived usefulness and perceived ease of use). Previous studies have explored this topic like the 
research about the usage of Facebook (Jin, 2013), the adoption of mobile internet service (Oh et al., 2014), and the 
acceptance of sports wearable technology (Chiu and Kim, 2019). The results from those studies stated that the positive 
factors of TRI (optimism and innovativeness) have positive effects on both Perceived Usefulness and Perceived Ease Of 
Use. Meanwhile, the negative factors of TRI (discomfort and insecurity) have negative effects on both Perceived Usefulness 
and Perceived Ease Of Use. As such, the hypotheses that can be developed from these findings are: 

 H1:Optimism has a positive significant correlation to Perceived Usefulness(a) and Perceived Ease of Use(b)  
 H2: Innovativeness has a positive significant correlation to Perceived Usefulness(a) and Perceived Ease of Use(b) 
 H3: Discomfort has a negative significant correlation to Perceived Usefulness(a) and Perceived Ease of Use(b) 
 H4: Insecurity has a negative significant correlation to Perceived Usefulness(a) and Perceived Ease of Use(b) 
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2.4. Technology Acceptance Model (TAM) 
Technology Acceptance Model (TAM) was introduced by Davis (1989) as the model of how people could accept a 

technology. The endpoint of the model, which is actual system use is indicated when the person can use the technology. In 
this model, Behavioral Intention to Use (BI) is influenced by the attitude variable, which defines as the behavior of the 
person towards the technology. People's positive or negative behavior towards technology or in this case called attitude is 
affected by Perceived Usefulness (PU) and Perceived Ease of Use (PEOU). PU is interpreted as a degree where people 
believe that technology will enhance their performance in completing work, while PEOU is interpreted as the degree to 
which people believe that using technology will free them from putting much effort.TAM is mainly used to explain the 
user’s acceptance of new technology. Research from Karahoca et al.(2017) has successfully explained the acceptance of IoT 
products in healthcare, showing a positive significant correlation between TAM variables: perceived usefulness, perceived 
ease of use, attitude, and intention to use. Attitude has the greatest impact on intention to use IoT healthcare products. 
Chung and Han (2015) analyze the acceptance of Augmented Reality (AR) for tourism application and the results showed 
an overall positive significant correlation between the TAM factors with attitude as the most influencing factor on the 
intention to use. From these previous findings, the hypotheses that can be developed are: 

 H5: Perceived Ease of Use has positive significant correlation towards user’s attitude (a) and Perceived Usefulness 
of IoT products (b) 

 H6: Perceived Usefulness has positive significant correlation towards user’s attitude (a) and the intention to use of 
IoT products (b) 

 
2.5. Subjective Norm to Intention to Use 

An external factor that is proven as the factor that could influence one of the factors in TAM (intention to use) is 
Subjective Norm. Subjective norm defined as the person’s belief that is affected by people surrounding them which 
encourage them to perform a certain behavior (Ajzen and Fishbein, 1980). It is associated with the perceived social 
pressure that is given by people of importance (Ajjan and Hartshorne, 2008). Subjective norm is an important factor of 
behavioral intention, it describes the influence of others and how important it is to make others think positively about us 
(Ndubisi, 2004). It will make us more intent on doing something because it is under what people think we should do.Some 
previous studiesshowed a significant relationship of subjective norms with the person's intention to use the said 
technology. Research from Lau et al. (2019) about e-money showed said that users get influence by friends and family 
when they didn’t know how to use mobile payment. Hussein (2018) found out one of the factors that could strengthen 
someone's intention to use technology is from the significant others believe that technology should be used. Thus, the 
hypothesis that can be developed from these findings is: 

 H8: Subjective norm has a positive significant correlation to the intention to use of IoT product 
 
2.6. Willingness to Pay (WTP) 

Willingness to Pay is often used as the criteria to measure the benefit of a customer in exchange for the price or 
the quality of goods that they paid. Perman and McGilvray (1996) describe the meaning of WTP as the amount of 
willingness that people want to pay to secure welfare involvement. There are two ways of asking consumer’s WTP which 
can be done directly by asking or indirectly, and it also differs between measuring the hypothetical or actual WTP (Miller 
et al., 2011). A study about green energy products found that a larger WTP tends to come from families with higher 
income, higher residence size, and higher awareness of the product (Zografakiset al., 2010). 
 
2.7. Intention to Use to Willingness to Pay (WTP) 

This research defines the intention of use as the degree of a person to use IoT products in the present or the 
future, while the willingness to pay is the degree of a person willing to pay for IoT products in the present or the future. 
Some previous research that explores willingness to pay in other services like social networking (Hsiao, 2011; Lu and 
Hsiao, 2010) and information objects (Lopatovska and Mokros, 2008) stated that the customer has to be satisfied and have 
the intention to use the product or service first before they’re willing to pay. Wang et al. (2013) study the acceptance of 
mobile TV apps and that research discovers that intention to use is the strongest predictor for WTP for mobile TV apps. 
Anwar et al. (2015) studied the relation from intention to use with the willingness to pay for the MRT system in Jakarta 
and the result said the model can explain the Intention to adopt MRT and the WTP for MRT fare. From these findings, the 
hypothesis that can be established is: 

 H9: Intention to use has a positive significant correlation on willingness to pay (WTP) of IoT products. 
 
3. Conceptual Framework 

This research framework is a combination ofthree previous models. The basis of this concept is from the 
Technology Readiness Acceptance Model (TRAM) by Lin (2007). TRAM analyzes the extended explanation of acceptance 
through technology readiness factors. Davis (1989) TAM concept is also adopted in this research to study the correlation 
of TR factors to perceived usefulness, perceived ease of use, attitude, and intention to use. Anwar et al. (2015) analyze the 
correlation between subjective norm to intention to useand intention to use to the willingness to pay in Mass Rapid 
Transport System. The researcher then combines those models and adapted it so that it could be applied to the Internet of 
Things (IoT) product.Thus, the hypothesis for this research is explained with the graphic below: 
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Figure 1: Conceptual Framework 

Source: Researchers Analysis 
 

 H1: Optimism has a positive significant correlation to PU (a) and PEOU (b)  
 H2: Innovativeness has a positive significant correlation to PU (a) and PEOU (b) 
 H3: Discomfort has a negative significant correlation to PU (a) and PEOU (b) 
 H4: Insecurity has a negative significant correlation to PU (a) and PEOU (b) 
 H5: PEoU has positive significant correlation towards user’s attitude (a) and PU of IoT products (b) 
 H6: PU has positive significant correlation towards user’s attitude (a) and the intention to use of IoT products (b) 
 H7: User’s attitude toward IoT products gives positive significant correlation to the intention to use 
 H8: Subjective norm has a positive significant correlation to the intention to use of IoT product 
 H9: Intention to use has a positive significant correlation on willingness to pay (WTP) of IoT products. 

 
4. Methodology 

The survey instrument was intended to measure 10 variables: TRI factors (optimism, innovativeness, insecurity, 
and discomfort), TAM factors (PU, PEOU, attitude, intention to use), subjective norm, and WTP. The measures of TRI 
factors were developed from Parasuraman (2000) and Parasuraman and Colby (2014). The measures for PU, PEOU, and 
attitude were developed from Venkatesh and Davis (2000) and Venkatesh (2003). The measures for intention to use were 
developed by Kimet al. (2017) and Chiu and Kim (2019). The measures for subjective norm were developed from Mitalet 
al. (2017) and the measures for WTP were developed from Kumar (2014), Kucheret al. (2019). Demographic and 
behavioral questions were collected, including gender, age, domicile, level of education, occupation, expenditures, and 
prior experience to IoT products. The original questions are written in English, then the questionnaires were translated to 
Bahasa Indonesia. The latent variables are measured on a five-point Likert scale, ranging from 1 (strongly disagree) to 5 
(strongly agree). 

Preliminary research is done to 51 people from the middle to the elite class of economy in Jakarta and Bandung to 
study their current willingness to pay for Io products. The result is 53.7% of them wouldn’t buy the IoT products at the 
selling price, and most of the middle-class people didn’t give positive feedback. Based on that, this research is limited to be 
conducted to upper-middle to elite economic class Indonesian only. The classification of the economy based on monthly 
spending from Boston Consulting Group that is used in this research can be described like this: 

 Upper Middle: spends between Rp 3.000.000 - Rp 5.000.000 per month 
 Affluent: spends between Rp 5.000.000 - Rp 7.500.000 per month 
 Elite: spends above Rp 7.500.000 per month 

The age of the respondents is also limited to 20 – 55 years old only since those age groups are the largest internet 
users in Indonesia according to APJII (2018). 

This research uses a quantitative approach to collect primary data. After some grammatical improvements, the 
questionnaire survey was then distributed online to those who meet the requirements. To maintain the robustness of the 
study, the researcher explains the research purpose and the definition as well as the example of IoT products so the 
respondents that have no prior experience with IoT could be included in the study. 353 out of 416 respondents answered 
the questionnaire completely, thus the 353 answers will be analyzed in this study.  
To describe more about the findings, the researcher uses Structural Equation Modelling (SEM) and analyzes the data with 
Smart PLS application. 
 
5. Analysis and Result 

There are three types of analysis performed in this research. Descriptive analysis was performed first to describe 
the demography and the behavior of the respondents. The PLS-SEM analysis began with model fit test (SMRM, CMIN/DF, 
NFI) and reliability and validity test including indicator reliability, internal consistency reliability, convergent validity, 
discriminant validity. Then, a collinearity test was performed to make sure there’s no multicollinearity in the data. The 
structural model was evaluated by R2 and Q2, and the hypothesis testing was measured by the path coefficients, T-Value, 
and the total effect of the data. Contingent Valuation Method is used to find out the appropriate WTP for IoT products from 
the data. 
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5.1. Descriptive Analysis 
The description in the table I showed the characteristics of the answers from 353 respondents.  

 
Characteristics n % 

Gender 
Male 117 33.1% 

Female 236 66.9% 

Age 

20-31 years old 171 48.4% 

32-43 years old 93 26.3% 

44-55 years old 89 25.2% 

Domicile 

Jabodetabek 102 28.9% 

West Java 115 32.6% 

Central and East Java 83 23.5% 

Outside Java 36 10.2% 

Level of 
Education 

Elementary School 1 0.3% 

High School 97 27.5% 

Diploma 33 9.3% 

Bachelor 185 52.4% 

Magister 37 10.5% 

Occupation 

Students/College Students 102 28.9% 

Employees 29 8.2% 

Freelancer 82 23.2% 

Entrepreneur 96 27.2% 

Housewife 5 1.4% 

Others 39 11.0% 

Expenditures 

Rp 3.000.000 - Rp 5.000.000 202 57.2% 

Rp 5.000.000 - Rp 7.500.000 65 18.4% 

> Rp 7.500.000 86 24.4% 

Have known 
about IoT 

products before 

Have 248 70.3% 

Have not 105 29.7% 

Have used IoT 
products before 

Have 135 38.2% 

Have not 218 61.8% 

Have ever 
bought IoT 

products before 

Have 109 30.9% 

Have not 244 69.1% 
Table 1: Descriptive Analysis 
Source: Researchers Analysis 

 
The sample was dominated by females (66.9%) aged 20 -31 years old (48.4%) domiciled in West Java (32.6%). 

248 (70.3%) have known about IoT products before and 135 (38.2%) of the respondents have used it. Meanwhile, 109 
respondents (30.9%) have ever bought IoT products and 244 respondents haven’t (69.1%). This answer then takes them 
to different sections of questionnaires asking the reason for purchase and reasons for not purchasing IoT products. 
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Figure 2: Reasons for Buying IoT Product 

Source: Researchers Analysis 
 

109 respondents were asked about the reasons for buying IoT products. From figure 2, We can see that most of 
the respondents said they bought IoT product because it can help them ease their work (71 respondents), followed by 
their interest in IoT product (51 respondents), the ease of use from IoT product (41 respondents), their 
willingness/intention to use IoT product (32 respondents), the influence from friends and family to buy IoT product (16 
respondents), and the value that IoT product offers is worth to the price (8 respondents). The majority of the answers 
indicate that people who have bought IoT products tend to pay attention to the usefulness of the product to buy. 
 

 
Figure 3: Reasons for Not Buying IoT Product 

Source: Researchers Analysis 
 

244 respondents were asked about the reasons for not buying IoT products. The majority of the respondents (160 
respondents) said that they haven’t felt the urge to buy IoT products because they still can use other simpler products that 
have the same function. 77 respondents said the price of IoT products are too expensive for their liking, 61 respondents 
don't know the benefits of using IoT products yet, 38 respondents don’t know how to use IoT products, 6 of them were 
influenced by their friend and family to not buy the product, 3 respondents are not interested in IoT product, another 3 
respondents didn’t buy IoT product because they’ve never known that IoT product existed before, and 3 other 
respondents said they didn’t buy IoT product because they’re afraid of the privacy and security risks. By this, we know that 
people still tend to use another simple product with the same functionality as an IoT product and that’s what makes them 
not buy IoT products yet. 

The following question asked the possible purchase of IoT products from this type of respondent. The question of 
“If there’s an IoT product whose price is quite high but can meet your needs, would you want to buy it?” the answer from 
244 respondents is 135(55.3%) said yes and 109 (44.7%) said no. This indicates that there’s a possibility to widen the 
market of IoT product from the people who haven’t bought. 
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Figure 4: Willingness to Buy IoT Products from Respondents Who Haven’t Bought 

Source: Researchers Analysis 
 
5.2. PLS-SEM Analysis 
 
5.2.1. Model Fit 
  To test the model fit, Standardized Root Mean Square Residual (SRMR), CMIN/DF, and Normed Fit Index (NFI) 
were measured. Table 2 showed two different values from saturated and estimated models. The saturated model is 
defined as the model that evaluates the correlation between all the constructs, while the estimated model is defined as a 
model that is derived from the total effect scheme and calculated the model structure. Based on an article about model fit 
in smartpls.com, the estimated model said to be a reasonable choice to analyze. Thus, the estimated model will proceed to 
the analysis below. 
 

 
Saturated Model Estimated Model 

SRMR 0.059 0.073 
CMIN/DF 1845.338/703=2.625 1880.209/703=2.675 

NFI 0.748 0.743 
Table 2: Model Fit 

Source: Researchers Analysis 
 
  According to Cangur and Ercan (2015), Standardized Root Mean Square Residual or SRMR value designated the 
acceptable fit if the score is less than 0.1. The result of the model fit from the SmartPLS analysis showed a value of 0.073 
for the SRMR estimated model score. This indicated that the model is a good fit because the score is less than 0.1.  
  Another method to assess the goodness of fit is to divide the chi-square (CMIN) value with the degrees of freedom 
(DF). Degrees of freedom can be obtained by the formula p(p+1)/2 where p is the number of parameters 
(Raykov&Marcoulides, 2006). In this research, there are 37 parameters used, thus the DF score is 703. The value of 3 or 
lower indicates the acceptable CMIN/DF score of acceptable fit values (Civelek, 2018). The CMIN/DF score in the 
estimated model is 2.675 which means that the model can be considered as a good fit. 
 According to Byrne (2013), the Normed Fit Index or NFI has to have a score above 0.9 to be considered as acceptable. 
This value represents the incremental fit because it measures the fitness of the model on a comparative basis to the 
baseline or null model. Based on table 2, the NFI score is 0.743 which is rather insufficient and can indicate an unfitness of 
the model. However, since the majority of the indicators measured has sufficient results, we can conclude that the overall 
model is a good fit. 
 
5.2.2. Reliability 
  Reliability is defined by Malhotra (2010) as the extent to which the scale will show a consistent result when it is 
being repeated. The indicator reliability evaluation in SmartPLS can be measured from the outer loadings score and the 
minimum value to be accepted is 0.7, while the composite reliability score needs to be 0.7 or higher to measure the 
internal consistency reliability (Wong, 2013). The outer loadings results showed some indicators that have a value of less 
than 0.7 which are DIS1, DIS3, INS1, and INS4. The four indicators appeared as unreliable therefore it has to be removed 
because it didn’t meet the criteria. After removing these indicators, the analysis was then continued.  
  Internal consistency reliability is applied to determine whether all of the indicators that measure the construct is 
consistent with the value scores (Hair et al, 2014). Wiryanto (2018) stated that composite reliability is an alternative 
method that can handle inappropriate assumptions that Cronbach's alpha made to measure internal consistency 
reliability. The value has to be more than 0.7 to be acceptable (Wong, 2013). The composite reliability scores of all the 
variables in Table 3 are larger than 0.7, which means that the internal consistency reliability is at a high level. Thus, we can 
conclude that all the variables are reliable. 
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Construct Outer Loadings Composite Reliability AVE VIF 

Attitude 

ATT1 0.878 

0.933 0.776 

2.619 
ATT2 0.892 2.815 
ATT3 0.89 2.771 
ATT4 0.864 2.354 

Discomfort 

DIS1 0.469 

0.835 0.718 

 
DIS2 0.888 1.25 
DIS3 0.489  
DIS4 0.773 1.25 

Innovativeness 

INN1 0.803 

0.853 0.592 

1.535 
INN2 0.757 1.436 
INN3 0.749 1.553 

INN4 0.767 1.636 

Insecurity 

INS1 0.488 

0.758 0.612 

 
INS2 0.707 1.056 
INS3 0.841 1.056 
INS4 0.278  

Intention to Use 
ITU1 0.873 

0.909 0.77 
2.044 

ITU2 0.869 2.07 
ITU3 0.89 2.125 

Optimism 

OPT1 0.821 

0.889 0.668 

1.734 
OPT2 0.847 2.047 
OPT3 0.841 1.939 
OPT4 0.756 1.61 

Perceived Ease of Use 

PEOU1 0.871 

0.913 0.726 

2.562 
PEOU2 0.913 3.26 
PEOU3 0.878 2.483 
PEOU4 0.736 1.583 

Perceived Usefulness 

PU1 0.909 

0.939 0.793 

3.612 
PU2 0.907 3.542 
PU3 0.876 2.558 
PU4 0.868 2.429 

Subjective Norm 

SN1 0.711 

0.828 0.617 

1.341 

SN2 0.817 1.622 

SN3 0.824 1.334 

Willingness to Pay 
WTP1 0.846 

0.898 0.746 
1.729 

WTP2 0.818 2.441 
WTP3 0.923 3.33 

Table 3: Outer Loadings, Composite Reliability, AVE, and VIF score 
Source: Researchers Analysis 

 
5.2.3. Validity 
  Validity defined by Malhotra (2010) as the extent to which the difference of scale scores that are observed can 
reflect the actual difference between the object and the characteristics that are being measured. The validity test is to 
measure whether the respondents' answers are appropriate or not. According to Fornell and Larcker (1981), to pass 
convergent validity the AVE score must be 0.5 or higher to be accepted. The AVE score in table 3 showed an overall validity 
from all the constructs. 
  Discriminant validity is another method to test validity through cross-loadings (Hair et al., 2015). To be 
acceptable, the square root of the AVE coefficient in each variable has to be greater than the correlation of the other latent 

http://www.theijbm.com


THE INTERNATIONAL JOURNAL OF BUSINESS & MANAGEMENT                ISSN 2321–8916                www.theijbm.com      

 

241  Vol 8  Issue 8                  DOI No.: 10.24940/theijbm/2020/v8/i8/BM2008-053               August,  2020            
 

variable (Wong, 2013). Table 4 shows the results of the cross-loadings for each indicator (written in bold) which can be 
seen below: 
 

 
ATT DIS INN INS ITU OPT PEOU PU SN WTP 

ATT 0.881 
         DIS 0.148 0.847 

        INN 0.391 0.142 0.769 
       INS 0.052 0.318 -0.082 0.782 

      ITU 0.712 0.131 0.322 0.069 0.877 
     OPT 0.532 0.13 0.454 -0.053 0.452 0.817 

    PEOU 0.609 0.051 0.433 0.1 0.525 0.481 0.852 
   PU 0.657 0.168 0.354 0.088 0.554 0.668 0.56 0.89 

  SN 0.542 0.203 0.298 0.065 0.491 0.35 0.373 0.394 0.786 
 WTP 0.313 0.019 0.243 0.008 0.48 0.129 0.225 0.203 0.217 0.864 

Table 4: Cross-Loadings Score 
Source: Researchers Analysis 

 
5.2.4. Collinearity Test 
  Collinearity test is applied by calculating the Variance Inflation Factor (VIF) scores (Wong, 2013). To avoid 
collinearity problems, the VIF value has to have a value of 5 or lower to be acceptable. The VIF score on table 3 is less than 
5 which means that all of the indicators have passed the criteria. Therefore, we can conclude that there is no 
multicollinearity between the variables. 
 
5.2.5 Structural Path Significance 
  Partial Least Square is completed to assess the causal effect from the conceptual framework that is used in this 
research. Through bootstrapping and blindfolding test in SmartPLS application, the researcher wants to evaluate the 
relationship between TRI factors (optimism, innovativeness, discomfort, and insecurity), TAM factors (perceived 
usefulness, perceived ease of use, attitude, intention to use), subjective norms, and the consumer’s willingness to pay. The 
model was built by these 10 variables connected to 15 paths. The measurement model using reflective constructs is shown 
by the diagram below: 
 

 
Figure 5: Structural Path Significance 

Source: Researchers Analysis 
 
  The coefficient of determination (R²) is intended to measure the model’s predictive accuracy (Wong, 2013). The 
R² varies between 0 and 1 depending on the level of the predictive accuracy from the dependent variable (Hair et al., 
2014). The R² of perceived ease of use is 0.317 which means that the TRI factors can explain 31.7% of the variance in the 
perceived ease of use of IoT products. The R² value for perceived usefulness is 0.532 which indicates that the TRI factors 
and perceived ease of use can explain 53.2% variance in perceived usefulness. Attitude has R² of 0.516 which explains that 
51.6% of the variance of attitude can be explained by the perceived usefulness and perceived ease of use. Intention to use 
has R² of 0.535 which indicates that 53.5% of the variance of intention to use can be explained by attitude, perceived 
usefulness, and subjective norm. The last one is the R² of willingness to pay which is 0.231. That means the intention to use 
can explain 23.1% variance in willingness to pay. 
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R² Q² 

Attitude 0.516 0.397 
Intention to Use 0.535 0.405 

Perceived Ease of Use 0.317 0.222 
Perceived Usefulness 0.532 0.414 

Willingness to Pay 0.231 0.162 
Table 5: R² and Q² score 

Source: Researchers Analysis 
 
  Meanwhile, Q² or cross-validated redundancy is intended to measure the predictive relevance for the inner model 
(Wong, 2013). By using blindfolding tests in SmartPLS, the Q² score can be seen from table 5. Q² value above 0 indicates a 
predictive relevance in a model. Because the Q² value from all the factors is above 0, we can conclude that the model has 
predictive relevance. 
 
5.2.6. Hypothesis Testing 
  According to Wong (2013), bootstrapping tests in SmartPLS can develop the score of T-Value that can be used to 
test the significance of the inner and outer model. This test can be used in hypothesis testing to find out the level of 
significance from each variable that is being tested. T-Value must be greater than 1.96 at 5% significant level so the path 
coefficient can be considered as significant. Table 6 showed a summary of hypothesis testing in this research. 
 

Hypothesis Structural Path Path 
Coefficient 

T 
Values 

P 
Values 

Result 

H1a Optimism -> Perceived Usefulness 0.524 12.076 0 Accepted 

H1b Optimism -> Perceived Ease of Use 0.369 7.589 0 Accepted 

H2a Innovativeness -> Perceived Usefulness -0.022 0.414 0.679 Rejected 

H2b Innovativeness -> Perceived Ease of Use 0.293 5.689 0 Accepted 

H3a Discomfort -> Perceived Usefulness -0.068 1.519 0.129 Rejected 

H3b Discomfort -> Perceived Ease of Use -0.093 1.345 0.179 Rejected 

H4a Insecurity -> Perceived Usefulness -0.061 1.36 0.174 Rejected 

H4b Insecurity -> Perceived Ease of Use -0.174 2.693 0.007 Accepted 

H5a 
Perceived Ease of Use -> Perceived 

Usefulness 0.308 5.494 0 Accepted 

H5b Perceived Ease of Use -> Attitude 0.35 6.815 0 Accepted 

H6a Perceived Usefulness -> Attitude 0.461 9.442 0 Accepted 

H6b Perceived Usefulness -> Intention to Use 0.142 2.663 0.008 Accepted 

H7 Attitude -> Intention to Use 0.543 8.653 0 Accepted 

H8 Subjective Norm -> Intention to Use 0.141 2.488 0.013 Accepted 

H9 Intention to Use -> Willingness to Pay 0.481 12.426 0 Accepted 
Table 6: Hypothesis Testing 

Source: Researchers Analysis 
   
  From 15 hypotheses that were developed in this research, four of them are rejected. H2a, H3a, H3b, and H4a 
appears to be insignificant because the T-Value is below 1.96 at the significant level of 5%. Innovativeness appears to give 
a negative impact on PU and showed as insignificant. The discomfort didn’t give a negative significant correlation for both 
PU and PEOU, and Insecurity didn’t have a significant correlation to PU although the path correlation appears as negative. 
Other than that, the rest of the hypotheses are accepted because they have T-Value above 1.96 at a significant level of 5%. 
The highest significant score can be seen from H9 where the T-Value of intention to use to WTP is 12.426. 
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5.2.7. Total Effect and Total Indirect Effect 
 Bootstrapping test in SmartPLS can give the total effect and total indirect effect from independent variables to 
dependent variables to measure the size of influence both directly and indirectly. A specific indirect effect is also used to 
measure the mediating effect (Wong, 2013). Table 7 showed the total direct and indirect effects from one variable to 
another. 
 

Structural Path 
Total Effect Total Indirect Effect 

Path Coefficient T Value P Values Path Coefficient T Value P Values 
ATT -> ITU 0.543 8.653 0    

ATT -> WTP 0.261 7.642 0 0.26 7.202 0 

DIS -> ATT -0.015 0.411 0.681 -0.014 0.425 0.671 
DIS -> ITU -0.002 0.1 0.921 -0.002 0.095 0.924 

DIS -> PEOU -0.093 1.345 0.179    
DIS -> PU -0.039 0.885 0.377 -0.029 1.262 0.207 

DIS -> WTP -0.001 0.1 0.921 -0.001 0.096 0.924 

INN -> ATT 0.134 3.696 0 0.134 3.926 0 

INN -> ITU 0.082 3.004 0.003 0.083 3.173 0.002 
INN -> PEOU 0.293 5.689 0    

INN -> PU 0.068 1.384 0.167 0.09 3.878 0 
INN -> WTP 0.04 2.933 0.004 0.04 3.112 0.002 
INS -> ATT -0.114 3.022 0.003 0.114 3.188 0.002 
INS -> ITU -0.078 2.903 0.004 0.078 2.971 0.003 

INS -> PEOU -0.174 2.693 0.007    
INS -> PU -0.115 2.404 0.017 0.053 2.48 0.013 

INS -> WTP -0.037 2.771 0.006 0.037 2.923 0.004 

ITU -> WTP 0.481 12.426 0    
OPT -> ATT 0.424 13.045 0 0.423 12.894 0 
OPT -> ITU 0.32 9.264 0 0.32 9.3 0 

OPT -> PEOU 0.369 7.589 0    
OPT -> PU 0.638 16.337 0 0.114 4.199 0 

OPT -> WTP 0.154 7.451 0 0.154 7.482 0 

PEOU -> ATT 0.492 10.606 0 0.142 4.782 0 

PEOU -> ITU 0.311 7.402 0 0.311 7.213 0 
PEOU -> PU 0.308 5.494 0    

PEOU -> WTP 0.149 6.479 0 0.149 6.12 0 

PU -> ATT 0.461 9.442 0    
PU -> ITU 0.392 7.986 0 0.25 6.349 0 

PU -> WTP 0.188 6.859 0 0.188 6.837 0 

SN -> ITU 0.141 2.488 0.013    
SN -> WTP 0.068 2.447 0.015 0.067 2.48 0.013 

Table 7: Total Effect Size 
Source: Researchers Analysis 

   
  Discomfort gave insignificant influence to attitude, intention to use, PU, PEOU, and WTP. Innovativeness also gave 
an insignificant influence on PU. Other than that, all of the correlations between the variables are positive and the highest 
total direct effect score is from optimism to perceived usefulness. From Table 7 score, we can see the most influencing 
factor from TRI to TAM. In this case, optimism gave the most influence to PU with a score of 16.337 and to PEOU with a 
score of 7.589. Optimism also gave the highest indirect influence on attitude with a score of 12.894. 
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Path Coefficient T Value P Values 

DIS -> PEOU -> ATT -> ITU -> WTP -0.009 1.296 0.196 

INN -> PEOU -> ATT -> ITU -> WTP 0.027 3.369 0.001 

INS -> PEOU -> ATT -> ITU -> WTP -0.016 2.322 0.021 

OPT -> PEOU -> ATT -> ITU -> WTP 0.034 4.017 0 

DIS -> PU -> ATT -> ITU -> WTP -0.008 1.39 0.165 

INN -> PU -> ATT -> ITU -> WTP -0.003 0.417 0.677 

INS -> PU -> ATT -> ITU -> WTP -0.007 1.325 0.186 

OPT -> PU -> ATT -> ITU -> WTP 0.063 5.806 0 

DIS -> PEOU -> PU -> ATT -> ITU -> WTP -0.003 1.3 0.194 

INN -> PEOU -> PU -> ATT -> ITU -> WTP 0.011 3.316 0.001 

INS -> PEOU -> PU -> ATT -> ITU -> WTP -0.006 2.292 0.022 

OPT -> PEOU -> PU -> ATT -> ITU -> WTP 0.014 3.813 0 

DIS -> PEOU -> PU -> ITU -> WTP -0.002 1.114 0.266 

INN -> PEOU -> PU -> ITU -> WTP 0.006 1.969 0.049 

INS -> PEOU -> PU -> ITU -> WTP -0.004 1.699 0.09 

OPT -> PEOU -> PU -> ITU -> WTP 0.008 2.004 0.046 

DIS -> PU -> ITU -> WTP -0.005 1.21 0.227 

INN -> PU -> ITU -> WTP -0.001 0.374 0.708 

INS -> PU -> ITU -> WTP -0.004 1.232 0.219 

OPT -> PU -> ITU -> WTP 0.036 2.503 0.013 

PEOU -> ATT -> ITU -> WTP 0.091 4.792 0 

PU -> ATT -> ITU -> WTP 0.12 6.343 0 

PEOU -> PU -> ATT -> ITU -> WTP 0.037 4.405 0 

PEOU -> PU -> ITU -> WTP 0.021 2.146 0.032 

PU -> ITU -> WTP 0.068 2.561 0.011 

ATT -> ITU -> WTP 0.261 7.642 0 

SN -> ITU -> WTP 0.068 2.447 0.015 
Table 8: Specific Indirect Effect 

Source: Researchers Analysis 
 
  A specific indirect effect is performed to analyze the mediating effect of the model. In this case, we want to know 
whether TRI factors can have an indirect effect on WTP where TAM factors act as the mediator. Discomfort showed an 
insignificant effect on every path to the WTP. This means that discomfort was not a factor that could influence WTP. 
Insecurity shows an insignificant indirect effect on WTP if the path is through PU because the correlation between 
insecurity to PU alone is not significant. Innovativeness also has an insignificant indirect effect on WTP if the path is 
through PU. Meanwhile, optimism seems to have a positive indirect effect on WTP through PU and PEOU. The highest 
effect from TRI factors itself came from the path OPT  PU  ATT  ITU  WTP with a specific indirect score of 5.806. It 
can indicate that from all of TRI factors, optimism can give the greatest influence to WTP through PU, attitude, and 
intention to use as the mediator.Out of all the TAM factors that are used in this study, attitude gave the highest indirect 
effect (7.642) to WTP with variable intention to use as the mediator.The subjective norm, which is the external variable, 
also appears to have an indirect effect on WTP through intention to use. 
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5.3. Contingent Valuation Method 
  In this part, we analyze the contingent valuation method from the respondents' answers of willingness to pay. 
Alfikriet al. (2019) use CVM to measure the WTP of halal-certified beef through the mean results. In this research, 
respondents were asked to state their willingness to pay for one of the examples of IoT products, which is a smart garden. 
With 5 scale answer ranging from 1 (I’m not willing to pay for this product); 2 (I will pay below Rp 375.000); 3 (I will pay 
between Rp 375.000 to Rp 749.000); 4 (I will pay between Rp 750.000 to Rp 1.124.000); and 5 (I will pay between Rp 
1.125.000 to Rp 1.1500.000). After analyzing the answer with excel, both the median and mode of this question are on 
scale 3 which has a willingness to pay from Rp 375.000 to Rp 749.000. The mean from the willingness to pay itself is on the 
price of Rp 497.250, which then rounded up to Rp 500.000. This means that the consumer is preferred to pay about Rp 
500.000 for IoT smart garden. 
 
6. Discussion 

This research is intended to find the relationship between the readiness and acceptance of IoT products to the 
willingness to pay in the Indonesian market. Hypothesis 1a and 1b are accepted, which means that optimism has a positive 
significant correlation to PU and PEOU. This result is aligned with the findings from Jin (2013), Oh et al. (2014), and Chiu 
and Kim (2019). It means that people’s positive view of technology can influence their belief that IoT product will enhance 
their performance and will give them less effort in working. Meanwhile, hypotheses 2a and 2b have a contradictive result. 
Innovativeness gives an insignificant correlation to PU yet giving PEOU positive significant results. This could explain that 
although the level of tech literacy from the people can influence their belief that IoT products will give them less effort, it 
didn’t influence their belief that IoT could enhance their work performance. Innovativeness also appears to get low scores 
since not everyone in Indonesia tends to be a tech pioneer. 

Hypothesis 3a and 3b are rejected because discomfort has insignificant correlation to PU and PEOU. This means 
that the lack of control from using technology didn’t impact people’s perceived usefulness and perceived ease of use from 
IoT products. Hypothesis 4a is rejected because insecurity gave no impact on perceived usefulness. Meanwhile, hypothesis 
4b is accepted. The possible explanation from this is while the distrust of technology can impact people’s believe that IoT 
will give them less effort in working, it didn’t impact them for thinking that IoT could enhance their work performance. 
The results from H3a, H3b, and H4a are not aligned with the findings from Jin (2013), Oh et al. (2014), and Chiu and Kim 
(2019) but H4b is.   

H5 until H9 is accepted and gave positive significant results. All of the TAM factors hypotheses result from H5 to 
H7 are aligned with the findings from Chung and Han (2015) and Karahoca et al. (2017).Subjective norm gave a positive 
indirect effect on WTP, which explains that social environments like family, friends, and media could influence people’s 
willingness to pay for IoT products. The result from H8 is aligned with the findings from Hussein (2018) and Lau et al. 
(2019). 

H9 is accepted and the result is aligned with the findings from Wang et al. (2013) and Anwar et al. (2015). 
Intention to use proven as the most influencing factor to WTP, it means that people’s willingness to pay for IoT products 
came from their intention to use IoT. People’s acceptance of IoT products is proven to be the influencer of their willingness 
to pay. Meanwhile, their readiness towards new technology can indirectly affect their willingness to pay for IoT products. 
In this case, the readiness factor is from their optimist view to technology. 
 
7. Conclusions and Recommendations  
 
7.1. Conclusions 

Based on the data analysis results, the Indonesian market has optimism towards new technology that they 
thought new technology will contribute to a better quality of life. They also feel insecure about the use of technology that 
might invade their privacy. The market’s innovativeness appears low because not all of the people have high technology 
literacy. Their acceptance of IoT products appears to be positive. From their perceived usefulness, perceived ease of use, 
attitude, and intention to use IoT products. This explains that the market has positive believes that IoT products can give 
them better work performance and less effort. They also behave positively towards IoT and have an interest in using the 
product. Subjective norm appeared as the influence of people’s intention to use IoT too and have an indirect effect on the 
willingness to pay for IoT products. 

Overall, the willingness to pay for IoT is mostly influenced by their consumer’s intention to use because it is 
directly correlated. Other than that, the optimism toward technology has the greatest indirect influence on IoT WTP with 
perceived usefulness, attitude, and intention to use as the mediating variables. 
 
7.2. Recommendations 

Indonesian IoT companies have to understand the market’s behavior toward IoT products. The market is pretty 
optimistic about new technology, but not all of them have the same level of innovativeness. They also tend to have some 
distrust about privacy and security matters. People that haven’t bought IoT products in Indonesia tend to use simpler 
products with the same function. That is why not all of the market feels the need to use IoT products. Overall, non-buyers 
gave positive feedbacks saying they would like to buy the IoT product as long as their needs are fulfilled. It is a great 
opportunity for the IoT market in Indonesia. In this case, IoT companies and marketers have to educate the market more 
about the different features and functions that IoT brings that could make the consumer understand the benefit from using 
IoT so that they can boost their sales as well as widen their market. To build more trust, companies should protect their 
user’s privacy as well as keeping a good communication with them. The budget allocations also should be centered on 
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marketing to spread product awareness first. Giving promotions and advertisements through social media and websites, 
using a marketplace like Bukalapak, Shopee, and Tokopedia to sell the IoT products, as well as collaborating with local 
communities could be implemented. For example, in Indonesia, the community of housewives can be a channel to market 
household-related IoT products like smart garden and smart home because if one person uses the product, the others are 
most likely to follow. 

People also prefer to pay around Rp 500.000 for a compact product like the smart garden, and their willingness to 
pay is mostly based on their fulfillment from the product. That’s why IoT companies and marketers have to deliver the 
exact value that matches the market’s needs. The willingness to pay is going to be different in each type of product. By 
understanding the market needs and giving an appropriate pricing strategy that suits the market, IoT companies and 
marketers can maximize their company’s growth. 
 
8. Limitations and Future Research 

Despite all of the findings obtained from this research, there are still some limitations happening. This study didn’t 
do a comprehensive research about the market’s behavior in a more diverse region of Indonesia. The researchers 
recommend more in-depth study in each region so that we could know the different patterns of people’s willingness to pay 
and the acceptance towards IoT products from each region. 

This research is also limited in finding the consumer’s willingness to pay from TRI and TAM factors, which only 
explained the market’s readiness and acceptance for IoT products. For future research, the researcher suggests finding 
other factors that could significantly influence the consumer’s willingness to pay. Because the market tends to buy IoT 
products from the functions and the benefit that the product offered, It is appropriate to find out more about the 
correlation between the value offered and the consumer’s willingness to pay for IoT products.  
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